扶余市一中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扶余市一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当
14
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 2. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( ) A .向右平移2π个单位 B .向左平移2π
个单位 C. 向右平移23
π个单位 D .左平移
23
π
个单位
3. 记
,那么
A
B
C D
4. 设a=0.5,b=0.8
,c=log 20.5,则a 、b 、c 的大小关系是( )
A .c <b <a
B .c <a <b
C .a <b <c
D .b <a <c
5. 如图,已知双曲线﹣
=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,
直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )
A .y=±x
B .y=±3x
C .y=±x
D .y=±x
6. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )
A .1
B .
C .
D .2
7. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )
A .3
B .2
C .3
D .4
8. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定
9. 已知双曲线(a >0,b >0)的一条渐近线方程为
,则双曲线的离心率为( )
A .
B .
C .
D .
10.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)
D .(﹣5,3,4)
11.若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
12.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12
x x x f x x x ì-#ï=íp <?ïî,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
二、填空题
13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
14.已知两个单位向量,a b 满足:1
2
a b ∙=-
,向量2a b -与的夹角为,则cos θ= . 15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
16.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .
17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)
①tanA •tanB •tanC=tanA+tanB+tanC
②tanA+tanB+tanC 的最小值为3
③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°
⑤当tanB ﹣1=
时,则sin 2
C ≥sinA •sinB .
三、解答题
18.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C 的标准方程.
(Ⅱ)已知P 、Q 是椭圆C 上的两点,若OP ⊥OQ ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP ⊥OQ 是否成立?并说明理由.
19.(本小题满分12分)
已知函数()
23cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
20.(本小题满分12分)
设0
3πα⎛
⎫∈ ⎪⎝
⎭,αα=
(1)求cos 6πα⎛
⎫+ ⎪⎝⎭的值;
(2)求cos 212πα⎛
⎫+ ⎪⎝
⎭的值.
21.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.
22.(本题满分15分)
已知函数c bx ax x f ++=2
)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;
(2)若a bx cx x g +-=2
)(,当1≤x 时,求)(x g 的最大值.
【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.
23.已知函数
3
()
1
x
f x
x
=
+
,[]2,5
x∈.
(1)判断()
f x的单调性并且证明;
(2)求()
f x在区间[]2,5上的最大值和最小值.
24.已知cos(+θ)=﹣,<θ<,求的值.
扶余市一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =
时取到,此时21,33y x ==,将()
1
,CN 2
CM xCA yCB CA CB =+=
+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 2. 【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛
⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝⎭
,故选B.
考点:函数()sin y A x ωϕ=+的图象变换. 3. 【答案】B 【解析】【解析1】
,
所以
【解析2】
,
4. 【答案】B
【解析】解:∵a=0.5,b=0.8
,
∴0<a <b , ∵c=log 20.5<0,
∴c<a<b,
故选B.
【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.
5.【答案】D
【解析】解:设内切圆与AP切于点M,与AF1切于点N,
|PF1|=m,|QF1|=n,
由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①
由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,
|MF2|=|NF1|=n,
即有m﹣1=n,②
由①②解得a=1,
由|F1F2|=4,则c=2,
b==,
由双曲线﹣=1的渐近线方程为y=±x,
即有渐近线方程为y=x.
故选D.
【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.
6.【答案】A
【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,
可知两条曲线是同心圆,如图,|PQ|的最小值为:1.
故选:A.
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.
7. 【答案】A 【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值
∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0, ∴
两直线的距离为
=
,
∴AB 的中点M
到原点的距离的最小值为
+
=3
,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
8. 【答案】A 【解析】
试题分析:由()()()()()
log 1,,1log 1,1,a a x x f x x x -∈-∞⎧⎪=⎨-∈+∞⎪⎩且()f x 在(),1-∞上单调递增,易得
01,112a a <<∴<+<.()f x ∴在()1,+∞上单调递减,()()23f a f ∴+>,故选A.
考点:1、分段函数的解析式;2、对数函数的单调性. 9. 【答案】A
【解析】解:∵双曲线的中心在原点,焦点在x 轴上, ∴
设双曲线的方程为
,(a >0,b >0)
由此可得双曲线的渐近线方程为y=
±x ,结合题意一条渐近线方程为
y=x ,
得=,设b=4t ,a=3t ,则c==5t (t >0)
∴该双曲线的离心率是e==.
故选A .
【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.
10.【答案】C
【解析】解:设C (x ,y ,z ),
∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,
∴,解得x=4,y=﹣3,z=1,
∴C (4,﹣3,1). 故选:C .
11.【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==-,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 12.【答案】C
二、填空题
13.【答案】 ①③⑤
【解析】解:建立直角坐标系如图:
则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).
∵集合M={x|x=
且i ,j ∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
14.【答案】
【解析】
考点:向量的夹角.
【名师点睛】平面向量数量积的类型及求法
(1)
求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;
三是利用数量积的几何意义.
(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 15
.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB
k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤
;
④错;1212(,)x x x x A B ϕ=
=
,
1211,(,)A B ϕ==因为1
(,)
t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题
“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 16.【答案】 2 .
