14-15学年新版北师大九年级数学上册第4章图形的相似全章教案

合集下载

北师大九年级上第四章图形的相似4.3相似多边形优秀教学案例

北师大九年级上第四章图形的相似4.3相似多边形优秀教学案例
4.对作业中出现的问题进行总结,引导学生反思学习过程,提高学习效果。
五、案例亮点
1.生活实例导入:通过现实生活中的实例引入相似多边形的概念,使学生感受到数学与生活的紧密联系,提高了学生的学习兴趣和积极性。
2.小组合作探究:组织学生进行小组讨论和分享,鼓励学生提出问题,培养了学生的批判性思维和问题意识,提高了学生的团队协作能力和沟通能力。
三、教学策略
(一)情景创设
1.利用现实生活中的实例,如建筑设计、地图绘制等,引出相似多边形的概念,让学生感受到数学与生活的紧密联系。
2.通过展示图片、模型等教具,为学生提供丰富的直观素材,帮助学生建立相似多边形的空间形象。
3.设计有趣的数学题目,让学生在解决问题的过程中,自然地引入相似多边形的概念。
北师大九年级上第四章图形的相似4.3相似多边形优秀教学案例
一、案例背景
北师大九年级上第四章“图形的相似”4.3节“相似多边形”的内容,是在学生已经掌握了相似图形的概念、性质以及相似三角形的判定与性质的基础上进行学习的。本节课主要让学生了解相似多边形的概念、性质,以及相似多边形的判定与性质。在教学过程中,我通过设计丰富的教学活动,引导学生主动探究,发现相似多边形的性质,提高学生的空间想象能力和逻辑思维能力。
1.通过观察、分析、归纳等方法,引导学生发现相似多边形的性质,培养学生的抽象思维能力。
2.利用小组讨论、分享等方式,培养学生的合作交流能力,提高课堂教学效果。
3.运用几何画板等工具,让学生在动手实践中掌握相似多边形的性质,提高学生的动手操作能力。
4.鼓励学生主动探究,发现问题、解决问题,培养学生的自主学习能力。
2.鼓励学生提出问题,培养学生的批判性思维和问题意识。
3.组织学生进行小组讨论,分享自己的观点和思考过程,培养学生的沟通能力。

北师大版九年级数学上册第四章- 图形的相似回顾与思考 教学设计

北师大版九年级数学上册第四章- 图形的相似回顾与思考 教学设计

第四章图形的相似回顾与思考一、学生知识状况分析学生已经学习了平行线的知识以及图形的全等,对两个图形之间的关系有了一定的理解和认识,并且大部分学生能够熟练运用学过的知识解决问题。

本章的学习,学生通过大量的现实情景,从“相似”这个角度认识了图形的另一种关系,丰富了学生对图形的直观体验,学生已经具备了一定的分析理解能力和逻辑推理能力。

二、教学任务分析本章是继图形的全等之后集中研究图形形状的内容,是对图形全等内容的进一步拓广和发展,有一定的难度。

在本章的学习中,学生已经学习了成比例线段以及相似图形的知识,本章的内容较多,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是:(一)知识与技能1、归纳、总结本章知识,使知识成体系。

2、对成比例线段、相似三角形的知识进行巩固提升。

(二)过程与方法体现研究图形问题的多种方法,培养学生处理图形问题的思维发展水平,加强相关知识之间的联系和综合运用。

(三)情感与价值观要求培养学生对问题的观察、思考、交流、类比、归纳等过程,发展学生的探索精神,合作意识,增强应用数学意识,加深对数学的人文价值的理解和认识。

教学重点:1、归纳、总结本章知识,使知识成体系。

2、掌握相似三角形的知识,并能灵活运用。

教学难点:培养学生处理图形问题的思维发展水平,加强相关知识之间的联系和综合运用。

三、教学过程分析第一环节:知识框架内容:出示课件目的:通过对本章知识的思维导图的对比分析,让学生体会知识之间的发展脉络与内在联系;对各知识点的简要回顾,使学生对本章知识内容有进一步的理解和掌握。

效果:学生来展示、讲解,他们从中感受到成就感,激发了他们的学习积极性,大家互相查漏补缺,形成知识体系。

要求每个学生在进行知识整理分析时,要把每个知识点所包含的知识内容认真阅读与思考,真正理解每个知识内容的含义。

北师大初中九年级数学上册《第四章图形的相似》教案

北师大初中九年级数学上册《第四章图形的相似》教案

第四章图形的相似第一课时 成比例线段学习目的:1、知道线段的比的概念。

理解成比例线段的概念2、会计算两条线段的比。

3、掌握成比例线段的判定方法。

重点:线段的比与成比例线段的概念。

教学过程: 一、自主预习(一)阅读课本 ,思考并回答下列问题:1、一般地,如果选用 量得两条线段AB ,CD 的长度分别为m,n ,那么这两条线段的比就是他们长度的比,即AB ∶CD=m:n,或写成其中,线段AB ,CD 分别叫做这个线段比的前项和后项.如果把表示成比值k,那么。

(1)在比或∶中,是 ,是 。

⑵两条线段的 要统一 。

⑶在同一单位下线段长度的比与选用的 无关。

⑷线段的比是一个没有 的数。

(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。

,nmCD AB =n m CD k AB k CDAB∙==或,2、比例尺为1:50000,意思为: 。

(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。

(举例说明)如:2、四条线段成比例,记作:其中a,d 叫比例外项,b,c 叫比例内项。

3、四条线段a,b,c,d 成比例,有顺序关系。

即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A 、B 两地的实际距离AB= 250m ,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。

例2:已知,在Rt △ABC 中,∠C =90°,∠A =30°,斜边AB =2。

求⑴,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?BC AB ABAC2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。

九年级数学北师大版上册第四章图形的相似第7节相似三角形的性质教学设计

九年级数学北师大版上册第四章图形的相似第7节相似三角形的性质教学设计
-基础题:帮助学生巩固相似三角形的性质;
-提高题:培养学生运用相似三角形性质解决实际问题的能力;
-拓展题:激发学生的思维,提高学生的创新能力。
6.注重课堂小结,引导学生总结相似三角形的性质及其应用,培养学生的概括能力。
-通过让学生复述、总结相似三角形的性质,检查学生对知识的掌握程度。
7.课后布置适量的作业,巩固学生对相似三角形性质的理解,并关注学生的作业反馈,及时调整教学策略。
4.引导学生运用数形结合的思想,将几何问题转化为代数问题,提高学生的解题技巧。
(三)情感态度与价值观
1.培养学生热爱数学、追求真理的情感,激发学生对几何学的兴趣。
2.培养学生严谨、务实的科学态度,使学生认识到数学在现实生活中的重要性。
3.引导学生感受几何图形的美,培养学生对美的感知和鉴赏能力。
4.培养学生团结协作、互帮互助的精神,使学生学会尊重他人、倾听他人意见。
通过引导学生观察、思考,自然过渡到相似三角形的性质的学习。
2.教学目标:激发学生的学习兴趣,引导学生关注相似三角形在实际生活中的应用。
(二)讲授新知
1.教学内容:相似三角形的定义、判定方法及其性质。
-相似三角形的定义:两个三角形,如果对应角相等,对应边成比例,那么这两个三角形相似。
-相似三角形的判定方法:AA(角角相似)、SSS(边边边相似)、SAS(边角边相似)。
(三)学生小组讨论
1.教学内容:相似三角形性质的应用。
2.教学活动设计:
-将学生分成小组,针对相似三角形性质的应用进行讨论;
-教师提供一些具有挑战性的问题,引导学生运用相似三角形的性质解决问题;
-各小组展示讨论成果,分享解题思路和方法。
3.教学目标:培养学生合作交流、解决问题的能力,提高学生对相似三角形性质的理解。

九年级数学上册 第四章 图形的相似 4.7 相似三角形的性质教案 (新版)北师大版-(新版)北师大版

九年级数学上册 第四章 图形的相似 4.7 相似三角形的性质教案 (新版)北师大版-(新版)北师大版

.1 相似三角形的性质(1)教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.熟练应用相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比。

2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.教学难点相似三角形的性质的运用.教学方法引导启发式教具准备投影片两X第一X:(记作§.1 A)第二X:(记作§.1 B)教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解1.做一做投影片(§.1 A )钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图,图纸上的△ABC 表示该零件的横断面△A ′B ′C ′,CD 和C ′D ′分别是它们的高. (1)B A AB '',C B BC '',C A AC''各等于多少? (2)△ABC 与△A ′B ′C ′相似吗?如果相似,请说明理由,并指出它们的相似比. (3)请你在图①中再找出一对相似三角形. (4)D C CD''等于多少?你是怎么做的?与同伴交流.图①[生]解:(1)B A ''=C B ''=C A ''=4(2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=C A AC'' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′) ∵由△ABC ∽△A ′B ′C ′得 ∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43∵△BDC ∽△B ′D ′C ′ ∴D C CD ''= C B BC ''=432.议一议已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k. (1)如果CD 和C ′D ′是它们的对应高,那么DC CD''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′、CD 、C ′D ′是它们的对应高,那么D C CD ''=C B BC''=k . [生乙]如图②,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''=C A AC''=k .图②∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线. ∴∠ACD =∠A ′C ′D ′ ∴△ACD ∽△A ′C ′D ′ ∴D C CD ''=C A AC ''=k . [生丙]如图③中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''=C A AC''=k .图③∵△ABC ∽△A ′B ′C ′ ∴∠A =∠A ′,C A AC ''=B A AB''=k . ∵CD 、C ′D ′分别是中线∴D A AD ''=B A AB''2121=B A AB ''=k . ∴△ACD ∽△A ′C ′D ′ ∴D C CD ''=C A AC''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. 3.例题讲解 投影片(§.1 B )图④如图④所示,AD 是△ABC 的高,AD=h ,点R 在AC 边上,点S 在AB 边上,SR ⊥AD,垂足为E .当SR=21BC 时,求DE 的长,如果SR =31BC 呢?解:∵SR ⊥AD,BC ⊥AD, ∴SR ∥BC .∵∠ASR=∠B, ∠ARS=∠C,∴△ASR ∽△ABC (两角分别相等的两个三角形相似). ∴BCSRAD AE =(相似三角形对应高的比等于相似比), 即BCSRAD DE AD =-.当SR=21BC 时,得,解得DE=21h 当SR=31BC 时,得31=-h DE h ,解得DE=32h Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢? (都是4∶5). Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比. Ⅴ.课后作业 完成习题 Ⅵ.活动与探索图⑤如图⑤,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=D A AD '' 你认为△ABC ∽△A ′B ′C ′吗? 解:△ABC ∽△A ′B ′C ′成立.∵B A AB ''=D B BD ''=DA AD'' ∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD ,∠B ′A ′C ′=2∠B ′A ′D ′ ∴∠BAC =∠B ′A ′C ′ ∴△ABC ∽△A ′B ′C ′ 板书设计§.1 相似三角形的性质(一)一、1.做一做 2.议一议 3.例题讲解 二、课堂练习 三、课时小节 四、课后作业 备课资料如图⑥,CD 是Rt △ABC 的斜边AB 上的高.图⑥(1)则图中有几对相似三角形. (2)若AD =9 cm,CD =6 cm,求BD . (3)若AB =25 cm,BC =15 cm,求BD . 解:(1)∵CD ⊥AB ∴∠ADC =∠BDC =∠ACB =90° 在△ADC 和△ACB 中 ∠ADC =∠ACB =90°∠A =∠A ∴△ADC ∽△ACB 同理可知,△CDB ∽△ACB ∴△ADC ∽△CDB所以图中有三对相似三角形. (2)∵△ACD ∽△CBD ∴BD CDCD AD =即BD669=∴BD =4 (cm ) (3)∵△CBD ∽△ABC ∴BCBDBA BC =. ∴152515BD=∴BD ==9 (cm )..2 相似三角形的性质(2)教学目标 (一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2.相似三角形的周长比,面积比在实际中的应用. (二)能力训练要求1.经历探索相似三角形的性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求1.学生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识. 教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的.教具准备投影片两X第一X:(记作§.2 A)第二X:(记作§.2 B)教学过程Ⅰ.创设问题情境,引入新课[师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据.(让学生把数据写在黑板上)[师]同学们通过观察和计算来回答下列问题.1.两三角形是否相似.2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流. [生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形. 周长比与相似比相等,而面积比与相似比却不相等.[师]能不能找到面积比与相似比的量化关系呢?[生]面积比与相似比的平方相等.[师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题.Ⅱ.新课讲解1.做一做在上图中,△ABC ∽△A ′B ′C ′,相似比为43. (1)请你写出图中所有成比例的线段.(2)△ABC 与△A ′B ′C ′的周长比是多少?你是怎么做的?(3)△ABC 的面积如何表示?△A ′B ′C ′的面积呢?△ABC 与△A ′B ′C ′的面积比是多少?与同伴交流.∴B A AB ''=C B BC ''=C A AC ''=D C CD ''=D B BD ''=D A AD ''=43. (2)43='''∆∆的周长的周长C B A ABC .∵B A AB ''=C B BC ''=C A AC ''=43. ∴C A C B B A ACBC AB l l C B A ABC ''+''+''++='''∆∆ =C A C B B A C A C B B A ''+''+''''+''+''434343 =43)(43=''+''+''''+''+''C A C B B A C A C B B A . (3)S △ABC =21AB ·C D. S △A ′B ′C ′=21A ′B ′·C ′D ′. ∴2)43(2121=''⋅''=''⋅''⋅='''∆∆D C CD B A AB D C B A CDAB S S C B A ABC .2.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少? [生]由上可知若△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比为k ,面积比为k 2. 3.议一议投影片(§4.7.2 B ).如图,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2,相似比为k .(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的周长比是多少?(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗? △A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆222222111,,D C A C B A D C A S S S ∆∆∆ 那么222111222111D C A D C A C B A C B A S S S S ∆∆∆∆=各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少? 如果把四边形换成五边形,那么结论又如何呢?[生]解:(1)∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2.相似比为k .(2)△A 1B 1C 1∽△A 2B 2C 2、△A 1C 1D 1∽△A 2C 2D 2,且相似比都为k . ∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2 ∴2211221122112211D A DA D C D C CBC B B A B A ===∠D 1A 1B 1=∠D 2A 2B 2,∠B 1=∠B 2.∠B 1C 1D 1=∠B 2C 2D 2,∠D 1=∠D 2.在△A 1B 1C 1与△A 2B 2C 2中∵22112211C B C B B A B A =∠B 1=∠B 2. ∴△A 1B 1C 1∽△A 2B 2C 2.∴2211B A B A =k . 同理可知,△A 1C 1D 1∽△A 2C 2D 2,且相似比为k .(3)∵△A 1B 1C 1∽△A 2B 2C 2,△A 1C 1D 1∽△A 2C 2D 2.22222222222222)(k S S S S k D C A C B A D C A C B A =++∆∆∆∆照此方法,将四边形换成五边形,那么也有相同的结论.由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方.Ⅲ.随堂练习完成P110教材随堂练习Ⅳ.课时小结本节课我们重点研究了相似三角形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.Ⅴ.课后作业板书设计。

