八年级数学上册第五章相交线与平行线单元测试卷中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第五章相交线与平行线单元测试卷中考真题汇编[解析版]
一、选择题
1.如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )
A .∠EMB=∠END
B .∠BMN=∠MN
C C .∠CNH=∠BPG
D .∠DNG=∠AME
2.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )
A .30°
B .35°
C .40°
D .45°
3.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )
A .y =x+z
B .x+y ﹣z =90°
C .x+y+z =180°
D .y+z ﹣x =90° 4.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( ) A .18
B .126
C .18或126
D .以上都不对
5.如图,AB ∥CD ,∠B =20°,∠D =40°,则∠BED 为( )
A .20°
B .30°
C .60°
D .40°
6.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若
100DEH ︒∠=,则BEG ∠的度数是( )
A .30︒
B .40︒
C .50︒
D .60︒
7.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )
A .70°
B .45°
C .110°
D .135°
8.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( ) A .①③⑤ B .②④⑤
C .③④⑤
D .①②⑤
9.下列命题中,假命题是( )
A .对顶角相等
B .同角的余角相等
C .面积相等的两个三角形全等
D .平行于同一条直线的两直线平行
10.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( ) A .1个 B .2个
C .3个
D .4个
11.命题“垂直于同一条直线的两条直线互相平行”的条件是( )
A .垂直
B .两条直线互相平行
C .同一条直线
D .两条直线垂直于同一条直线
12.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )
A.40°B.50°C.60°D.70°
二、填空题
13.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.
14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.
15.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠AB M 的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.
16.下列说法中正确的有_____________(填序号).
①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点;⑤相等的角是对顶角;⑥180°角是补角;
⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.
17.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.
18.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.
19.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .
20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.
三、解答题
21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.
(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 1
2CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;
(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 1
3
CBD CBN ∠=∠,则ADB =∠_________︒;
(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 1
3
CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=
∠, 1
CBD CBN n
∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)
22.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.
小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,
∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
23.(1)问题发现
如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC()
∴∠C=∠CEF.()
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C=(等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题
如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A=.(之间写出结论,不用写计算过程)
24.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()
A .180°
B .270°
C .360°
D .540° (1)请写出这道题的正确选项;
(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.
(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.
(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.
25.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接
写出PMH ∠与N ∠之间的数量
26.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .
(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;
(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;
(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点
P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).
27.已知直线AB CD ∥,直线EF 与直线AB 、CD 分别相交于点E 、F .
(1)如图1,若160∠=︒,求2∠,3∠的度数;
(2)若点P 是平面内的一个动点,连接PE 、PF ,探索EPF ∠、PEB ∠、PFD ∠之间的数量关系;
①当点P 在图2的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ②当点P 在图3的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ③当点P 在图4的位置时,请直接写出EPF ∠、PEB ∠、PFD ∠之间的数量关系. 28.已知,点、、A B C 不在同一条直线上,//AD BE
