如何进行遥感图像的分类和变化检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何进行遥感图像的分类和变化检测
遥感图像的分类和变化检测是遥感技术应用的重要方向之一。
随着遥感技术的
不断发展,遥感图像在资源调查、环境监测、农业发展等领域有着广泛的应用。
本文将从遥感图像分类和遥感图像变化检测两个方面,介绍如何进行遥感图像的分类和变化检测。
一、遥感图像的分类
遥感图像的分类是将遥感图像中的像素按照一定规则划分成不同的类别,以达
到对图像内容的理解和分析的目的。
遥感图像的分类方法有多种,常用的有基于像素的分类方法和基于目标的分类方法。
基于像素的分类方法主要是根据像素的强度、颜色和纹理等特征,将图像中的
像素划分到相应的类别中。
常用的像素分类方法有最大似然法、支持向量机、随机森林等。
这些方法通过对遥感图像的像素进行统计分析和模式识别,可以有效地实现图像的分类。
基于目标的分类方法是以目标为单位进行分类,将图像中的目标分割并划分到
相应的类别中。
常用的目标分类方法有基于规则的分类方法和基于特征的分类方法。
基于规则的分类方法通过设定一些先验规则,如形状、大小、颜色等,对目标进行划分。
而基于特征的分类方法则是通过提取目标的形状、纹理、光谱等特征,利用各种分类算法进行识别和分类。
二、遥感图像的变化检测
遥感图像的变化检测是指通过对不同时间或不同传感器获取的遥感图像进行比
较和分析,确定图像中发生了变化的区域和程度。
遥感图像的变化检测对资源环境的监测、城市规划和自然灾害等方面具有重要的应用价值。
遥感图像的变化检测方法有多种,常用的有像差法、差异指数法、纹理分析法等。
像差法是通过计算不同时间或不同传感器获取的图像的像素值之差,来确定图像中的变化区域。
差异指数法是通过计算像素的差异指数,来判断图像中是否发生了变化。
纹理分析法是通过提取图像的纹理特征,来检测和分析图像中的变化。
在进行遥感图像的变化检测时,还需要考虑遥感图像的配准和辐射校正问题。
配准是指将不同时间或不同传感器获取的图像进行几何校正,以使它们具有相同的位置和方向。
辐射校正是指将不同时间或不同传感器获取的图像进行辐射量的计算和转换,以消除不同图像间的光照异同。
总结:
遥感图像的分类和变化检测是遥感技术在资源调查、环境监测、农业发展等领域中的重要应用方向。
通过基于像素的分类方法和基于目标的分类方法,可以对遥感图像进行有效的分类。
而通过像差法、差异指数法和纹理分析法等方法,可以实现遥感图像的变化检测。
在进行遥感图像的分类和变化检测时,还需要考虑图像的配准和辐射校正问题。