数学九年级北师大版 第4章 图形的相似 教学案

数学九年级北师大版 第4章 图形的相似 教学案

第四章图形的相似主备教师:张玲审核:樊俊霞NO:
主备教师:张玲审核:樊俊霞NO:
成立吗?为什么?
主备教师:张玲审核:樊俊霞NO:
论解决和证明与平行:2x+y
长。

分别在AB,AC边上,
主备教师:张玲审核:樊俊霞NO:
主备教师:张玲审核:樊俊霞NO:
似三角形的定义,掌握定义中的两个条件;
)对应角相等,对
为判别两个三角形相似至少需要哪些条件?
么至少有几个角对应相等就能保证这两个三角形
总结:数学符
主备教师:张玲审核:樊俊霞NO:
主备教师:张玲审核:樊俊霞NO:
C
主备教师:张玲审核:樊俊霞NO:
,如果
叫做线段 D
C
A
B
K
D
H E
F
G
D F
的黄金在
D
、一个矩形是黄金矩形,若它的长
P
为边作正方
主备教师:陈雨审核:樊俊霞NO:
主备教师:陈雨审核:樊俊霞NO:
主备教师:陈雨审核:樊俊霞NO:
D G
主备教师:陈雨审核:樊俊霞NO:
┏┏
┓┓
主备教师:陈雨审核:樊俊霞NO:
主备教师:陈雨审核:樊俊霞NO:
图①图②
在下列四个命题中:①所有的等腰直角三角形都相似;②所有的等边三角形都相似;③所有的正方形都相似;④所有的菱形都相似;其中真命题有
三、合作探究:。