(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;
(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;
(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
试题分析:根据平行线的性质可得A 、∵AB ∥CD ,∴∠EMB=∠END (两直线平行,同位角相等);B 、∵AB ∥CD ,∴∠BMN=∠MNC (两直线平行,内错角相等);C 、∵AB ∥CD ,∴∠CNH=∠MPN (两直线平行,同位角相等),∵∠MPN=∠BPG (对顶角),
∴∠CNH=∠BPG (等量代换);D 、∠DNG 与∠AME 没有关系,无法判定其相等.故答案选D.
考点:平行线的性质.
2.B
解析:B 【分析】
过C 作CM ∥直线l 1,求出CM ∥直线l 1∥直线l 2,根据平行线的性质得出∠1=∠MCB =25°,∠2=∠ACM ,即可求出答案. 【详解】
过C 作CM ∥直线l 1, ∵直线l 1∥l 2,
∴CM ∥直线l 1∥直线l 2, ∵∠ACB =60°,∠1=25°,
∴∠1=∠MCB=25°,
∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,
故选:B.
【点睛】
本题考查了平行线的性质,能正确作出辅助线是解此题的关键.
3.B
解析:B
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
【详解】
解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°.
故选:B.
【点睛】
本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
4.C
解析:C
【分析】
由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.
【详解】
解:∵∠A与∠B的两边分别平行,
∴∠A与∠B相等或互补.
分两种情况:
①如图1,
当∠A+∠B=180°时,∠A=3∠B-36°,
解得:∠A=126°;
②如图2,
当∠A=∠B,∠A=3∠B-36°,
解得:∠A=18°.
所以∠A=18°或126°.
故选:C.
【点睛】
此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.
5.C
解析:C
【分析】
过点E作EF∥AB,得∠B=∠BEF=20°,结合AB∥CD知EF∥CD,据此得∠D=∠DEF=40°,根据∠BED=∠BEF+∠DEF可得答案.
【详解】
解:如图,过点E作EF∥AB,
∴∠B=∠BEF=20°,
∵AB∥CD,
∴EF∥CD,
∴∠D=∠DEF=40°,
则∠BED=∠BEF+∠DEF=20°+40°=60°,
故答案为:60°.
【点睛】
本题考查平行线的性质,解题关键是掌握两直线平行内错角相等的性质和平行与平面内同一直线的两直线平行的性质.
6.B
解析:B
【分析】
AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.
【详解】
解:设FBE=∠FEB=α,则∠AFE=2α,
∠FEH的角平分线为EG,设∠GEH=∠GEF=β,
∵AD∥BC,∴∠ABC+∠BAD=180°,
而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,
∠DEH=100°,则∠CEH=∠FAE=80°,
∠AEF=180°-∠FEG-∠BEG=180°-2β,
在△AEF中,
在△AEF中,80°+2α+180-2β=180°
故β-α=40°,
而∠BEG=∠FEG-∠FEB=β-α=40°,
故选:B.
【点睛】
此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-
2β=180°,题目难度较大.
7.C
解析:C
【分析】
根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】
解:∵∠1与∠5是对顶角,
∴∠1=∠2=∠5=45°,
∴a∥b,
∴∠3+∠6=180°,
∵∠3=70°,
∴∠4=∠6=110°.
故答案为C.
【点睛】
本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.
8.C
解析:C
【分析】
①垂径定理的逆定理,注意有否有缺少什么;②如果三点共线;③旋转的性质;④三角形的外心的性质;⑤圆的性质.
【详解】
①平分弦(不是直径)的直径垂直于弦,且平分弦所对的弧,原命题错误;
②三点共线时不能确定一个圆,原命题错误;
③由旋转的性质可知,原命题正确;
④由三角形的外心的性质,原命题正确;
⑤由圆的性质,原命题正确;
本题的答案是:C.
【点睛】
考查垂径定理的逆定理、旋转的性质、三角形的外心的性质、圆的性质.
9.C
解析:C
【分析】
根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.
【详解】
解:A、对顶角相等,所以A选项为真命题;
B、同角的余角相等,所以B选项为真命题;
C、面积相等的两个三角形不一定全等,所以C选项为假命题;
D、平行于同一条直线的两条直线平行,所以D选项为真命题.
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
10.B
解析:B
【分析】
根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】
①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;
②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;
③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);
④平行于同一条直线的两直线互相平行,是真命题;
故选B.
【点睛】
本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.
11.D
解析:D
【分析】
命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.
【详解】
“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.
故选:D.
【点睛】
本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.12.B
解析:B
【解析】
试题分析:由AB∥DE,∠CDE=40°,
∴∠B=∠CDE=40°,
又∵FG⊥BC,
∴∠FGB=90°﹣∠B=50°,
故选B.
考点:平行线的性质
二、填空题
13.70°
【分析】
此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.
【详解】
解:如图所示,过点E,F分别作EG∥AB,FH∥AB.
∵EG∥AB,FH∥A
解析:70°
【分析】
此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.
【详解】
解:如图所示,过点E,F分别作EG∥AB,FH∥AB.
∵EG∥AB,FH∥AB,
∴∠5=∠ABE,∠3=∠1,
又∵AB∥CD,
∴EG∥CD,FH∥CD,
∴∠6=∠CDE,∠4=∠2,
∴∠1+∠2=∠3+∠4=∠BFD=35°.
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABE=2∠1,∠CDE=2∠2,
∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.
故答案为70°.
【点睛】
本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.
14.24
【解析】
【分析】
根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.
【详解】
解:如图所示
观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A

