高中物理高二物理上学期精选试卷同步检测(Word版 含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理高二物理上学期精选试卷同步检测(Word 版 含答案)(1)
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则()
A .小球运动到
B 2gR B .小球运动到B 点时的加速度大小为3g
C .小球从A 点运动到B 点过程中电势能减少mgR
D .小球运动到B 点时对轨道的压力大小为3mg +k 12
2
q q R 【答案】AD 【解析】 【分析】 【详解】
A.带电小球q 2在半圆光滑轨道上运动时,库仑力不做功,故机械能守恒,则:
212
B mgR mv =
解得:
2B v gR 故A 正确;
B.小球运动到B 点时的加速度大小为:
22v a g R
==
故B 错误;
C.小球从A 点运动到B 点过程中库仑力不做功,电势能不变,故C 错误;
D.小球到达B 点时,受到重力mg 、库仑力F 和支持力F N ,由圆周运动和牛顿第二定律得:
2
122B
N q q v F mg k m R R
--=
解得:
12
23N q q F mg k
R
=+ 根据牛顿第三定律,小球在B 点时对轨道的压力为:
12
2
3q q mg k
R + 方向竖直向下,故D 正确.
2.电荷量相等的两点电荷在空间形成的电场有对称美.如图所示,真空中固定两个等量异种点电荷A 、B ,AB 连线中点为O.在A 、B 所形成的电场中,以O 点为圆心半径为R 的圆面垂直AB 连线,以O 为几何中心的边长为2R 的正方形平面垂直圆面且与AB 连线共面,两个平面边线交点分别为e 、f ,则下列说法正确的是( )
A .在a 、b 、c 、d 、e 、f 六点中找不到任何两个场强和电势均相同的点
B .将一电荷由e 点沿圆弧egf 移到f 点电场力始终不做功
C .将一电荷由a 点移到圆面内任意一点时电势能的变化量相同
D .沿线段eOf 移动的电荷,它所受的电场力先减小后增大 【答案】BC 【解析】
图中圆面是一个等势面,e 、f 的电势相等,根据电场线分布的对称性可知e 、f 的场强相同,故A 错误.图中圆弧egf 是一条等势线,其上任意两点的电势差都为零,根据公式W=qU 可知:将一正电荷由e 点沿圆弧egf 移到f 点电场力不做功,故B 正确.a 点与圆面内任意一点时的电势差相等,根据公式W=qU 可知:将一电荷由a 点移到圆面内任意一点时,电场力做功相同,则电势能的变化量相同.故C 正确.沿线段eof 移动的电荷,电场强度 先增大后减小,则电场力先增大后减小,故D 错误.故选BC .
【点睛】等量异种电荷连线的垂直面是一个等势面,其电场线分布具有对称性.电荷在同一等势面上移动时,电场力不做功.根据电场力做功W=qU 分析电场力做功情况.根据电场线的疏密分析电场强度的大小,从而电场力的变化.
3.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()
0,3P L ,则以下说法正确的是 ( )
A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷
B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少
C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动
D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为2
34Qq
k L
【答案】BD 【解析】 【详解】
A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;
B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;
C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;
D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ︒=,由叠加原理可得,P 点的场强为
22
32sin 2
sin 60(2)4P M kQ kQ E E L L
θ︒
=== 所以电场力即为向心力为
3Qq
F k
= 故D 正确。
4.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需通过一定的分析就可以判断结论是否正确.如图所示为两个彼此平行且共轴的半径分别为R 1和R 2的圆环,两圆环上的电荷量均为q (q >0),而且电荷均匀分布.两圆环的圆心O 1和O 2相距为2a ,连线的中点为O ,轴线上的A 点在O 点右侧与O 点相距为r (r <a ),试分析判断下列关于A 点处
电场强度大小E 的表达式正确的是
A .()()()
()3
3
2
2
222
2
12kq a r kq a r E R a r R a r +-=
-
⎡⎤⎡⎤+++-⎣⎦
⎣⎦
B .
()()()
()3
3
22222
2
12kq a r kq a r E R a r R a r +-=
+
⎡⎤⎡⎤
+++-⎣⎦
⎣⎦
C .()()1
2
222212kqR kqR E R a r R a r =
-
⎡⎤⎡⎤
+++-⎣⎦
⎣⎦
D .