九年级数学上册第4章图形的相似教学案北师大版

九年级数学上册第4章图形的相似教学案北师大版

九年级数学上册第4章图形的相似教学案(新版)北师大版(总121页)-本页仅作为预览文档封面,使用时请删除本页-第四章图形的相似1.了解线段的比、成比例线段,掌握比的性质及平行线分线段成比例的基本事实.2.了解相似多边形和相似比.3.探索并理解三角形相似的条件和性质.4.了解相似三角形判定定理的证明.5.了解图形的位似,能够利用位似将一个图形放大或缩小.6.探索并了解多边形的各顶点坐标(有一个顶点为原点,有一条边在横轴上)分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系.7.了解黄金分割的意义,以及相似图形在现实生活中的应用.在研究与图形相似有关的问题中,经历观察、操作、类比、归纳、交流等过程,进一步发展几何直观和推理能力,发展发现问题、提出问题、解决问题的能力,积累数学活动经验.在探索问题、合作交流的过程中,进一步体会数学与自然及人类社会的密切联系和数学的价值,增强应用意识.基于《标准》的要求和学生的基础,本章设计的总体思路是以数形结合为基本方法,以合情推理能力与演绎推理能力的培养为主线,在生动的问题情境和丰富的数学活动中,了解比例的基本性质、线段的比、成比例线段;掌握平行线分线段成比例的基本事实;类比三角形全等,探索三角形相似的条件;了解相似三角形的判定定理和性质定理;了解图形的位似,体会多边形的顶点坐标分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系;会利用图形的相似解决一些简单的实际问题.第1节“成比例线段”、第2节“平行线分线段成比例”,教科书从观察生活中的图案到观察几何图形,进而认识形状相同的图形.通过引导学生思考如何描述形状相同的图形的不同之处,引出学习线段的比的必要性和线段的比的概念,在此基础上,结合图形引出成比例线段、比例的性质,以及平行线分线段成比例等内容,从而为后面研究相似三角形做好准备.第3节“相似多边形”,教科书结合具体的形状相同的图形,明确对应角、对应边的概念,继而给出相似多边形、相似比的概念,接着通过若干具体活动进一步巩固对相似多边形概念的理解.第4节“探索三角形相似的条件”,根据相似多边形的定义,顺势引出相似三角形的概念,接着,类比三角形全等条件的探索,展现三角形相似条件的探索,明确给出相似三角形的三个判定定理,另外,本节借助相似三角形,介绍了黄金分割、黄金比及其计算过程.考虑到相似三角形判定定理的证明是《标准》规定的选学内容,教科书在得出三角形相似的条件2之后,设计了第5节“相似三角形判定定理的证明”,将相似三角形判定定理的证明单独成节,是为了方便教师在教学中根据学情灵活安排.在相似三角形判定定理之后,设计了一节活动课,即第6节“利用相似三角形测高”,介绍了利用相似三角形测量旗杆高度的几种方法.第7节“相似三角形的性质”,研究相似三角形对应高的比、对应中线的比、对应角平分线的比与相似比的关系,以及周长比、面积比与相似比的关系.第8节“图形的位似”,介绍位似图形的概念,利用位似图形将一个图形放大或缩小,研究多边形的顶点坐标分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系.【重点】1.成比例线段的性质.2.相似三角形的判定和性质.3.相似形知识在生活中的应用.【难点】1.比例的性质.2.相似多边形的判定.1.数学教学是数学活动的教学,因此建议设置丰富的问题情境,展现知识的发生、发展过程.因此,本章在研究的过程中应注重知识内容与研究方法上的联系与区别,应关注“对应”关系的确定(对应边的关系、对应角的关系等),注重基本模型的识别与应用.2.应注重站在系统的高度,突显类比的方法,梳理相关知识,帮助学生建立知识体系;重视渗透研究几何图形的基本问题和方法,进一步把握“特殊与一般”的关系,进一步明确“性质定理与判定定理”的互逆关系,进一步发展学生合情推理与演绎推理的能力.3.注重数学思想的教学,关注对证明思路的启发,学会数学的思考,提倡证明方法的多样性;关注数学教学的生活意义与模型价值,培养学生应用意识,提倡采用数学实践活动的方式让学生用数学,感受数学的应用价值.1成比例线段2课时2平行线分线段成比例1课时3相似多边形1课时4探索三角形相似的条件4课时*5相似三角形判定定理的证明1课时6利用相似三角形测高1课时7相似三角形的性质2课时8图形的位似2课时1成比例线段3通过现实情境了解线段的比和成比例线段的概念,理解并掌握比例的性质.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.学会与他人合作交流,通过有关比的计算,让学生懂得数学的作用,从而增强学生学习数学的信心.【重点】线段的比和成比例线段,以及比例线段的基本性质.【难点】比例线段的基本性质的运用.第课时1.了解线段的比和成比例线段的概念.2.理解比例线段的基本性质.通过生活情境理解相关概念.增强学生对数学知识来源于生活的认识.【重点】成比例线段的概念.4【难点】比例线段的基本性质.【教师准备】课堂教学用的投影图片.【学生准备】测量长度的直尺,放大镜等.导入一:出示如图所示的两面大小不同的国旗,让学生比较这两面国旗有什么不同.[设计意图]以接近学生生活实际的国旗为背景,对学生进行爱国主义教育,同时提出国旗中蕴含着数学知识,激发学生的学习积极性,从而自然引入本节课内容.导入二:埃及法老阿美西斯想要测量金字塔的实际高度,可是没有一个埃及人能测出来.古希腊学者泰勒斯对法老阿美西斯说:“我只需找一个特殊的时刻,就能测出金字塔的高度.”泰勒斯在金字塔前竖立一根1 m长的木棒,他不断测量木棒的影长,当木棒的影子的长正好是1 m时,特殊时刻来了,如图所示,设金字塔的塔基宽为2b m,在塔外的影长为a m,落在塔内的影长恰为塔基宽的一半,这意味着金字塔的影长为a+b,因为木棒的高度与影长的比为1∶1,所以在同一时间同一地点的金字塔的高度与影长之比也应为1∶1,所以金字塔的高度为(a+b)m.[过渡语]形状相同、大小不同的两个图形之间存在着怎样的对应关系呢(1)学生测量两面国旗对角线的长度后,教师总结:描述两面国旗大小之间的关系,我们可以借助于两条线段的比来说明.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成.其中线段AB,CD分别叫做这个线段比的前项和后项,如果把表示成比值k,那么=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图所示,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm,AB∶A'B'=5∶3,就是线段AB和线段A'B'的比,这个比值刻画了这两个五边形的大小关系.5(2)问题思考:AB∶A'B'=5∶3,这时线段A'B'与线段AB的比是多少呢[知识拓展](1)求线段的比时,线段的长度单位要统一.(2)线段的比没有单位,所以线段的比与所采用的长度单位无关.(3)两条线段的比有先后顺序,前项和后项不能颠倒.二、成比例线段[过渡语]如果两个图形完全一样,只是大小不同,这两个图形上的对应线段之间存在什么关系呢思路一如图所示,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上.(1)AB,AD,EF,EH的长度分别是多少(2),,,的值相等吗【总结】四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【思考】上图中还有哪些线段是比例线段[知识拓展]在理解比例线段时,应注意三点:(1)比例线段是特指四条线段之间的关系,两条线段不能是比例线段,三条线段中的任意一条线段都不能重复使用时,三条线段也不能是比例线段,而五条或五条以上的线段中,只能判断其中的某四条线段能否是成比例线段.(2)成比例线段是有顺序的.即若a,b,c,d是成比例线段,则a∶b=c∶d,而不能写成a∶b=d∶c.(3)为了讨论问题方便,我们再给出两个相关的定义:①比例的内项与外项:如果四条线段a ,b,c,d是比例线段,那么把线段b,c叫做比例内项,把线段a,d叫做比例外项.②第四比例项:如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的第四比例项.下列四组线段中,是成比例线段的是 ()cm,6 cm,7 cm,8 cmcm,6 cm,2 cm,5 cmcm,4 cm,6 cm,8 cm6cm,8 cm,15 cm,10 cm〔解析〕∵≠,∴不是成比例线段,故选项A错误;∵≠,∴不是成比例线段,故选项B 错误;∵≠,∴不是成比例线段,故选项C错误;∵,∴是成比例线段,故选项D正确.故选D.思路二【活动1】建立比例线段的概念.【投影图片】如图所示,AB=50,BC=25,A'B'=20,B'C'=10,求证.证明:∵=2,=2,∴.引导学生分析得出四条线段AB,BC,A'B',B'C'是成比例线段.(1)题目的已知中共有几条线段分别是哪几条(2)其中的线段AB,BC的比是多少线段A'B',B'C'的比是多少其中线段AB与BC的比与线段A'B'与B'C'的比有何关系(3)我们称AB,BC,A'B',B'C'这四条线段是成比例线段,简称比例线段.(4)请同学们根据这个例子想一想,什么样的四条线段叫做成比例线段(5)学生叙述,教师板书比例线段的定义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.【活动2】熟悉比例线段的概念.(1)定义告诉我们判定四条线段是成比例线段的方法:(其中的一个比例式)⇒a,b,c,d四条线段成比例;(2)定义告诉我们若已知四条线段成比例,则一定有比例式:a,b,c,d四条线段成比例⇒(唯一的一个比例式).与比例线段有关的概念:(1)项、内项、外项、第四比例项.a,b,c,d叫做组成比例的项,b,c叫做比例内项,a,d叫做比例外项,d叫做a,b,c的第四比例项.(2)比例中项.若作为比例内项的是两条相同的线段,即或a∶b=b∶c,那么线段b叫做线段a,c的比例中项.三、探索比例线段的基本性质计算下列比例式的两个内项的积与两个外项的积.(1);(2)∶3.通过计算,同学们发现了什么规律【学生活动】两个内项的积与两个外项的积相等.7【教师活动】我们把上面成比例的四个数用字母表示,即,用什么方法来说明两个内项的积与两个外项的积相等【学生活动】学生独立思考1分钟后,分组交流探讨“如果,那么ad=bc”.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:(1)等式两边同时乘bd.(2)设=k,则a=bk,c=dk,因此ad=(bk)d=b(dk)=bc.【教师活动】我们又如何把乘积的形式化成比例的形式【学生活动】学生共同回答“等式两边同时除以bd”.【教师活动】我们把以上两个方面综合起来,就是比例线段的基本性质.比例线段的基本性质:如果,那么ad=bc;如果ad=bc(a,b,c,d都不为0),那么.[设计意图]从特殊情况出发,使学生对比例线段的基本性质有一个直观的认识,再让学生以一般的形式探索和推导,让全体学生充分参与,一步一步得出比例线段的基本性质,体现了“从特殊到一般”的教学思想.【教师活动】根据上面的方法你能由推导出下列比例式吗(1);(2);(3);(4);(5);(6);(7).(教材例1)一块矩形绸布的长AB=a m,宽AD=1 m,按照如图所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是多少解:根据题意可知,AB=a m,AE=a m,AD=1 m.由,得,即a2=1,∴a2=3.开平方,得a=(a=-舍去).【问题思考】如果换成,那么a的值应当是多少81.在四条线段a,b,c,d中,如果a与b的比等于,那么这四条线段a,b ,c,d叫做成比例线段,简称.在a∶b=c∶d中,a,d叫做比例,b,c叫做比例.如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的.答案:c与d的比比例线段外项内项第四比例项2.如果选用量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB∶CD=m∶n,其中,线段AB,CD分别叫做这个线段比的和.答案:同一个长度单位前项后项3.如果,那么;如果ad=bc(a,b,c,d都不为0),那么.答案:ad=bc第1课时1.两条线段的比2.成比例线段3.比例线段的基本性质一、教材作业【必做题】教材第79页习题的1,2题.【选做题】教材第79页习题的3题.二、课后作业【基础巩固】1.下列说法中错误的是()A.线段的比就是指它们的长度之比B.只要两条线段的长度采用同一单位,那么两条线段的比与所采用的单位无关C.求两条线段的比,一定要用同一单位,如果单位不同,应先化成同一单位,再求它们的比D.两条线段的比与两个数的比一样有正有负92.一根旗杆长6 m,在正午的阳光下,其影长为80 cm,则旗杆的长与它的影子的长度之比为()A. B. C. D.3.下列四组线段中,成比例的是()=3,b=6,c=2,d=5=1,b=,c=,d==4,b=8,c=5,d=10=2,b=,c=,d=24.一条线段的长度是另一条线段长度的,则这两条线段的比为.5.四条线段a,b,c,d成比例,且a=14 cm,b=16 cm,c=13 cm,则d=.【能力提升】6.下列各组线段中,能成比例的是(),6,7,9 ,5,6,8,6,9,18 ,2,3,47.已知线段a,b,c,d是比例线段,其中a=6 cm,b=4 cm,c=12 cm,求线段d的长.【拓展探究】8.已知三个数,a=1,b=2,c=,请你再添一个数d,使它们能构成比例式,写出这个比例式.(至少写两个)【答案与解析】4.或5.(解析:由比例的基本性质可知,若四条线段成比例,则必有两条线段长度之积等于另两条线段长度之积,所以判断时只需看最小数与最大数之积是否等于另两数之积便可作出判断.如3×9≠6×7,2×8≠5×6,3×18=6×9,1×4≠2×3,故选C.)7.解:因为a,b,c,d是比例线段,所以a∶b=c∶d,即d==8,所以线段d的长为8 cm.8.解:如:d=2或,比例式为或.答案不唯一.本课时的知识要点是强调线段对应成比例,这一点在教学的过程中得到了有效的贯彻.在理解比例线段的基础上,由特殊上升到一般,接着探讨了比例线段的基本性质.理解比的意义和比例线段,是灵活运用比例线段的基本性质的前提.在知识的讲解和例题、习题的讲练过程中,都渗透着对这个问题的处理.10比例线段的比不是固定不变的.比例线段强调的是比例的大小,随着比的顺序的变化,比值也会随之变化,这一点在教学中没有特别地强调.这一点不强调,不利于学生今后理解图形的相似比.以国旗的长和宽为例,强调长和宽是一对比例线段,它们的比值是不变的.以一面国旗来讲,这里强调的是长和宽的比.从两面国旗的角度看,小国旗和大国旗的长和宽是四条对应成比例的线段.随堂练习(教材第79页)1.提示:在地图上,图上长度与实际长度的比叫比例尺.如:用同一张洗出的不同尺寸的两张照片上对应线段的比相同,按照图纸严格建造的楼房的窗户的长与宽与图纸上相应的长与宽的比相同等.2.解:长线段∶短线段=5∶1.3.解:因为a,b,c,d是成比例线段,所以a∶b=c∶d,即3∶2=6∶d,所以d=4(cm).习题(教材第79页)1.解:因为在ΔABC中,∠B=90°,AB=BC=10 cm,所以AC=10 cm.因为ED=EF=12 cm,DF=8 cm,所以,.2.解:∵,∴.解得AD=.∴AD的长为 cm.3.解:由题意可知,∵AE=AB,∴,即AB2=2AD2,∴=2,∴,即原来矩形的长边与短边的比是∶1.关于成比例线段应注意以下两点:(1)线段的比是指两条线段长度之间的比的关系,而成比例线段是指四条线段长度之间的比的关系.(2)线段的比有顺序性,四条线段成比例也有顺序性.如是线段a,b,c,d成比例,而不是线段a,c,b,d成比例.通常成比例的四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一致也可以,为什么解:例如:a=30 cm,b=50 cm,c=3 m,d=5 m,我们可以把四条线段的长度单位都化成厘米,即a=30 cm,b=50 cm,c=300 cm,d=500 cm,则,,因此;我们也可以求出,,所以.第课时理解等比的性质.通过具体数字和证明领会等比性质.鼓励和培养学生的探索精神.【重点】等比的性质.【难点】等比性质的变形及灵活运用.【教师准备】等比性质的推导过程和课堂小结的投影图片.【学生准备】复习比例线段和比例的性质.导入一:小明给小刚提出一个很有意思的问题.他说:“数学来源于生活.因此,数学中的许多定理都可以用生活中的常识来解释,请你利用一个生活常识来解释:若=…=(b+d+…+n≠0),则.”小刚想了想说:“若有含糖a kg的糖水b kg,含糖c kg的糖水d kg,含糖e kg的糖水f kg……它们的浓度相等,把这些糖水混合到一起后,浓度不变,表示方法为:.”小刚所举的例子有什么数学根据呢导入二:如图所示,已知=2,你能求出的值吗[过渡语]你能计算出导入二问题的结果吗【学生活动】学生独立思考1分钟后,分组交流探讨.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:因为=2,所以AB=2EF,BC=2FG,CD=2GH,DA=2HE.所以=2.【猜想】用数字验证:,,故成立.【教师活动】用数字验证的结论可靠吗【学生活动】学生独立思考1分钟后,分组交流探讨.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:设=…==k,∴a=bk,c=dk,…,m=nk.∴=k=.【结论】等比性质:如果=…=(b+d+…+n≠0),那么.(教材例2)在ΔABC与ΔDEF中,已知,且ΔABC的周长为18 cm,求ΔDEF的周长.解:∵,∴.∴4(AB+BC+CA)=3(DE+EF+FD),即DE+EF+FD=(AB+BC+CA).又∵ΔABC的周长为18 cm,即AB+BC+CA=18 cm,∴DE+EF+FD=(AB+BC+CA)=×18=24(cm),即ΔDEF的周长为24 cm.【思考】(1)吗(2)吗(3)如果AB+BC=10 cm,DE+EF等于多少[设计意图]学到的知识要会应用升华,通过学生练习,使学生掌握运用比例的基本性质、等比性质来求值和说理的方法;通过归纳学生的各种解题方法,达到一题多解的目的,培养学生多角度的开放性思维能力.[知识拓展](1)将比例式转化为乘积式是有规律的,并不是比例式的四个字母中任意两个字母的乘积都等于另外两个字母的乘积,这个规律是:比例的外项乘积等于内项乘积.(2)用等比性质时,要注意b+d+…+n≠0这个条件.(3)比例的其他性质:合比性质:如果,那么.更比性质:如果,那么或.反比性质:如果,那么.1.已知2a=3b,则=.答案:2.若3x-5y=0,则=.答案:3.若(b+d≠0),则的值为.答案:4.已知,则=.答案:5.在ΔABC和ΔADE中,,且ΔABC的周长为36 cm,则ΔADE的周长为.答案:21 cm第2课时1.等比性质2.等比性质的证明一、教材作业【必做题】教材第81页习题的1,2题.【选做题】教材第81页习题的3题.二、课后作业【基础巩固】1.已知,那么下列等式中不一定正确的是()=5b B.+b=7 D.2.若,则等于()A. B. C. D.3.若,则的值是()A. B. C. D.4.已知直角三角形的两条直角边长的比为a∶b=1∶2,斜边长为4 cm,那么这个三角形的面积是()cm2 cm2 cm2 cm25.若2x-5y=0,则y∶x=,=.6.已知,b+d+f=50,那么a+c+e=.7.如果,那么=.【能力提升】8.如果成立,那么下列各式一定成立的是()A. B.C. D.9.若,则=.10.若,则=.11.已知,求.【拓展探究】12.设a,b,c是ΔABC的三条边,且,判断ΔABC为何种三角形,并说明理由.【答案与解析】∶57.9.11.解法1:由,得,,所以,即=9.解法2:设=k,则x=2k,y=3k,z=4k,显然k≠0,否则x=y=z=0,分式无意义.所以=9.12.解:ΔABC为等边三角形.理由如下:设a,b,c是ΔABC的三条边,∴a+b+c≠0.∵,∴=0,∴a=b=c,∴ΔABC为等边三角形.等比的性质及其变形是本课时的知识难点,为了突破这个难点,必须让学生领会等比性质的推导过程.在推导等比性质的过程中,放手让学生用自己的方法去证明和推导等比性质,加上老师恰到好处的提示和点拨,使学生深刻领会等比性质的推导过程.等比性质的变形是在课堂练习和习题当中体现的内容,是学生课后探究尝试的内容,在本课时的教学过程中,过早地交代和涉及了相关的知识,加大了本课时的课时容量,也会给学生造成知识掌握上的困难.在引导学生探究等比性质的时候,应该遵循从特殊到一般的认识规律,先让学生选择具体的数字或者任意的线段长度进行尝试,有了一定的感性认识之后,最终探索等比性质的一般形式,并适时强调等比性质成立的条件.随堂练习(教材第80页)解:由于(b+d≠0),因此根据等比性质得.习题(教材第81页)1.解:由于且b+d+f≠0,因此根据等比性质得.2.解:AB=2,DE=,BC=2,DC=,AC=2,EC=.CΔABC∶CΔEDC=(2+2+2)∶()=2∶1.3.解:正确.设=k,则a=bk,c=dk,所以=k+1,=k+1,所以.同理,.(1)有关比例的证明题.已知,求证.〔解析〕这是一道有关比例的证明题,利用比例的基本性质证明.证明:因为,所以a(c-b)=b(a-c),即ac-ab=ab-bc,所以ac+bc=2ab,两边同时除以abc,得.[解题策略]解此题时,要注意a≠0,b≠0,c≠0这个隐含条件,所以在等式两边可以同时除以abc.(2)用代换思想解比例问题.若c≠0,3a=5b+2c,a+b=4c,求a∶b∶c.〔解析〕上面两个等式可看成方程,两个方程中有三个未知数,无法直接求解,应把其中一个字母看成已知数,用含有这个字母的式子表示另两个字母.解:由题意得解得所以a∶b∶c=b∶b∶b=7∶3∶3.(2014·牡丹江中考)若x∶y=1∶3,2y=3z,则的值是()C.〔解析〕∵x∶y=1∶3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴=-5.故选A.若2a=3b=4c,且abc≠0,则的值是()〔解析〕设2a=3b=4c=12k(k≠0),则a=6k,b=4k,c=3k,所以=-2.故选B.2平行线分线段成比例1.理解平行线分线段成比例基本事实及其推论,初步熟悉平行线分线段成比例的应用.2.通过有关比的计算,激发学生学习数学、探索问题的兴趣,培养学生进行一定的问题研究的能力.通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.学会与他人合作交流.【重点】理解平行线分线段成比例基本事实及其推论.【难点】成比例的线段中对应线段的确认.【教师准备】教材图4-6,图4-7的投影图片.【学生准备】复习两条线段的比、比例线段的概念及比例的性质,并预习新课内容.导入一:如图(1)所示,梯子是施工过程中经常使用的工具,因为它的实用性和稳定性都很好,所以梯子的应用非常广泛,大到施工工地,小到日常家居,都能看到梯子的身影.如图(2)所示的梯子在生产过程中因为工作失误导致“左右不对称”,不过AB=BC=…,AD∥BE∥CF∥…,这些都符合要求,那么DE和EF相等吗导入二:我们已经学习了成比例线段,请同学们回忆一下,什么叫成比例线段能不能举几个例子说一说这里给出四条线段,我们需要计算才能知道它们成不成比例,这节课我们将要学习不用计算,就知道它们成不成比例的方法,你们想知道是什么吗[过渡语]在什么情况下的四条线段对应成比例呢【探索活动一】平行线分线段成比例的基本事实出示教材图4-6.在图4-6中,小方格的边长均为1,直线l1∥l2∥l3,分别交直线m,n于点A1,A2,A3,B1,B2,B3.问题1计算线段A1A2,A2A3,B1B2,B2B3的长度.问题2等于吗问题3等于吗问题4将l2向下平移到如图4-7所示的位置,直线m,n与l2的交点分别为A2,B2,你在问题1,2,3中发现的结论还成立吗如果将l2平移到其他位置呢问题5在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗(问题提示:经过计算,在图4-6中,A1A2=,A2A3=4,B1B2=,B2B3=4,利用此数据可得问题2,问题3中的两条线段的比均相等.对于问题4的探索,可同样采取前3个问题的办法) [设计意图]学生对于理解“平行线分线段成比例”这一基本事实有一定的困难,这里的体验活动正好让他们对这一基本事实有一个直观理解.利用直观的操作培养学生大胆猜测、从实践中得出结论的能力,充分体现了教师为主导,学生为主体的教学原则.基本事实的总结:【文字叙述】两条直线被一组平行线所截,所得的对应线段成比例.【符号表述】如图所示,直线l1,l2,l3截直线a,b,且l1∥l2∥l3,则.。