解析:24
【解析】
【分析】
根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.
【详解】
解:如图所示
观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.
故答案是:24.
【点睛】
本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.27°.
【解析】
【分析】
延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.
【详解】
解:延长FA与直线MN交于点K,
由图可知∠ACD=90°-∠CAD=90°-(45°
解析:27°.
【解析】
【分析】
延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.
【详解】
解:延长FA与直线MN交于点K,
由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,
因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,
所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,
所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.
故∠ACD的度数是:27°.
【点睛】
本题利用平行线、垂直、角平分线综合考查了角度的求解.
16.①③
【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段A
解析:①③
【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段AB的中点,④不正确;根据对顶角的定义,可知相等的角不一定是对顶角,⑤不正确;根据和为180°的两角互为补角,知⑥不正确.
故答案为:①③.
17.【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35
解析:0
35
【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
考点:1.平行线的性质;2.等边三角形的性质.
18.40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,

解析:40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,
∴∠ACB=1
2
∠BCD=40°,
∴∠DAC=∠ACB=40°.
【点睛】
本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.60°
【分析】
设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.
【详解】
解:设∠OCA=a,∠AOC=x,
已知CB∥OA,∠B=∠A=100°,
即a+x=80
解析:60°
【分析】
设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.
【详解】
解:设∠OCA=a,∠AOC=x,
已知CB∥OA,∠B=∠A=100°,
即a+x=80°,
又因为∠OEB=∠EOC+∠ECO=40°+x.
当∠OEB=∠OCA,a=80°-x,40°+x=a,
解得∠OCA=60°.
【点睛】
本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.
20.12
【解析】
分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.
详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的 解析:12
【解析】
分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.
详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.
故答案为12.
点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.
三、解答题
21.(1)120º,120º;(2)160;(3)
()1360n m n -⋅- 【分析】
(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据
12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602
CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据
ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=
∠, 13
CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n
∠=
∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CG
EF ,DH EF ,
∵EF
MN , ∴EF MN CG DH ,
∴120ACG FAC ∠=∠=︒,
∴360120GCB ACG ACB ∠=︒-∠-∠=︒,
∴120CBN GCB ∠=∠=︒,
∵1602
CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,
又∵60FAD FAC CAD ∠=∠-∠=︒,
∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,
∴120ADB ADH BDH ∠=∠+∠=︒.
(2)如图示,分别过点,C D 作CG EF ,DH EF ,
∵EF MN ,∴EF MN CG DH ,
∴120ACG FAC ∠=∠=︒,
∴360120GCB ACG ACB ∠=︒-∠-∠=︒,
∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403
CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,
又∵80FAD FAC CAD ∠=∠-∠=︒,
∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,
∴160ADB ADH BDH ∠=∠+∠=︒.
故答案为:160;
(3)同理(1)的求法
∵EF MN ,∴EF MN CG DH ,
∴ACG FAC m ∠=∠=︒,
∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,
∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n
︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-
︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-
=︒, ∴()
1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n
-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=
-︒︒-︒︒-+︒. 故答案为:
()1360n m n
-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.
22.(1)CPD αβ∠=∠+∠,理由见解析;
(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;
∠=∠-∠.
当点P在射线AM上时,CPDβα
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出
∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
23.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°. 【分析】
(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;
(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;
(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可. 【详解】
(1)证明:如图①,过点E 作EF ∥AB ,
∵AB ∥DC (已知),EF ∥AB (辅助线的作法), ∴EF ∥DC (平行于同一直线的两直线平行), ∴∠C =∠CEF .(两直线平行,内错角相等), ∵EF ∥AB ,
∴∠B =∠BEF (同理),
∴∠B +∠C =∠BEF +∠CEF (等量代换) 即∠B +∠C =∠BEC ,
故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ; (2)证明:如图②,过点E 作EF ∥AB ,
∵AB ∥DC (已知),EF ∥AB (辅助线的作法), ∴EF ∥DC (平行于同一直线的两直线平行), ∴∠C +∠CEF =180°,∠B +∠BEF =180°, ∴∠B +∠C +∠AEC =360°, ∴∠B +∠C =360°﹣∠BEC ;
(3)解:如图③,过点E 作EF ∥AB ,
∵AB ∥DC (已知),EF ∥AB (辅助线的作法), ∴EF ∥DC (平行于同一直线的两直线平行), ∴∠C +∠CEF =180°,∠A =∠BEF , ∵∠C =120°,∠AEC =80°, ∴∠CEF =180°﹣120°=60°, ∴∠BEF =80°﹣60°=20°, ∴∠A =∠AEF =20°. 故答案为:20°. 【点睛】
本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补. 24.(1)C ;(2)BAD DEF ADE ∠+∠=∠;(3)2360C ADE ∠+∠∠=︒;(4)90BAC
DEF
CDE
【分析】
(1)利用平行线的性质,即可得到180A ACD ∠+∠=︒,180E ECD ∠+∠=︒,进而得出360BAC ACE
CEF