()()1
2
3
3
22222
2
12kqR kqR E R a r R a r =
-
⎡⎤
⎡⎤
+++-⎣⎦
⎣⎦
【答案】A 【解析】 【分析】
题目要求不通过计算,只需通过一定的分析就可以判断结论,所以根据点电荷场强的公式
E=k
2
Q
r ,与选项相对比,寻找不同点,再用极限分析问题的思想方法就可以分析出结果. 【详解】
与点电荷的场强公式E=k 2Q
r
,比较可知,C 表达式的单位不是场强的单位,故可以排除C ;
当r=a 时,右侧圆环在A 点产生的场强为零,则A 处场强只由左侧圆环上的电荷产生,即场强表达式只有一项,故可排除选项D ;
左右两个圆环均带正电,则两个圆环在A 点产生的场强应该反向,故可排除B ,综上所述,可知A 正确.故选A .
5.如图所示,半径为R 的绝缘光滑半球内有A 、B 两个带电小球(均可视为点电荷),A 球固定在半球的最低点,B 球静止时,A 、B 两球之间的距离为R ,由于漏电,B 球缓慢向A 球靠近,设A 、B 两球之间的库仑力大小为F ,光滑半球对B 球的弹力大小为N ,A 、B 两球之间的距离用x 表示,则F -x 、N -x 的关系图象正确的是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
以B 球为研究对象,受到重力G ,A 球对它的斥力F 和光滑半球对B 的弹力N 三个力作用,受力如图:
由几何关系可知,力的三角形F BN 合与三角形ABO 相似,则有
=G N F R OB AB
因为G 、R 、OB 不变,则N 不变,AB 在减小,因此F 减小 选项B 正确,ACD 错误。
故选B 。
6.如图所示,固定在竖直面内的光滑金属细圆环半径为R ,圆环的最高点通过长为L 的绝缘细线悬挂质量为m 、可视为质点的金属小球,已知圆环所带电荷量均匀分布且带电荷量与小球相同,均为Q (未知),小球在垂直圆环平面的对称轴上处于平衡状态,已知静电力常量为k ,重力加速度为g ,细线对小球的拉力为F (未知),下列说法正确的是( )
A .Q =3
mgR kL ,F =mgR L B .Q =3
mgL kR ,F =mgR L C .Q =3
mgR kL ,F =mgL R D .Q =3
mgL kR
,F =mgL R 【答案】D 【解析】 【详解】
由于圆环不能看成点电荷,采用微元法,小球受到的库仑力为圆环各个点对小球库仑力的合力,以小球为研究对象,进行受力分析,如图所示
则Fsin mg θ=,其中=
R sin L θ,解得mgL
F R
= 设圆环各个点对小球的库仑力的合力为F Q ,水平方向上有2
2Q Q Fcos F k cos L
θθ==,解得
3
mgL Q kR =
,故D 项正确,ABC 三项错误.