北师大版九年级数学上册第四章《图形的相似》探索三角形相似的条件教案

北师大版九年级数学上册第四章《图形的相似》探索三角形相似的条件教案

4.4 探索三角形相似的条件教案 第1课时 利用两角判定三角形相似1.理解相似三角形的定义,掌握定义中的两个条件;2.掌握相似三角形的判定定理1;(重点)3.能熟练运用相似三角形的判定定理1.(难点)一、情景导入如图,从放大镜里看到的三角尺和原来的三角尺相似吗?二、合作探究探究点一:两角分别相等的两个三角形相似在△ABC 和△A ′B ′C ′中,∠A =∠A ′=80°,∠B =70°,∠C ′=30°,这两个三角形相似吗?请说明理由.解:△ABC ∽△A ′B ′C ′.理由:由三角形的内角和是180°, 得∠C =180°-∠A -∠B =180°-80°-70°=30°, 所以∠A =∠A ′,∠C =∠C ′.故△ABC ∽△A ′B ′C ′(两角分别相等的两个三角形相似).方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.探究点二:相似三角形的判定定理1的应用已知:如图,△ABC 的高AD 、BE 相交于点F ,求证:AF BF =EFDF .解析:要证明AF BF =EFFD,可以考虑比例式中四条线段所在的三角形是否相似,即考虑△AFE 与△BFD 是否相似,利用两个角对应相等的三角形相似可以证明这个结论.证明:∵BE ⊥AC ,AD ⊥BC , ∴∠AEF =∠BDF =90°. 又∵∠AFE =∠BFD , ∴△AFE ∽△BFD ,∴AF BF =EFDF.方法总结:证明比例式,可构造相似三角形,只要证明这两个三角形相似,就可根据相似三角形的对应边成比例得到相关比例式.如图所示,已知DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,求线段BF 的长.解:方法一:因为DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,所以△ADE ∽△ABC ,所以AD AB =DE BC ,即44+8=5BC ,所以BC =15cm.又因为DF ∥AC , 所以四边形DFCE 是平行四边形, 所以FC =DE =5cm ,所以BF =BC -FC =15-5=10(cm ). 方法二:因为DE ∥BC ,所以∠ADE =∠B . 又因为DF ∥AC ,所以∠A =∠BDF , 所以△ADE ∽△DBF , 所以AD DB =DE BF ,即48=5BF,所以BF =10cm.方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计(1)相似三角形的定义:三角分别相等、三边成比例的两个三角形叫做相似三角形; (2)相似三角形的判定定理1:两角分别相等的两个三角形相似.感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.第2课时利用两边及夹角判定三角形相似1.掌握相似三角形的判定定理2;(重点)2.能熟练运用相似三角形的判定定理2.(难点)一、情景导入画△ABC与△A′B′C′,使∠A=∠A′,ABA′B′和ACA′C′都等于给定的值k.设法比较∠B与∠B′的大小(或∠C与∠C′的大小),△ABC与△A′B′C′相似吗?二、合作探究探究点一:两边成比例且夹角相等的两个三角形相似如图,已知点D是△ABC的边AC上的一点,根据下列条件,可以得到△ABC∽△BDC的是()A.AB·CD=BD·BCB.AC·CB=CA·CDC.BC2=AC·DCD.BD2=CD·DA解析:有两边对应成比例,并不能说明两个三角形相似,若再知道成比例的两边的夹角相等,则这两个三角形才相似.本题中,∠C是△ABC和△BDC的公共角,关键是找出∠C的两边对应成比例,即CDCB=CBAC或BC2=AC·DC.故选C.方法总结:判定两个三角形相似时,应根据条件适当选择方法,如本题已知有一个公共角,而它的两条夹边都能成比例,则应选择判定定理2加以判断.探究点二:相似三角形的判定定理2的应用如图所示,零件的外径为a,要求它的厚度x,需求出内孔的直径AB,但不能直接量出AB,现用一个交叉长钳(AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.解析:欲求厚度x,而x=a-AB2,根据题意较易推出△AOB∽△COD,利用相似三角形的对应边成比例,列出关于AB 的比例式,解之即可.解:因为OA :OC =OB :OD ,∠AOB =∠COD ,所以△AOB ∽△COD , 故AB CD =OAOC=n ,可得AB =bn , 所以x =a -bn2.方法总结:当条件中有两边对应成比例时,通常考虑相似三角形的判定定理2,并注意利用图形的隐含条件,如公共角、对顶角.如图,在△ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿AB 向点B 以1cm/s的速度移动,点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动.如果点P ,Q 同时出发,经过多长时间后△PBQ 与△ABC 相似?解析:要证明△PBQ 与△ABC 相似,很显然∠B 为公共角,因此可运用两边对应成比例且夹角相等来得到相似,可根据对应边成比例列方程求解,同时要注意分类讨论.解:设经过t s 后,△PBQ 与△ABC 相似.(1)当BP BA =BQBC 时,△PBQ ∽△ABC . 此时8-t 8=2t 16,解得t =4.即经过4s 后△PBQ 与△ABC 相似; (2)当BP BC =BQBA 时,△PBQ ∽△CBA .此时8-t 16=2t 8,解得t =1.6.即经过1.6s 后△PBQ 与△ABC 相似.综上可知,点P ,Q 同时出发,经过1.6s 或4s 后△PBQ 与△ABC 相似.易错提醒:在点运动的情况下寻找相似的条件,随着点的位置的变化,△PBQ 的形状也会发生变化,因此既要考虑△PBQ ∽△ABC 的情况,还要考虑△PBQ ∽△CBA 的情况.三、板书设计相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,培养学生的观察、发现、比较、归纳能力,进一步发展学生的探究、交流能力.感受两个三角形相似的判定定理2与全等三角形判定定理(SAS)的区别与联系,体验事物间特殊与一般的关.第3课时利用三边判定三角形相似教案1.掌握相似三角形的判定定理3;(重点)2.能熟练运用相似三角形的判定定理3.(难点)一、情景导入如图,如果要判定△ABC与△A′B′C′相似,是不是一定需要一一验证所有的对应角和对应边的关系?可否用类似于判定三角形全等的SSS方法,通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?二、合作探究探究点一:三边成比例的两个三角形相似已知△ABC的三边长分别为1,2,5,△DEF的三边长分别为10,2,2,试判断△ABC与△DEF是否相似.解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.解:因为12=22=510,所以△ABC与△DEF相似.方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.探究点二:相似三角形的判定定理3的应用如图所示,在△ABC中,点D、E分别是△ABC的边AB,AC上的点,AD=3,AE=6,DE=5,BD=15,CE=3,BC=15.根据以上条件,你认为∠B=∠AED吗?并说明理由.解析:要说明∠B=∠AED,只需要得到△ABC∽△AED,根据三边成比例的两个三角形相似可证得△ABC∽△AED.解:∠B=∠AED.理由如下:由题意,得AB=AD+BD=3+15=18,AC=AE+CE=6+3=9,AC AD=93=3,ABAE=186=3,CBDE=155=3,所以ACAD=ABAE=CBDE,故△ABC∽△AED,所以∠B=∠AED.方法总结:证明两角相等,可通过证明对应的两个三角形相似而得到,给出的已知条件以边为主时,首先考虑使用“三边成比例”的判定条件.如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC相似的是哪一个图形?解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC是否相似.解:由甲图可知AC=12+12=2,BC=2,AB=12+33=10.同理,图①中,三角形的三边长分别为1,5,22;同理,图②中,三角形的三边长分别为1,2,5;同理,图③中,三角形的三边长分别为2,5,3;同理,图④中,三角形的三边长分别为2,5,13.∵21=22=105=2,∴图②中的三角形与△ABC相似.方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.三、板书设计相似三角形的判定定理3:三边成比例的两个三角形相似.从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.。