(2)过D 作//DG AB ,利用平行线的性质,即可得到A
ADG ,E
EDG ,进而
得出A
E
ADG
EDG
ADE ; (3)利用(1)可得360BAC
C
CEF
,利用(2)可得D
BAD
DEF ,根据AD ,ED 分别平分BAC ∠,CEF ∠,即可得到22360BAD C
DEF
,化简即可
得到ACE ∠与ADE ∠之间的数量关系;
(4)过C 作//CG AB ,过D 作//DH AB ,则有//////CG AB EF DH ,可得1180BAC
, 23∠∠=,4DEF
,34CDE ,则有1180BAC ,可求出390BAC ,利用34
CDE ,4DEF
,得到
90BAC
DEF
CDE

【详解】 解:(1)
////AB CD EF ,
180A
ACD
,180E ECD ∠+∠=︒,
360A ACD E ECD

即360BAC ACE CEF

故选:C .
(2)BAD DEF ADE ∠+∠=∠, 如图,过D 作//DG AB ,
//AB EF ,
////DG AB EF ∴,
A ADG ,E EDG , A
E
ADG
EDG
ADE ; (3)2360C ADE ∠+∠∠=︒, 理由:由(1)可得,360BAC C
CEF

由(2)可得,D BAD
DEF ,

AD ,ED 分别平分BAC ∠,CEF ∠, 2BAC AD B ,2CEF DEF , 22360BAD C DEF ,
即2()
360BAD
DEF C

2360ACE
ADE

(4)90BAC DEF CDE

理由:如图,过C 作//CG AB ,过D 作//DH AB ,
//AB EF ,
//////CG AB EF DH ,
∴1180BAC
, 23∠∠=,4DEF ,34
CDE
∴1180
BAC
∵1290
∠+∠=,
∴329019018090
BAC BAC,
∴3490
BAC DEF CDE,
即有:90
BAC DEF CDE.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
25.(1)证明过程见解析;(2)1
2
N AEM NFD
∠=∠-∠,理由见解析;(3)
1
3
∠N+∠PMH=180°.
【分析】
(1)根据同旁内角互补,两直线平行即可判定AB∥CD;
(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到
1 2
N AEM NFD ∠=∠-∠;
(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-
∠PMI=1
3
∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到
1 3∠FNP=180°-∠PMH,即
1
3
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=1
3
∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×1
3
∠FNP=180°-∠PMH
1
3
∠FNP=180°-∠PMH
即1
3
∠N+∠PMH=180°
故答案为1
3
∠N+∠PMH=180°
【点睛】
本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.
26.(1) 150°;(2) ∠OCD+∠BO'E=240°;(3) 30°+1
2 .
【分析】
(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;
(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.【详解】
解:(1)∵CD//OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-90°-120°=150°;
(2)如图2,过O点作OF//CD,
∴CD//OE,
∴OF∥OE,
∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E )=120°, ∴∠OCD+∠BO'E=240°; (3)∵CP 是∠OCD 的平分线, ∴∠OCP=
1
2
∠OCD , ∴∠CPO'=360°-90°-120°-∠OCP =150°-1
2
∠OCD =150°-
1
2
(240°-∠BO'E ) =30°+12
α
【点睛】
本题考查了平行线的判定和性质、周角的定义、角平分线的定义,确定∠OCD 、∠B0'E 的数量关系是解答本题的关键.