7.如图所示,导体球A 与导体球壳B 同心,原来都不带电,也不接地,设M 、N 两点的场强大小为E M 和E N ,下列说法中正确的是
A .若使A 带电,则E M ≠0,E N =0
B .若使B 带电,则E M ≠0,E N ≠0
C.若使A,B两球分别带上等量异种电荷,则E M≠0,E N=0
D.若使A球带电,B球接地,则E M=0,E N=0
【答案】C
【解析】
【详解】
A.如果A带电,则会感应B内部带异种电荷,外部电性与A相同,那么E M≠0,E N≠0;故A错误;
B.如果B带电,由于同种电荷的排斥,电荷只分布在外表面E内=0,即E M=0,E N≠0,B 错误;
C.如果A、B带等量异种电荷,A与B的静电感应使B外表面恰好无电荷量,则E M≠0,E N=0,故C正确;
D.如使A球带电,B球接地,是接地屏蔽,E M≠0,E N=0,D错误。
8.如图所示,有两对等量异种电荷,放在正方形的四个顶点处,a、b、c、d为正方形四个边的中点,o为正方形的中心,下列说法中正确的是
A.o点电场强度为零
B.a、c两个点的电场强度大小相等方向相反
C.将一带正电的试探电荷从b点沿直线移动到d点,电场力做功为零
D.将一带正电的试探电荷从a点沿直线移动到c点,试探电荷具有的电势能增大
【答案】C
【解析】
【详解】
A. 两个正电荷在O点的合场强水平向右,两个负电荷在O点的合场强也水平向右,所以O 点电场强度不等于零,方向水平向右。
故A不符合题意;
B. 设正方形边长为L,每个电荷的电量大小为Q,对A点研究,两个正电荷在A点的合场强为零,根据平行四边形法则,两个负电荷在A点的合场强方向水平向右。
则A点的电场强度方向水平向右。
对C点研究,两个负电荷在C点的合场强为零,根据平行四边形法则,两个正电荷在C点的合场强方向水平向右,所以A、C两个点的电场强度方向相同。
故B不符合题意;
C. 在上面两个等量异种电荷的电场中,B、D连线是一条等势线。
在下面两个等量异种电荷的电场中,B、D连线是也一条等势线,所以B、D两点的电势相等,将一带正电的试探电荷从B点沿直线移动到D点,电场力做功为零,故C符合题意;
D. 根据电场的叠加原理可知,AC连线上场强方向水平向右,则将一带正电的试探电荷匀速从A点沿直线移动到C点,电场力做正功,则试探电荷具有的电势能减小,故D不符合题意。
9.如图所示,一倾角为30︒的粗糙绝缘斜面固定在水平面上,在斜面的底端A 和顶端B 分别固定等量的同种负电荷。
质量为m 、带电荷量为−q 的物块从斜面上的P 点由静止释放,物块向下运动的过程中经过斜面中点O 时速度达到最大值v m ,运动的最低点为Q (图中没有标出),则下列说法正确的是( )
A .P 、Q 两点场强相同
B .U PO = U OQ
C .P 到Q 的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动
D .物块和斜面间的动摩擦因数12
μ= 【答案】C 【解析】 【分析】 【详解】
ABD .物块在斜面上运动到O 点时的速度最大,加速度为零,又电场强度为零,所以有
sin30cos300mg mg μ︒-︒=
所以物块和斜面间的动摩擦因数为
3tan μθ==
由于运动过程中
sin30cos300mg mg μ︒-︒=
所以物块从P 点运动到Q 点的过程中受到的合外力为电场力,因此最低点Q 与释放点P 关于O 点对称,根据等量的异种点电荷周围电势的对称性可知,P 、Q 两点的电势相等,则有U OP = U OQ ,根据等量的异种点电荷产生的电场特征可知,P 、Q 两点的场强大小相等,方向相反,故ABD 错误;
C .根据点电荷的电场特点和电场的叠加原理可知,沿斜面从B 到A 电场强度先减小后增大,中点O 的电场强度为零。
设物块下滑过程中的加速度为a ,根据牛顿第二定律有
qE ma =
物块下滑的过程中电场力qE 先方向沿斜面向下逐渐减少后沿斜面向上逐渐增加,所以物块的加速度大小先减小后增大,所以P 到O 电荷先做加速度减小的加速运动,O 到Q 电荷做加速度增加的减速运动,故C 正确。
故选C 。
10.如图所示,真空中有三个带等电荷量的点电荷a 、b 和c ,分别固定在水平面内正三角形的顶点上,其中a 、b 带正电,c 带负电。
O 为三角形中心,A 、B 、C 为三条边的中点。
设无穷远处电势为零。
则()
A.B、C两点电势相同
B.B、C两点场强相同
C.电子在O点电势能为零
D.在O点自由释放电子(不计重力),将沿OA方向一直运动