北师大版九年级上册第四章图形的相似课程设计

北师大版九年级上册第四章图形的相似课程设计

北师大版九年级上册第四章图形的相似课程设计一、课程目标本课程旨在让学生了解图形的相似性质,掌握相似图形的判定方法,并能运用相似定理解决实际问题。

二、教学内容1. 图形的相似性质•什么是相似图形及其定义•相似图形的性质•相似三角形的判定方法2. 相似图形的应用•相似图形的比例关系•相似图形的面积比及其计算方法•利用相似定理解决实际问题三、教学重点和难点本课程的教学重点为相似图形的判定方法和应用。

在教学过程中,需要注重培养学生的逻辑思维能力和解决实际问题的能力。

难点在于如何运用相似定理解决实际问题,需要重点讲解对具体问题的分析和判断。

四、教学方法本课程采用教师讲授与讨论相结合的方法。

教师通过图示、实验等具体例子,引导学生理解相似图形的性质和判定方法。

同时,教师还可以通过小组讨论、合作学习等方式,激发学生的学习兴趣和积极性,提高课堂效果。

五、教学步骤第一步:导入教师通过回顾前几章的学习内容,引导学生进入本章的学习氛围。

第二步:讲授相似性质教师通过图示等方式,讲解相似图形的定义和性质。

并讲解相似三角形的判定方法。

第三步:讲授相似应用教师通过具体例子,讲解相似图形的比例关系和面积比的计算方法。

第四步:实战演练教师出示具体问题,引导学生根据相似定理进行分析和解决。

第五步:总结归纳教师将本课程的重点难点进行总结归纳,并引导学生自我评价。

六、课堂评价在本课程中,可以采用小组讨论、课堂练习、个人报告等方式进行评价。

其中,课堂练习可以通过单选题、多选题、填空题等形式,进行针对性测试。

个人报告可以通过让学生选择一个实际问题,并利用相似定理进行解决,进行评价。

七、拓展阅读1.《数学课程标准》2.《北师大版初中数学教材》3.等比数列的应用八、教学反思通过本课程的教学,发现学生在相似图形的判定方法掌握方面有些困难。

下一步,需要加强练习,提高学生的运用能力。

同时,在进行应用解题时,需要针对具体问题进行分析和判断,要求学生注重思考和实践。

九年级数学上册 第四章 图形的相似 3 相似多边形教案 (新版)北师大版

九年级数学上册 第四章 图形的相似 3 相似多边形教案 (新版)北师大版



例下列每组图形是相似多边形吗?试说明理由。
(1)正三角形ABC与正三角形DEF;
(2)正方形ABCD与正方形EFGH.
课中作业
一块长3m、宽1.5m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?
课后作业设计:
如图,矩形草坪长20m,宽10m,沿草坪四周外围有1m宽的环形小路.小路内外边缘的矩形相似吗?
(修改人:)
板书设计:
课题
定义
例题讲解
课堂练习
教学反思:
这个年龄阶段的学生有很强的好奇心,并且有较强的观察能力,因而教学过程中尽可能多给学生表现的机会,激发学生探究意识。
1.合作探究:
在图中的两个多边形中,是否有对应相等的内角?设法验证你的猜测.
在图中的两个多边形中,夹相等内角的两边是否成比例?
(同桌一人测角,一人测边,共同得出结论:这种形状相同的多边形各对应角相等、各对应边成比例.然后尝试给相似多边形下一个定义.)
课中作业
观察下面各组图形,说说它们有什么共同的特点?



2.获得新知:(自读课本,时间3分钟,然后回答老师提出的问题:①多边形相似需满足几个条件?②相似多边形的记法有什么要求?③什么叫相似比?求相似比要注意什么?)
课中作业
(1)观察下面两组图形,图(1)中的两个图形相似吗?图(2)中的两个图形呢?为什么?你从中得到什么启发?与同桌交流.
(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
第四章:图形的相似课题Βιβλιοθήκη 相似多边形课时安排
共(1)课时
课程标准
经历相似多边形概念的形成过程,进一步发展学生归纳、类比、交流等方面的能力.

北师大版九年级上册数学 第四章 图形的相似 回顾与思考 教案

北师大版九年级上册数学 第四章 图形的相似 回顾与思考 教案

第四章图形的相似复习专题复习:一次函数与相似三角形一、学生知识状况分析在本章的学习中,学生通过大量的现实情景,从“相似”这个角度认识了图形的另一种关系,掌握了相似三角形的性质及一定的相似三角形的判定方法,学生已经具备了一定的分析理解能力和逻辑推理能力.在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是图形的相似的专题复习课. 函数与图形的结合,是近几年中考的热点内容之一. 一次函数的图象是一条直线,通常与坐标轴构成三角形,这就使得一次函数与相似三角形经常产生交集. 也是数学建模思想的具体体现. 解决一次函数与相似三角形综合问题,学生往往感到还是有一定的难度.本节课以此专题为重点,从简单的综合问题入手,引领学生总结解决此类问题的关键是认真审题,建立数学模型,灵活运用一次函数和相似三角形等相关知识. 为此,设置本节课的教学目标如下:知识目标:1.能根据问题中已知条件构造相似三角形基本模型,体会数学建模的优越性.2.使学生进一步体会相似三角形在解决函数问题中的重要作用.能力目标:经历分析和建模的过程,进一步培养学生分析问题、解决问题的意识和能力.情感态度价值观:培养学生对问题的观察、思考、交流、类比、归纳等过程,发展学生的探索精神,合作意识,增强应用数学意识.教学重点:利用相似三角形对应的边角关系解决动点问题。

教学难点:综合运用三角形相似、一元二次方程等知识,进一步体会分类讨论的数学思想。

三、教学过程分析本课时分为以下五个教学环节:第一环节:共同探究,总结方法;第二环节:活学巧练,掌握方法;第三环节:合作探究,强化能力;第四环节:收获与感悟;第五环节:布置作业.第一环节:共同探究,总结方法活动内容:函数与图形的结合已经成为近几年中考的热点内容之一.解决一次函数与相似三角形综合问题的基本思想是“挖掘或构造相似三角形的基本模型”.投影展示例题,共同探究.1. 如图,在平面直角坐标系中有两点A (4,0),B (0,2),如果点C 在OA 上(C 与A 不重合),当点C 的坐标为 时,使得由点B ,O ,C 组成的三角形与△AOB 相似?本题虽然没有涉及到一次函数的问题,但是是为很好解决2题做的铺垫.在讲解过程中可逐步分解难点:①审清题意;②建立相似三角形的基本模型;③利用相似三角形的基本性质求解.2. 如图,在平面直角坐标系中,直线221+-=x y 交x 轴于点A ,交y 轴于点B ,如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B ,O ,C 组成的三角形与△AOB 相似?本题是在上一题的基础上对条件加以改动,有了上一题的解题经验,学生能快速的解决此问题.活动目的:本环节主要引导学生总结一次函数中的相似三角形问题的解决方法,同时让学生体会构建和寻找相似三角形基本模型的重要作用,并能总结出此类型题的解题策略, 从而能较好地利用一次函数和相似三角形的相关知识解题.活动的实际效果:初次接触函数与相似三角形的综合问题对于学生来说有一定的难度.但是题目由浅入深地引入,降低了学生对题目的理解难度.使学生在不知不觉中克服困难,初步体会到一次函数中相似三角形的分析方式和构建模型的基本方法.第二环节 活学巧练,掌握方法活动内容:投影展示题33.如图,已知直线l 的函数表达式为834+-=x y ,且l 与x 轴,y 轴分别交于点A ,B 两点,动点Q 从点B 开始在线段BA 上以每秒2个单位的速度向点A 移动,同时动点P 从点A 开始在线段AO 上以每秒1个单位的速度向点O 移动,设点Q ,P 移动时间为t 秒,⑴ 求A ,B 的坐标;⑵ 当t 为何值时,以点A ,P ,Q 为顶点的三角形与△AOB 相似?课前学生已经对此题进行了独立分析,双动点问题对学生来说有一定的难度,但是部分学生已经掌握的简单的解决“动点问题”的方法.学生代表能独立完成此题解题思路的分享. 同时借助几何画板演示,让学生直观感受动点变化过程,降低了分析难度.活动目的:此题虽是一道动点问题,但是与上题的分析方式极其相似. 课前学生独立思考,旨在让学生先自我考察此类问题解决方法掌握情况. 利用几何画板将点的运动情况的直观展示,使学生在不知不觉中克服分析问题的困难.活动实际效果:从学生分析,讲解的过程来看,已基本掌握解决一次函数中的相似三角形问题的基本方法,能够达到预期的效果.第三环节:合作交流,强化能力活动内容:投影展示一道齐齐哈尔市中考压轴题4.如图,在平面直角坐标系中,已知Rt △AOB 的两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,且OA ,OB 的长满足()06-OB 8-OA 2=+,∠ABO 的平分线交x 轴于点C ,过点C 作AB 的垂线,垂足为点D ,交y 轴于点E .(1)求线段AB 的长;(2)求点C 的坐标;(3)求直线CE的解析式;(4)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以点A,B,M,P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.以小组为单位进行合作交流,解决课前独立探究中还存在的问题.接下来进行小组汇报展示,完成此题的分析过程.活动目的:前三道问题图形比较简单,而且题目中也指明了相似,大大降低了解题难度.但是大部分中考综合性大题,看似平常,但要解决必须要借助相似三角形的有关知识.这就需要学生善于挖掘图中的相似三角形的基本模型.此题就是一道综合性题,不仅考察了勾股定理,特殊的平行四边形的相关知识,同时也考察了本节课所介绍的内容. 第4小问在题意的分析上给学生制造了一定的困难,旨在提高学生分析问题,解决问题和识图和画图的能力. 课前学生已经进行了独立思考,课上小组合作探究,旨在通过小组讨论解决自身还存在的问题,培养学生的合作意识. 小组汇报,旨在培养学生语言表达能力.活动实际效果:从小组交流过程巡视及小组汇报情况来看,学生在前面活动中已经积累了一定的经验,虽然最后一问对部分学生来说难度较大,但是在老师的提示下,可以比较顺利地分析上述问题.学生在训练过程中更加理解了利用相似三角形的相关知识解决综合性问题的重要性,积累了一定的解题经验.第四环节:收获与感悟活动内容:全体同学间进行总结交流.活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中;通过对以上几个问题的解决,加深学生利用相似三角形解决综合性大题的意识和提高解题的能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心.活动实际效果:学生通过回顾本节课的学习过程,总结了用相似三角形解决综合题的方法和技巧,进一步提高自己解决问题的能力.四、课后反思本课是学生学习完图形的相似的复习课,学生在学习过程中已经进行过相似三角形的性质和判定的图形训练,但一次函数与相似三角形的结合及利用相似三角形解决综合性大题对学生而言还是有一定的难度.本课采用启发式、问题讨论式、合作学习相结合的方式,引导学生从已有的知识和经验出发,引导学生对旧知识进行迁移,找出解决问题的新的途径和方法;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,可以更好地根据学生的实际情况进行调整,更符合学生的认知规律.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中发现学生分析问题、解决问题的独到见解以及思维的误区,更好地进行学习指导.。