【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴
2+x+4+6+10=5×5, 解得x=3, ∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10
﹣
5)2]=8,
∴此组数据的标准差S==2
.
故答案为:2
.
【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.
17.【答案】
①④⑤
【解析】
解:由题意知:A ≠
,B ≠
,C ≠
,且A+B+C=π
∴tan (A+B )=tan (π﹣C )=﹣tanC ,
又∵tan(A+B)=,
∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,
即tanA+tanB+tanC=tanAtanBtanC,故①正确;
当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;
若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;
由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;
当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,
此时sin2C=,
sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣
cos2A=sin(2A﹣30°)≤,
则sin2C≥sinA•sinB.故⑤正确;
故答案为:①④⑤
【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.
三、解答题
18.【答案】
【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).
∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.
∴,2a=4,解得a=2,c=1.
∴b2=a2﹣c2=3.
∴椭圆C的标准方程为.
(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).
联立,化为,
∴|OP|2=x 2+y 2
=,同理可得|OQ|2
=
,
∴=+
=
为定值.
当直线OP 或OQ 的斜率一个为0而另一个不存在时,上式也成立.
因此=
为定值.
(III )当
=
定值时,试探究OP ⊥OQ 是否成立?并说明理由.
OP ⊥OQ 不一定成立.下面给出证明.
证明:当直线OP 或OQ 的斜率一个为0而另一个不存在时,则=
=
=
,满足条件.
当直线OP 或OQ 的斜率都存在时,
设直线OP 的方程为y=kx (k ≠0),则直线OQ 的方程为y=k ′x (k ≠k ′,k ′≠0),P (x ,y ).
联立
,化为
,
∴|OP|2=x 2+y 2=
,
同理可得|OQ|2
=
,
∴
=
+
=
.
化为(kk ′)2
=1,
∴kk ′=±1.
∴OP ⊥OQ 或kk ′=1. 因此OP ⊥OQ 不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
19.【答案】(1)332⎡⎤
⎢⎥⎣⎦,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦
,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6π
π⎡⎤-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦
,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为
. 考
点:三角函数的图象与性质. 20.【答案】(1
;(2
.
【解析】
试题分析:(1
αα=⇒
sin 6πα⎛
⎫+= ⎪⎝
⎭03πα⎛⎫∈ ⎪⎝⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,
⇒cos 6πα⎛⎫+=
⎪⎝
⎭;(2)由(1)可得21cos 22cos 1364ππαα⎛
⎫
⎛
⎫+=+-= ⎪ ⎪⎝⎭⎝
⎭
⇒sin 23πα⎛⎫
+=
⎪⎝⎭
⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫
⎛⎫⎛⎫⎛
⎫+
=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝⎭⎣⎦
=
试题解析:(1αα∴
sin 6πα⎛
⎫+= ⎪⎝⎭………………………………3分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛
⎫+= ⎪⎝
⎭………………………………6分
(2)由(1)可得2
21
cos 22cos 121364ππαα⎛⎫⎛
⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝
⎭.………………………………8分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫+∈ ⎪⎝⎭,
,∴sin 23πα⎛
⎫+= ⎪⎝
⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛
⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
=
………………………………………………………………………………12分 考点:三角恒等变换. 21.【答案】
【解析】(本小题满分12分)
解:(Ⅰ)设该校报考飞行员的总人数为n ,前三个小组的频率为p 1,p 2,p 3,
则
,
解得,,,…
由于
,故n=55.…
(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:
p=
,
由题意知X 服从二项分布,即:X ~B (3,),…
∴P (X=k )=,k=0,1,2,3,
∴EX=
=
,DX=
=
.…
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
22.【答案】
【解析】(1)]0,222[-;(2)2.
(1)由1=a 且c b =,得4
)2()(2
22
b b b x b bx x x f -++=++=,
当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分
故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2
min max ()()1
24
()(1)11
b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩
,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分
112≤+=,…………13分
且当2a =,0b =,1c =-时,若1≤x ,则112)(2
≤-=x x f 恒成立, 且当0=x 时,2)(2
+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分
23.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】
试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()
()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]
2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5
(5)2
f =.
试题解析:
在[]2,5上任取两个数12x x <,则有
12121233()()11x x f x f x x x -=
-++12123()
(1)(1)
x x x x -=
++0<,
所以()f x 在[]2,5上是增函数. 所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2
f x f ==. 考点:函数的单调性证明.
【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 24.【答案】
【解析】解:∵<θ<
,∴
+θ∈(
,
),
∵cos (+θ)=﹣,∴sin (+θ)=﹣
=﹣,
∴sin (
+θ)=sin θcos
+cos θsin
=
(cos θ+sin θ)=﹣,
∴sin θ+cos θ=﹣,①
cos (
+θ)=cos
cos θ﹣sin sin θ=(cos θ﹣cos β)=﹣,
∴cos θ﹣sin θ=﹣
,②
联立①②,得cos θ=﹣,sin θ=﹣,
∴
=
=
==.
【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.。