【答案】A
【解析】
【分析】
【详解】
A.B、C两点分别都是等量正负电荷连线的中点,由对称性知电势为零,剩下的正电荷产生了相等的电势,则B、C两点电势相同,故A正确;
B.电场强度是矢量,场强的合成满足平行四边形定则,通过矢量的合成可得,B、C点的场强大小相同,但方向不同,故B错误;
C.两等量异种电荷在O点产生的总电势为零,但剩下的正电荷在O点产生的电势为正,则O点的总电势为正,故电子在O点的电势能不为零,故C错误;
D.ab两个点电荷在OA线段上的合场强方向向下,过了A点后,ab两个点电荷在OA直线上向上;点电荷c在OA线段上的场强方向向下,过了A点后,场强方向向下也向下,故在O点自由释放电子(不计重力),会沿直线做加速运动,后做减速运动,直到静止,故D错误。
故选A。
11.如图所示,A、B、C、D是立方体的四个顶点,在A、B、D三个点各放一点电荷,使C 点处的电场强度为零。
已知A点处放的是电荷量为Q的正点电荷,则关于B、D两点处的点电荷,下列说法正确的是()
A.B点处的点电荷带正电B.D点处的点电荷带正电
C.B点处的点电荷的电荷量为26
9
D.D点处的点电荷的电荷量为
1
3
Q
【答案】C
【解析】 【分析】 【详解】
A .A 点处放的是电荷量为Q 的正点电荷,若
B 点处的点电荷带正电,根据场强叠加可知,在D 点无论是放正电还是负电,
C 点的场强都不可能为零,选项A 错误; B .若
D 点处的点电荷带正电,则根据场强叠加可知,在B 点无论是放正电还是负电,C 点的场强都不可能为零,选项B 错误;
CD .设正方体边长为a ,BC 与AC 夹角为θ,由叠加原理可知,在BD 两点只能都带负电时,C 点的合场强才可能为零,则
22cos 32B Q Q
k k a a θ= 22
sin 3D Q Q
k
k a a θ= 其中2cos 3
θ=,sin 3θ=
解得
26
9
B Q Q =
39
D Q Q =
选项C 正确,D 错误。
故选C 。
12.如图所示,质量为m 的带电小球A 用绝缘细线悬挂于O 点,另一个相同的带电小球B 固定于O 点的正下方,已知细线长L ,O 到B 点的距离也为L ,平衡时,BO 与AO 间的夹角为45°,已知重力加速度为g ,则下列说法正确的是( )
A .细线对A 球的拉力等于库仑力和重力的合力,因此拉力大于重力
B 22mg -
C .A 球漏了少量电后,细线对A 球的拉力减小
D .A 球漏了少量电后,B 球对A 球的库仑力增大 【答案】B 【解析】 【分析】 【详解】
A .小球A 的受力分析,如图所示
由于力的三角形与OAB 相似,对应边成比例,设AB 间距离为x ,因此
mg T F l l x
==① 可得
T mg =
A 错误;
B .根据余弦定理,可得
222o 2cos4522x l l l l =+-=-
根据①式可得,库仑力大小
22F mg =-
B 正确;
C .A 球漏了少量电后,力的三角形与OAB 仍相似,根据①式可知,细线对A 球的拉力仍等于mg ,C 错误;
D .根据相似三角形,可得当x 减小时,根据①可知,库仑力也减小,D 错误。
故选B 。
二、第十章 静电场中的能量选择题易错题培优(难)
13.一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动,取该直线为x 轴,起始点O 为坐标原点,其电势能p E 与位移x 的关系如图所示,下列图象中合理的是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】
【详解】
粒子仅受电场力作用,做初速度为零的加速直线运动,电场力做功等于电势能的减小量,故:
P E F x
∆=∆ 即p E x -图象上某点的切线的斜率表示电场力;
A.p E x - 图象上某点的切线的斜率表示电场力,故电场力逐渐减小,根据
F E q
=
故电场强度也逐渐减小,故A 错误;
B.根据动能定理,有: k F x E ⋅∆=∆
故k E x -图线上某点切线的斜率表示电场力;由于电场力逐渐减小,与B 图矛盾,故B 错误;
C.按照C 图,速度随着位移均匀增加,根据公式
2202v v ax -=
匀变速直线运动的2x v ﹣图象是直线,题图v x -图象是直线;相同位移速度增加量相等,又是加速运动,故增加相等的速度需要的时间逐渐减小,故加速度逐渐增加;而电场力减小导致加速度减小;故矛盾,故C 错误;
D.粒子做加速度减小的加速运动,故D 正确.
