数学教案:《因式分解》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案:《因式分解》
数学教案:《因式分解》
作为一名教职工,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。

那么教案应该怎么写才合适呢?以下是小编帮大家整理的数学教案:《因式分解》,欢迎阅读,希望大家能够喜欢。

数学教案:《因式分解》1
教学目标
1、会运用因式分解进行简单的多项式除法。

2、会运用因式分解解简单的方程。

二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。

教学难点:
应用因式分解解方程涉及较多的推理过程。

三、教学过程
(一)引入新课
1、知识回顾(1)因式分解的几种方法:①提取公因式法:ma+mb=m(a+b)②应用平方差公式: = (a+b)(a—b)③应用完全平方公式:a 2ab+b =(ab)(2)课前热身:①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算:(1)(2ab —8a b)(4a—b)(2)(4x —9)(3—2x)解:(1)(2ab —8a b)(4a—b) =—2ab(4a—b)(4a—b) =—2ab (2)(4x —9)(3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题:这里的x能等于3/2吗?为什么?
想一想:那么(4x —9)(3—2x)呢?练习:课本P162课内
练习
合作学习
想一想:如果已知()()=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?
3、运用因式分解解简单的方程例2 解下列方程:(1) 2x +x=0 (2)(2x—1)=(x+2)解:x(x+1)=0 解:(2x—1)—(x+2)=0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的`两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2)(x—2) =0接着继续解方程,5、练一练①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c)﹤0 ,因此 a —2ab+b —c 小于零。

6、挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。

解:∵4x —4x+3= (4x —4x+1)+2 = (2x—1)+2 0x
+2x+2 = (x +2x+1)+1 = (x+1)+10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x —4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx (三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
数学教案:《因式分解》2
一、背景介绍
因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。

因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计。

相关文档
最新文档