九年级数学上册 第4章 图形的相似教学设计 (新版)北师大版-(新版)北师大版初中九年级上册数学教案

九年级数学上册 第4章 图形的相似教学设计 (新版)北师大版-(新版)北师大版初中九年级上册数学教案

图形的相似通过对相似图形的认识,培养学生美的感受,激发学习兴趣.教学重难点及解决措施教学重点:相似图形的概念和成比例线段。

教学难点:比例线段的应用。

教学过程(可续行)学案中的环节及内容教师活动学生活动设计意图创设情境,引入新课大屏幕展示生活中相似物体的图片,引导学生观察特点2、教师提出问题:同学们能归纳出下列图形的特点吗?学生观察大屏幕并体会相似图形在生活中是广泛存在的,形状和大小有所变化。

2、学生思考生活中还有很多的相似图形,并对本节课的学习充满好奇心通过生活中的图片让学生体会到数学来源于生活,也服务于生活;第一节的题目中的问题可以引起学生的学习兴趣,集中学生的注意力识标:【学习目标】1、经历形成相似的概念的过程,理解相似图形的概念;理解相似图形,并能根据相似图形的特点举出很多例子【重难点】教师引导学生阅读学习目标,并板演知识框架学生阅读学习目标,并总结本节课将要学习的新知识和重难点学习新知识之前让学生先了解本节课的知识点、重点难点,使学生心中有目标,可相似图形和全等图形的区别以积极有效的开展学习活动新知探究活动1:相似图形的概念观察哈哈镜里面的不同镜像,他们相似吗?放大镜下的图形相似吗?哪些图形是与(1)(2)相似的?引导学生思考相似图形的特征,板演相似图形的定义。

2、讲解与三角形全等定义的区别。

学生发表自己的观点:相似图形形状相同。

在大小的问题上产生问题。

3、对于全等的定义加以复习。

通过展示生活中的例子,可以让学生有直观感受和感性经验,并较易体会出相似图形和全等图形的不同,总结出经验。

新知探究活动2:探索特殊图形的相似通过对特殊三角形的观察得出结论。

学生先观察和计算然后得出结论。

通过飞特殊图形的认识,有利于本节重点知识等边三角形经过放大后,前后的图形观察他们的对应角和对应边发生了什么变化?六边形呢?2、板演相似图形的对应角和对应边的关系。

学生交流讨论对应角和对应边的关系。

3、学生小组交流,一名同学展示。

北师大版九年级数学上册第四章-相似图形-教学案(PDF版 含解析)

北师大版九年级数学上册第四章-相似图形-教学案(PDF版 含解析)

高效提分源于优学第13讲平行线分线段成比例温故知新一、比的意义和性质Ⅰ比的意义:两个数相除,又叫做两个数的比。

(1)比用比号“:”或“-”来表示。

例如:5比4可表示为5:4或54,读作五比四。

(2)比、除法和分数之间的对应关系,如:667677=÷=:。

Ⅱ比的基本性质:比的前项和后项同时乘以或除以同一个不为0的数,这个比的比值不变。

例如:14:21=(14÷7):(21÷7)=2:3;2:5=(2×3):(5×3)=6:15。

=8.0():()=)(28=12÷()=()%二、比例的意义与性质:Ⅰ表示两个比相等的式子叫做比例。

Ⅱ在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

Ⅲ解比例:求比例中的未知项,叫做解比例。

课堂导入一、线段的比如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB :CD=m :n ,或写成AB CD =mn,其中AB ,CD 分别叫做这个线段比的前项和后项。

1.确定两条线段的比的关键是两条线段的长度单位要统一2.两条线段的比值是长度比,所以结果是正数,没有单位3.图上距离与实际长度的比值通常称为比例尺比例基本概念知识要点一高效提分源于优学二、成比例线段四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab=cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.1.四条线段a,b,c,d成比例,只能记作ab=cd或a:b=c:d,不能写成其他形式。

四条线段成比例时,一定要将这四条线段按顺序写出。

2.判断给定的四条线段是否成比例的方法(1)排:先将四条线段的长度统一单位,再按大小顺序排列好;(2)算:分别求出前两条线段的长度之比与后两条线段的长度之比;(3)判:若这两个比相等,则这四条线段是成比例线段,否则不是。

三、比例的性质1.基本性质:如果ab=cd,那么ad=bc;如果ab=bc,那么b2=a c,b叫做a、c的比例中项2.合分比性质:如果ab=cd,那么a±bb=c±dd3.等比性质:如果ab=cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab.典例分析例1、已知a=0.2,b=1.6,c=4,d=12,则下列各式中正确的是()A.a∶b=c∶d B.a∶c=d∶b C.a∶b=d∶c D.b∶a=d∶c【解答】C例2、2013版《中华人民共和国全图》在左下角特别配有一幅放大的钓鱼岛插图,比例尺为1∶1500000,已知钓鱼岛东西方长约3.5公里,则在地图上的东西方长约为()A.0.0023cm B.0.23cm C.4.29cm D.0.0429cm【解答】B例3、已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比.(2)如果线段a、b、c、d成比例,求线段d的长.(3)b 是a 和c 的比例中项吗?为什么?【解答】解:(1)∵a=0.3m=30cm;b=60cm,∴a:b=30:60=1:2;(2)∵线段a、b、c、d 是成比例线段,∴=,∵c=12dm=120cm,∴=,∴d=240cm;(3)是,理由:∵b 2=3600,ac=30×120=3600,∴b 2=ac,∴b 是a 和c 的比例中项举一反三1、已知点P 是线段AB 上的点,且AP ∶PB =1∶2,则AP ∶AB =____.【解答】1∶32、已知a ,b ,c ,d 四条线段依次成比例,其中a =3cm ,b =(x -1)cm ,c =5cm ,d =(x +1)cm.求x 的值.【解答】依题意,得3x -1=5x +1,解得x =4,经检验,x =4是原方程的解,∴x =43、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为____米.【解答】9.6学霸说确定两条线段的比的关键是两条线段的长度单位要统一赤裸裸的残酷的掠夺,激起了当地土著民族顽强的反抗。