27.(1)360∠=︒;(2)①EPF PEB PFD ∠=∠+∠,证明见解析;
②360EPF PEB PFD ︒∠+∠+∠=,证明见解析;③EPF PEB PFD ∠=∠-∠或
EPF PFD PEB ∠+∠=∠. 【分析】
(1)根据对顶角相等求∠2,根据两直线平行,同位角相等求∠3;
(2)①过点P 作MN ∥AB ,根据平行线的性质得∠EPM =∠PEB ,且有MN ∥CD ,所以∠MPF =∠PFD ,然后利用等式性质易得∠EPF =∠PEB +∠PFD .
②③的解题方法与①一样,分别过点P 作MN ∥AB ,然后利用平行线的性质得到三个角之间的关系. 【详解】
(1)解:∵12∠=∠,160∠=︒, ∴260∠=︒; ∵AB CD ∥, ∴3160∠=∠=︒ .
(2)①EPF PEB PFD ∠=∠+∠. 过点P 作MN
AB ,则EPM PEB ∠=∠.
∵AB CD ∥,MN AB ,
∴MN CD ∥, ∴MPF PFD ∠=∠,
∴EPM MPF PEB PFD ∠+∠=∠+∠, 即EPF PEB PFD ∠=∠+∠.
②360EPF PEB PFD ︒∠+∠+∠=, 过点P 作MN
AB ,则180PEB EPN ∠+∠=︒,
∵AB CD ∥,MN AB ,
∴MN CD ∥,
∴180NPF PFD ∠+∠=︒,
∴360PEB EPN NPF PFD ∠+∠+∠+∠=︒. 即360EPF PEB PFD ︒∠+∠+∠=.
③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.写对一种即可. 理由:如图4,过点P 作PM ∥AB , ∵AB ∥CD ,MP ∥AB , ∴MP ∥CD ,
∴∠PEB =∠MPE ,∠PFD =∠MPF , ∵∠EPF +∠FPM =∠MPE , ∴∠EPF +∠PFD =∠PEB .
【点睛】
本题主要考查了平行公理的推论和平行线的性质,结合图形作出辅助线构造出三线八角是解决此题的关键.
28.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【分析】
(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;
(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出
∠AQB=1
2
(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;
(3)由(2)的结论可得出∠CAD=1
2
∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,
联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】
解:(1)在图①中,过点C作CF∥AD,则CF∥BE.
∵CF∥AD∥BE,
∴∠ACF=∠A,∠BCF=180°-∠B,
∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.
(2)在图2中,过点Q作QM∥AD,则QM∥BE.
∵QM∥AD,QM∥BE,
∴∠AQM=∠NAD,∠BQM=∠EBQ.
∵AQ平分∠CAD,BQ平分∠CBE,
∴∠NAD=1
2
∠CAD,∠EBQ=
1
2
∠CBE,
∴∠AQB=∠BQM-∠AQM=1
2
(∠CBE-∠CAD).
∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.
(3)∵AC∥QB,
∴∠AQB=∠CAP=1
2
∠CAD,∠ACP=∠PBQ=
1
2
∠CBE,
∴∠ACB=180°-∠ACP=180°-1
2
∠CBE.
∵2∠AQB+∠ACB=180°,
∴∠CAD=1
2
∠CBE.
又∵QP⊥PB,
∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,
∴∠CAD=60°,∠CBE=120°,
∴∠ACB=180°-(∠CBE-∠CAD)=120°,
故∠DAC=60°,∠ACB=120°,∠CBE=120°.
【点睛】
本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定
义找出∠AQB=1
2
(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求
出∠DAC、∠ACB、∠CBE的度数.。

相关文档
最新文档