14.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处的电势为φ=k q r
(q 的正负对应φ的正负)。
假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E =
【答案】C
【解析】
【详解】
A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k
q r
ϕ=,且球面带负电,q 为负,得:φ1<φ2,故AB 错误;
C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,
D 错误。
15.空间某一静电场的电势φ在x 轴上分布如图所示,x 轴上两点B 、C 点电场强度在x 方向上的分量分别是E Bx 、E cx ,下列说法中正确的有
A .
B 、
C 两点的电场强度大小E Bx <E cx
B .E Bx 的方向沿x 轴正方向
C .电荷在O 点受到的电场力在x 方向上的分量最大
D .负电荷沿x 轴从B 移到C 的过程中,电场力先做正功,后做负功
【答案】D
【解析】
【分析】
本题的入手点在于如何判断E Bx 和E Cx 的大小,由图象可知在x 轴上各点的电场强度在x 方向的分量不相同,如果在x 方向上取极小的一段,可以把此段看做是匀强电场,用匀强电场的处理方法思考,从而得到结论,此方法为微元法.
【详解】
A 、在
B 点和
C 点附近分别取很小的一段d ,由题图得,B 点段对应的电势差大于C 点段对应的电势差,将电场看做匀强电场,有E d
ϕ∆=,可见E Bx >E Cx ,A 项错误.C 、同理可知O 点的斜率最小,即场强最小,电荷在该点受到的电场力最小,C 项错误.B 、沿电场线方向电势降低,在O 点左侧,E Bx 的方向沿x 轴负方向,在O 点右侧,E Cx 的方向沿x 轴正方向,B 项错误.D 、负电荷沿x 轴从B 移到C 的过程中,电场力先向右后向左,电场力先做正功,后做负功,D 项正确.故选D .
【点睛】
挖掘出x φ-图象两大重要性质:图象的斜率反映电场强度的大小,图象中ϕ降低的方向反映场强沿x 轴的方向.
16.空间某一静电场的电势φ在x 轴上的分布如图所示,图中曲线关于纵轴对称。
在x 轴上取a 、b 两点,下列说法正确的是( )
A .a 、b 两点的电场强度在x 轴上的分量都沿x 轴正向
B .a 、b 两点的电场强度在x 轴上的分量都沿x 轴负向
C .a 、b 两点的电场强度在x 轴上的分量大小E a <E b
D .一正电荷沿x 轴从a 点移到b 点过程中,电场力先做正功后做负功
【答案】C
【解析】
【详解】
A B .因为在O 点处电势最大,沿着x 轴正负方向逐渐减小,电势顺着电场强度的方向减小,所以a 、b 两点的电场强度在x 轴上的分量方向相反。
C .在a 点和b 点附近分别取很小的一段d ,由图像可知b 点段对应的电势差大于a 点段对应的电势差,看作匀强电场Δ=ΔE d
ϕ,可知E a <E b ,故C 正确。
D .x 轴负方向电场线往左,x 轴正方向电场线往右,所以正电荷沿x 轴从a 点移到b 点过程中,电场力先做负功后做正功。
故D 错误。
故选C 。
17.如图甲所示,a 、b 是一条竖直电场线上的两点,一带正电的粒子从a 运动到b 的速度
—时间图象如图乙所示,则下列判断正确的是
A .b 点的电场方向为竖直向下
B .a 点的电场强度比b 点的大
C .粒子从a 到b 的过程中电势能先减小后增大
D .粒子从a 到b 的过程中机械能先增大后减小
【答案】B
【解析】
【详解】
A.粒子在a 点时受到的电场力方向向上,大小大于重力,所以电场的方向为竖直向上,故A 错误;
B.粒子在b 点时受到的电场力小于重力,所以a 点的电场强度比b 点的大,故B 正确;
C.粒子从a 到b 的过程中电场力一直做正功,所以电势能一直减小,故C 错误;
D.粒子从a 到b 的过程中,除重力做负功外,只有电场力做正功,则机械能一直增大,故D 错误。
18.有一电场强度方向沿x 轴的电场,其电势ϕ随x 的分布满足0sin 0.5(V)x ϕϕπ=,如图所示。
一质量为m ,带电荷量为+q 的粒子仅在电场力作用下,以初速度v 0从原点O 处进入电场并沿x 轴正方向运动,则下列关于该粒子运动的说法中不正确...