北师大版九年级数学上册:第四章《图形的相似》教案

北师大版九年级数学上册:第四章《图形的相似》教案

第四章图形的相似1成比例线段1.理解和掌握两条线段的比的概念,会计算两条线段的比.2.理解和掌握成比例线段的定义和性质.3.能应用比例的性质解决相关的问题.重点掌握成比例线段的定义和性质.难点会运用比例的基本性质解决问题.一、情境导入课件出示下图,提出问题:请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?学生:这些图片都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、探究新知1.两条线段的比的概念教师:请同学们回忆,什么叫两个数的比?怎样度量线段的长度?怎样比较两条线段的长短?学生:两个数相除又叫两个数的比,如a÷b记作a∶b;度量线段时要选用同一个长度单位,比较线段的长短就是比较两条线段长度的大小.教师:由比较线段的长短就是比较两条线段长度的大小,大家能猜想线段的比吗?学生:两条线段的比就是两条线段长度的比.教师:线段a的长度为3 cm,线段b的长度为6 m,所以线段a,b的比为3∶6=1∶2,对吗?请说明理由.学生:因为a,b的长度单位不一致,所以不对.教师:那么,应怎样定义两条线段的比,以及求线段的比时应注意什么问题呢?学生思考后举手回答,教师点评,并讲解:如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD=mn.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把m n 表示成比值k ,则ABCD =k ,或AB =k·CD.两条线段的比实际上就是两个数的比.强调:在量线段时要选用同一个长度单位. 2.比例线段的概念课件出示教材第77页图4-3,提出问题:如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EF ,EH 的长度分别是多少?分别计算AB EF ,AD EH ,AB AD ,EFEH 的值,你发现了什么?学生独立完成,教师引导学生得出比例线段的概念:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a b =cd ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.比例的基本性质教师:如果a ,b ,c ,d 四个数成比例,即a b =cd ,那么ad =bc 吗?反过来,如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗?学生小组讨论交流得出比例的基本性质: 如果a b =cd,那么ad =bc.如果ad =bc(a ,b ,c ,d 都不等于0),那么a b =cd .4.等比性质 (1)课件出示:①如图,已知a b =cd =3,求a +b b 和c +d d;②如果a b =cd =k(k 为常数),那么a +b b =c +d d成立吗?为什么?学生完成后给出答案,教师点评. (2)课件出示:①如果a b =cd ,那么a -b b =c -d d成立吗?为什么?②如果a b =c d =ef (b +d +f ≠0),那么a +c +e b +d +f =a b 成立吗?为什么?③如果a b =c d ,那么a±b b =c±dd 成立吗?为什么?学生分小组讨论后举手回答,教师讲评. 解:①如果a b =cd ,那么a -b b =c -d d.∵a b =c d , ∴a b -1=cd -1. ∴a -b b =c -dd. ②如果a b =c d =ef (b +d +f ≠0),那么a +c +e b +d +f =a b .设a b =c d =ef =k , ∴a =bk ,c =dk ,e =fk. ∴a +c +eb +d +f =bk +dk +fk b +d +f =k (b +d +f )b +d +f=k =ab .引导学生归纳:如果a b =c d =…=mn (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b .③如果a b =c d ,那么a±b b =c±dd .∵a b =c d , ∴a b +1=cd +1. ∴a +b b =c +dd. 由①得a -b b =c -d d ,∴a±b b =c±d d. 三、举例分析例1 (课件出示教材第78页例1)学生独立完成后汇报答案,教师点评. 例2 (课件出示教材第80页例2)学生独立完成后汇报答案,教师点评. 四、练习巩固1.教材第79页“随堂练习”第1~3题. 2.教材第80页“随堂练习”. 五、小结1.通过本节课的学习,你有什么收获? 2.比例线段的概念是什么? 3.比例的性质有哪些?六、课外作业1.教材第79页习题4.1第1,2题. 2.教材第81页习题4.2第1,2题.本节课主要学习比例线段的概念及性质.成比例线段的概念,在后续学习中需要用到,是学生后续学习的基础,也是本节课研究比例性质的一个基础性概念.对学生而言,这个概念基于图形背景中,比较直观,学生比较容易理解.比例的性质,则是后续研究相似图形性质的基础,同时也可以为分式运算提供一些便捷,而且比例性质的寻求与说理过程中,蕴含着一些基本的数学方法,可以迁移运用到后续知识的学习中,是本节课重要的教学任务.2平行线分线段成比例1.理解和掌握平行线分线段成比例的基本事实及推论.2.会用平行线分线段成比例解决问题.3.培养学生认识事物从一般到特殊的认知过程.重点掌握平行线分线段成比例的基本事实及推论.难点灵活运用平行线分线段成比例解决问题.一、复习导入1.什么叫比例线段?学生:四条线段a,b,c,d 中,如果ab=cd,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.2.比例线段有哪些性质?学生:如果ab=cd,那么ad =bc.如果ad =bc(a,b,c,d都不等于0),那么ab=c d.如果ab=cd=…=mn(b+d+…+n≠0),那么a+c+…+mb+d+…+n=ab.二、探究新知1.平行线分线段成比例的基本事实课件出示教材第82页图4-6,图4-7及相关问题.学生分小组讨论,教师引导学生得出平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.2.平行线分线段成比例的推论课件出示:(1)如果把图①中l1, l2两条直线相交,交点A刚好落到l3上(如图②)所得的对应线段的比会相等吗?依据是什么?学生分小组讨论,教师引导学生得出平行线分线段成比例的推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.(2)如果把图①中l1, l2两条直线相交,交点A刚好落到l4上(如图②),所得的对应线段的比会相等吗?依据是什么?学生分小组讨论,教师引导学生得出结论:平行于三角形一边的直线与其他两边的延长线相交,截得的对应线段成比例.三、举例分析例(课件出示教材第83页例题)学生独完成后给出答案,教师点评.四、练习巩固1.教材第84页“随堂练习”.2.如图,点D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:OD∶OA=OE∶OB.五、小结1.通过本节课的学习,你有什么收获?2.平行线分线段成比例的基本事实及其推论分别是什么?六、课外作业教材第84~85页习题4.3第1~4题.养学生自主学习与合作学习相结合的学习方式,提高学生的学习兴趣.3相似多边形1.了解相似多边形和相似比的定义,会根据相似多边形的定义判断两个多边形是否相似.2.能运用相似多边形的性质解决简单的几何问题.重点了解相似多边形的定义,判断两个多边形是否相似.难点能运用相似多边形的性质解决简单的几何问题.一、情境导入教师:在生活中,我们常会看到这样一些图片(课件出示下图).观察下列各组图片,你发现了什么?你能得出什么结论?二、探究新知1.课件出示形状相同的正三角形ABC与正三角形A1B1C1,正方形ABCD与正方形A1B1C1D1,正五边形ABCDE与正五边形A1B1C1D1E1,提出问题:(1)在每组图形中,是否有对应相等的内角?设法验证你的猜测.(2)在每组图形中,夹相等内角的两边是否成比例?学生思考后给出答案,教师点评.2.课件出示形状相同的六边形ABCDEF和六边形A1B1C1D1E1F1,提出问题:(1)在这两个多边形中,是否有对应相等的内角?设法验证你的猜测.(2)在这两个多边形中,夹相等内角的两边是否成比例?学生分组讨论后给出答案,教师点评,并讲解:图中的六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的多边形,其中∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别相等,称为对应角;AB与A1B1,BC与B1C1,CD与C1D1,DE与D1E1,EF与E1F1,FA与F1 A1的比都相等,称为对应边.教师:回忆一下,我们刚才探究过的每一组多边形,你能发现它们的共同特点吗? 引导学生总结相似多边形的概念:各角分别相等、各边成比例的两个多边形叫做相似多边形.例如,在上图中六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1相似,记作六边形ABCDEF ∽六边形A 1B 1C 1D 1E 1F 1,“∽”读作“相似于”.相似多边形对应边的比叫做相似比.教师强调以下几点:(1)在记两个多边形相似时,要把对应顶点的字母写在对应的位置上.(2)相似多边形的定义既是最基本、最重要的判定两个多边形相似的方法,也是最本质、最重要的性质.(3)相似比有顺序性.例如,五边形ABCDE ∽五边形A 1B 1C 1D 1E 1,对应边的比为ABA 1B 1=BC B 1C 1=CD C 1D 1=DE D 1E 1=EA E 1A 1=45.因此五边形ABCDE 与五边形A 1B 1C 1D 1E 1的相似比k 1=45,五边形 A 1B 1C 1D 1E 1与五边形ABCDE 的相似比k 2=54.(4)相似比为1的两个图形是全等形. 因此全等形是相似图形的特殊情况. 三、举例分析例1 (1)观察下面两组图形,图①中的两个图形相似吗? (2)图②中的两个图形相似吗?为什么?你从中得到什么启发?引导学生得出:如果两个多边形不相似,它们的对应角可能都相等;如果两个多边形不相似,对应边也可能成比例.但如果两个多边形不相似,那么它们不可能各角对应相等且各边对应成比例.例2 一块长3 m 、宽1.5 m 的矩形黑板如图所示,镶在其外围的木质边框宽7.5 cm .边框的内外边缘所成的矩形相似吗?为什么?学生思考后给出答案,教师点评并提问:如果镶的纵向边框宽7.5 cm ,那么当镶的横向边框宽为多少时,边框的内外边缘所成的矩形相似?学生分组讨论后举手回答,教师点评.四、练习巩固1.教材第87~88页“随堂练习”第1,2题.2.如图所示的两个矩形相似吗?为什么?如果相似,相似比是多少?五、小结1.通过本节课的学习,你有什么收获?2.相似多边形的概念是什么?3.相似比的概念是什么?六、课外作业教材第88页习题4.4第1~4题.本节课在探索相似多边形定义的过程中,我刻意地回避了“两个图形的形状相同吗”的问题,而是直接明确指出两个图形相似,然后探索相似的本质特征.因为我认为形状相同没有一个明确的定义(实质就是相似),只是一种感性的认识,这种认识会影响到黑板边框内外边缘是否相似的正确判断.从教学效果看这样处理减少了学生判断黑板边框问题的错误.4探索三角形相似的条件第1课时相似三角形和判定定理11.理解相似三角形的定义,掌握相似三角形的判定定理1.2.初步掌握相似三角形判定定理1的应用.重点理解相似三角形的定义和相似三角形的判定定理1.难点相似三角形判定定理1的理解及应用.一、情境导入教师:请同学们都拿出文具盒中的三角板,观察它们与老师手中的木制三角板有什么关系?学生:它们对应角相等,对应边成比例.二、探究新知1.相似三角形的定义教师:根据上面的关系,以及相似多边形的定义,你能说出相似三角形的定义吗?引导学生得出:三角分别相等,三边成比例的两个三角形叫做相似三角形.2.相似三角形的判定定理1教师:若给定两个三角形,你有什么办法来判定它们是否相似?能否类比两个三角形全等的条件,来寻找判定两个三角形相似的条件呢?如果可以,我们可以从哪些条件开始找呢?(1)教师:任意画一个△ABC,使∠ABC满足下面给定的条件之一.与同伴交流,你们所画的三角形相似吗?①使∠ABC=60°;②使∠ABC=90°;③使∠ABC=120°;④使∠ABC=∠α.学生合作交流,引导得出结论:如果两个三角形只有一个角对应相等时,不能判定两个三角形相似.(2)教师:如果有两个角对应相等的两个三角形,能否判定这两个三角形相似?与同伴合作,一人画△ABC,另一人画△A′B′C′,使△ABC和△A′B′C′满足下列条件之一.比较你们所画的三角形,∠C 与∠C′相等吗?对应边的比相等吗?三角形相似吗?①使得∠A,∠A′都等于30°,∠B 和∠B′都等于60°;②使得∠A,∠A′都等于30°,∠B 和∠B′都等于90°;③使得∠A,∠A′都等于30°,∠B 和∠B′都等于120°;④使得∠A,∠A′都等于α,∠B 和∠B′都等于β.引导学生得出相似三角形的判定定理1:两角分别相等的两个三角形相似.三、举例分析例1判断下列说法是否正确.(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)所有的等边三角形都相似;(4)所有的直角三角形都相似;(5)有一个角是120°的两个等腰三角形相似;(6)有一个角是60°的两个等腰三角形相似;学生举手回答,教师点评.例2(课件出示教材第89页例1)学生独立完成,指名汇报,教师点评.四、练习巩固1.教材第90页“随堂练习”第1,2题.2.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个五、小结1.通过本节课的学习,你有什么收获?2.什么是相似三角形?3.相似三角形的判定定理1的内容是什么?六、课外作业教材第90页习题4.5第1~3题.本节课是探索三角形相似的条件的第一课时——相似三角形和判定定理1,是初中数学学习的重点内容之一,对学生的能力培养与训练有着重要的地位.在课堂上,通过类比、观察等方式,让学生自行总结相似三角形的定义,再通过合作交流、画图等方式,让学生探讨出相似三角形的判定定理1,并且学会运用定理,培养学生分析观察能力和总结能力.在教学过程中,以学生为主体,教师引导学生自主探究,合作交流,认知新的知识,培养学生自主学习与合作学习相结合的学习方式,提高学生的学习兴趣.第2课时相似三角形的判定定理2和31.掌握三角形相似的判定定理2和3.2.能利用相似三角形的判定定理2和3解决问题.重点掌握三角形相似的判定定理2和3. 难点相似三角形的判定定理2和3的应用.一、复习导入1.判定三角形相似目前有哪些方法?2.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =90°,对角线BD ⊥DC. (1)△ABD 与△DCB 相似吗?请说明理由.(2)如果AD =4,BC =9,你能求出BD 的长吗?(学生认真读题,观察图形,运用学过的判定相似的方法以及相似性质,讨论得出结果) 分析:△ABD ∽△DCB.因为∠A =∠BDC =90°,∠ADB =∠DBC ,故而这两个三角形相似;由AD BD =BDBC,故BD =6.教师:现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定定理1,除此之外,是否还有其他的方法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.二、探究新知1.相似三角形的判定定理2教师:我们知道,相似三角形的各边成比例,如果两个三角形有两边成比例,它们一定相似吗?与同伴交流.学生:两边成比例的两个三角形不一定相似.教师:如果再增加一个条件,你能说出有哪几种可能的情况吗? 学生思考后给出答案,教师点评.教师:我们先来考虑增加一角相等的情况. 课件出示:画△ABC 和△A′B′C′,使∠A =∠A′,AB A′B′和ACA′C′都等于给定的值k.设法比较∠B 与∠B′(或 ∠C 与∠C′)的大小.(1) △ABC 和△A′B′C′相似吗? (2)改变k 值的大小,再试一试.学生完成后给出答案,教师点评,引导学生得出相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.教师:想一想,如果△ABC 和△A′B′C′两边成比例,且其中一边所对的角相等,那么这两个三角形一定相似吗?要求学生先画出图形,教师展示学生的图形,并提出问题:由此你能得到什么结论?2.相似三角形的判定定理3教师:如果两个三角形的三边成比例,那么这两个三角形一定相似吗? 学生小组内讨论,教师巡视. 课件出示:画△ABC 和△A′B′C′,使AB A′B′,BC B′C′和ACA′C′都等于给定的值k.设法比较∠A 与∠A′的大小.(1)△ABC 和△A′B′C′相似吗?说说你的理由. (2)改变k 值的大小,再试一试.学生分小组讨论并给出答案,教师点评,引导学生得出相似三角形的判定定理3:三边成比例的两个三角形相似. 3.总结 教师:在这两节课中我们已经学完了三角形相似的判定方法,下面请大家总结判定三角形相似有几种方法?第一种:对应角相等,对边成比例的两个三角形相似.即定义法.第二种:两角对应相等的两个三角形相似.第三种:两边对应成比例且夹角相等的两个三角形相似. 第四种:三边对应成比例的两个三角形相似.强调:从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果既有角又有边,则可考虑用第三种方法判断;如果已知条件只涉及边,就用第四种判定方法.(教师最好用实例引导)三、举例分析例1 图①中是否有相似的三角形?图②中的两个三角形是否相似?学生思考后给出答案,教师点评. 例2 (课件出示教材第91页例2) 例3 (课件出示教材第94页例3)学生独立完成后汇报答案,教师点评. 四、练习巩固1.教材第92页“随堂练习”. 2.教材第94页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.相似三角形的判定定理2和3分别是什么? 六、课外作业1.教材第93页习题4.6第1,3题. 2.教材第95页习题4.7第1,2题.本节课是探索三角形相似的条件的第二课时——相似三角形的判定定理2和3,是初中数学学习的重点内容之一,对学生的能力培养与训练有着重要的地位.在课堂上,让学生动手实践,合作交流,总结出相似三角形的判定定理2和3,培养学生分析观察能力和总结能力.通过讲练结合,学会运用定理,加深学生对新知的认识.在教学过程中,以学生为主体,教师引导学生自主探究,合作交流,认知新的知识,培养学生自主学习与合作学习相结合的学习方式,提高学生的学习兴趣.第3课时 黄金分割1.理解和掌握黄金分割的定义.2.理解黄金比的含义,会找一条线段的黄金分割点. 3.会判断某一点是否为一条线段的黄金分割点.重点黄金分割的意义和简单应用. 难点掌握寻找黄金分割点的方法.一、情境导入课件出示与“黄金分割”有关的图片,提出问题:(1)芭蕾舞演员做相同的动作,踮脚尖和不踮脚尖,哪个更美?(2)为什么身材苗条的模特还要穿高跟鞋?(3)为什么世界第三高塔的上海东方明珠塔那么璀璨壮观? 学生小组讨论后给出答案,教师点评.教师:美是一种感觉,本应没有什么客观的标准,但在这些问题中,我们对美的认同的确是比较一致的,为什么这些图形会给人以美的感觉呢?这些美的事物是否存在内在的规律呢?和我们的数学知识有没有联系呢?这就是我们今天要研究的“黄金分割”.二、探究新知1.黄金分割的定义课件出示一个五角星:教师:在五角星图案中,大家用刻度尺分别度量线段AC ,BC 的长度,然后计算ACAB,BCAC,它们之间有什么关系? 学生:AC AB =BC AC.引导学生得出:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点.2.计算黄金比教师:那么AC 与AB 的比是多少呢?学生计算后给出答案,教师点评并板书具体解题过程: 由AC AB =BCAC,得AC 2=AB·BC. 设AB =1,AC =x ,则BC =1-x. ∴x 2=1×(1-x), 即x 2+x -1=0. 解这个方程,得x 1=-1+52,x 2=-1-52(不合题意,舍去).所以,ACAB =5-12≈0.618.教师:AC 与AB 的比叫做黄金比.其中ACAB ≈0.618.3.找黄金分割点的方法(1)课件出示:如图,已知线段AB ,按照如下方法作图: ①经过点B 作BD ⊥AB ,使BD =12AB.②连接DA ,在DA 上截取DE =DB.③在AB 上截取AC =AE.则点C 为线段AB 的黄金分割点.教师:能说说其中的道理吗?教师:若点C 为线段AB 的黄金分割点,则点C 分线段AB 所成的两条线段AC ,BC 间需满足AC AB =BCAC .下面请大家进行验证.有困难时可以互相交流.为了计算方便,可设AB=1.学生独立完成后给出答案,教师点评.(2)教师:采用如下的方法也可以得到黄金分割点. ①如图,设AB 是已知线段. ②以AB 为边作正方形ABCD. ③取AD 的中点E ,连接EB. ④延长DA 至点F ,使EF =EB.⑤以线段AF 为边作正方形AFGH. ⑥点H 就是AB 的黄金分割点.教师:你能说说这种作法的道理吗? 学生分小组讨论后给出答案,教师讲解. 解:设AB =1,那么在Rt △BAE 中, BE =AB 2+AE 2=12+⎝⎛⎭⎫122=52.EF =BE =52, AH =AF =BE -AE =52-12=5-12. BH =AB -AH =1-5-12=3-52. 因此AH AB =BHAH,点H 是AB 的黄金分割点.三、练习巩固当节目主持人站在舞台的黄金分割点时,观众看起来是最协调的.已知一舞台长为10 m ,节目主持人应站在距离舞台一端________处观众观看最协调.(精确到0.1 m )四、小结1.通过本节课的学习,你有什么收获? 2.黄金分割点与黄金比的定义分别是什么? 3.说一说找黄金分割点的方法. 五、课外作业教材第98页习题4.8第1~3题.“黄金分割”作为《新课程标准》明确提出的内容,在进一步强化线段的比、成比例线段的基础上,注重体现数学的文化价值,有意识引导学生从文化角度把握“黄金分割”这一数学瑰宝,丰富了学生对数学发展的整体认识,对后续新课的学习有着激励作用.在教学过程中,学生要经历“观察”和“思维”两大基本层次来诱导学生认识客观世界的本质和规律.学生的求知欲被激发起来后,教师应及时将其引入理性认识的轨道.5 相似三角形判定定理的证明1.能够熟练地掌握证明相似三角形的判定定理.2.经历探索相似三角形判定定理的证明过程,培养学生的合情推理能力.重点相似三角形判定定理的证明. 难点合理添加辅助线.一、复习导入教师:相似三角形的判定定理有哪些? 学生:两角分别相等的两个三角形相似. 两边成比例且夹角相等的两个三角形相似. 三边成比例的两个三角形相似.教师:在前面,我们探索了三角形相似的条件,今天我们将对这些定理进行证明. 二、探究新知1.证明三角形的判定定理1课件出示: 如图,在 △ABC 和△A′B′C′ 中,∠A = ∠A′,∠B =∠B′. 求证:△ABC ∽△A′B′C′.学生思考完成后,教师板书证明过程. 证明:在 △ABC 的边 AB(或它的延长线)上截取AD =A′B′,过点D 作BC 的平行线,交 AC 于点E ,则∠1=∠B ,∠2 =∠C ,AD AB =AE AC.过点 D 作 AC 的平行线,交 BC 于点 F ,则 AD AB =CF CB . ∴AE AC =CF CB. ∵ DE ∥BC, DF ∥AC ,∴ 四边形 DFCE 是平行四边形. ∴ DE = CF. ∴AE AC =DE CB . ∴AD AB =AE AC =DE BC. 而∠1=∠B ,∠DAE =∠BAC ,∠2=∠C , ∴△ADE ∽△ABC.∵∠A =∠A′,∠ADE =∠B =∠B′,AD =A′B′, ∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′. 2.证明三角形的判定定理2 课件出示:如图,在△ABC 和△A′B′C′中,∠A =∠A′,AB A′B′=ACA′C′.求证:△ABC ∽△A′B′C′.指名学生到黑板写下证明过程,教师点评. 3.证明三角形的判定定理3 课件出示:如图,在△ABC 和△A′B′C′中,AB A′B′=BC B′C′=ACA′C′.求证:△ABC ∽△A ′B′C′.指名学生到黑板写下证明过程,教师点评.强调:证明两个三角形相似,可以通过画辅助线来帮助解决. 三、举例分析例 如图,∠ABD =∠C ,AD =2,AC =8,求AB 的长.学生分小组讨论后举手回答,教师点评并板书解答过程. 解:∵∠A =∠A ,∠ABD =∠C , ∴△ABD ∽△ACB. ∴AB :AC =AD :AB. ∴AB 2=AD·AC. ∵AD =2,AC =8, ∴AB =4. 四、练习巩固如图,在四边形ABCD 中,∠B =∠ACD ,AB =6,BC =4,AC =5,CD =712,求AD的长.五、小结通过本节课的学习,你有什么收获? 六、课外作业教材第102页习题4.9第1~4题.本节课的内容是相似三角形判定定理的证明,是在学生对三角形之间的全等关系已有深度的认识,在学习了平行线分线段成比例、相似三角形的定义、探索相似三角形的条件等知识的基础上进行教学的.它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸.本节课要求学生了解和掌握相似三角形的判定定理,并且学会运用.课堂上,注重证明过程的书写,让学生更加规范证明过程与步骤,提高学生的综合语言能力和分析能力,培养学生分析问题的条理性.积极调动学生的学习气氛,提高学习兴趣.6 利用相似三角形测高1.在测量旗杆高度的具体问题情境中,通过构建数学模型,进一步理解相似三角形的概念.2.了解平行投影的意义和平行投影在生活中的运用,增强用数学的意识.重点综合运用相似三角形的有关知识求物体的高度. 难点从实际问题中,建立数学模型.一、复习导入教师:判定三角形相似的定理有哪些呢?学生:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.教师:今天我们要做一节活动课,任务是利用三角形相似的有关知识,测量我校操场上旗杆的高度.二、探究新知 1.分析原理教师:请同学们自学教材第103~104页的内容,小组讨论交流三种测量方法的数学原理.甲组:利用阳光下的影子. 出示下图:从图中我们可以看出人与阳光下的影子和旗杆与阳光下的影子构成了两个相似三角形(如图①),即△EAD ∽△ABC ,因为直立于旗杆影子顶端处的同学的身高和他的影长以及旗杆的影长均可测量得出,根据EA AB =AD BC 可得BC =AB·AD EA,代入测量数据即可求出旗杆BC 的高度.乙组:利用标杆. 出示下图:。