的是
A .粒子从x =1处运动到x =3处的过程中电势能逐渐减小
B .若v 00q m ϕ06q m
ϕC .欲使粒子能够到达x =4处,则粒子从x =02q m
ϕ0
D .若0065q v m ϕ=
,则粒子能运动到0.5处,但不能运动到4处 【答案】B
【解析】
【分析】 仅有电场力做功,电势能和动能相互转化;根据正电荷在电势高处电势能大,在电势低处电势能小,判断电势能的变化。
粒子如能运动到1处,就能到达4处。
粒子运动到1处电势能最大,动能最小,由能量守恒定律求解最小速度。
【详解】
A .从1到3处电势逐渐减小,正电荷电势能逐渐减小,故A 正确;
B .粒子在运动过程中,仅有电场力做功,说明电势能和动能相互转化,粒子在1处电势能最大,动能最小,从0到1的过程中,应用能量守恒定律:
220011(0)22
mv q mv ϕ=-+ 解得:02q v m
ϕ=,故B 错误; C .根据上述分析,电势能和动能相互转化,粒子能运动到1处就一定能到达4处,所以粒子从0到1处根据能量守恒定律:
20112
q mv ϕ= 解得:012q v m
ϕ=,故C 正确; D .根据0sin 0.5(V)x ϕϕπ=粒子在0.5处的电势为102(V)ϕϕ=
,从0到0.5处根据能量守恒定律:
22020211(0)22
q mv mv ϕ-+= 可知:022q v m
ϕ0<<
,所以粒子能到达0.5处,但不能运动到4处,故D 正确。
【点睛】 根据电势ϕ随x 的分布图线和粒子的电性,结合能量守恒定律判断电势能和动能的变化。
19.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中,小球1和2均带正电,电量分别为
和(>).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球
间的库仑力)
A.T=(-)E
B.T=(-)E
C.T=(+)E
D.T=(+)E
【答案】A
【解析】
【分析】
【详解】
将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得,对小球2分析,受到向右的电场力,绳子的拉力,由于,球1受到向右的电场力大于球2向右的电场力,所以绳子的拉力向右,根据牛顿第二定律有,联立解得,故A正确;
【点睛】
解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题
20.如图所示,一弹性轻绳(绳的弹力与其伸长量成正比)一端固定在A点,弹性绳自然长度等于AB,跨过由轻杆OB固定的定滑轮连接一个质量为m的绝缘带正电、电荷量为q
的小球。
空间中还存在着水平向右的匀强电场(图中未画出),且电场强度E=mg
q。
初始
时A、B、C在一条竖直线上,小球穿过水平固定的杆从C点由静止开始运动,滑到E点时速度恰好为零。
已知C、E两点间距离为L,D为CE的中点,小球在C点时弹性绳的拉力
为3
2
mg
,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。
下列说法正确
的是
A .小球在D 点时速度最大
B .若在E 点给小球一个向左的速度v ,小球恰好能回到
C 点,则v gL C .弹性绳在小球从C 到
D 阶段做的功等于在小球从D 到
E 阶段做的功
D .若保持电场强度不变,仅把小球电荷量变为2q ,则小球到达
E 点时的速度大小v 2gL
【答案】ABD
【解析】
【详解】
A.对小球分析可知,在竖直方向
sin kx θN mg =+
由与sin x θBC =,故支持力为恒力,即12
N mg =,故摩擦力也为恒力大小为 14f μN mg ==
从C 到E ,由动能定理可得
221110422qEL mgL k BE k BC ⎛⎫---= ⎪⎝⎭ 由几何关系可知22
2BE BC L -=,代入上式可得 32
kL mg =
在D 点时,由牛顿第二定律可得 1cos 4
qE k BD θmg ma --= 由1cos 2BD θL =,将32
kL mg =可得,D 点时小球的加速度为 0a =
故小球在D 点时的速度最大,A 正确;
B.从E 到C ,由动能定理可得
222111102242k BE k BC qEL mgL m υ⎛⎫---=- ⎪⎝⎭
解得
υgL =。