北师大版九年级数学上册第四章《图形的相似》相似三角形的性质教学设计

北师大版九年级数学上册第四章《图形的相似》相似三角形的性质教学设计

4.7相似三角形的性质教学设计第1课时相似三角形中的对应线段之比1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系;(重点)2.能熟练运用相似三角形的性质解决实际问题.(难点)一、情景导入在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.二、合作探究探究点一:相似三角形对应高的比如图,△ABC中,DE∥BC,AH⊥BC于点H,AH交DE于点G.已知DE=10,BC=15,AG=12.求GH的值.解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.又∵AH⊥BC,DE∥BC,∴AH⊥DE.∴DEBC=AGAH,即1015=12AH.∴AH=18.∴GH=AH-AG=18-12=6.方法总结:利用相似三角形的性质:对应高的比等于相似比,将所求线段转化为求对应高的差.探究点二:相似三角形对应角平分线的比两个相似三角形的两条对应边的长分别是6cm和8cm,如果它们对应的两条角平分线的和为42cm,那么这两条角平分线的长分别是多少?解:方法一:设其中较短的角平分线的长为x cm,则另一条角平分线的长为(42-x)cm.根据题意,得x 42-x =68.解得x =18.所以42-x =42-18=24(cm ).方法二:设较短的角平分线长为x cm ,则由相似性质有x 42=614.解得x =18.较长的角平分线长为24cm.故这两条角平分线的长分别为18cm ,24cm.方法总结:在利用相似三角形的性质解题时,一定要注意“对应”二字,只有对应线段的比才等于相似比,而相似比即为对应边的比,列比例式时,尽可能回避复杂方程的变形.探究点三:相似三角形对应中线的比已知△ABC ∽△A ′B ′C ′,AB A ′B ′=23,AB 边上的中线CD =4cm ,求A ′B ′边上的中线C ′D ′.解:∵△ABC ∽△A ′B ′C ′,CD 是AB 边上的中线,C ′D ′是A ′B ′边上的中线, ∴CD C ′D ′=AB A ′B ′=23. 又∵CD =4cm ,∴C ′D ′=3CD 2=32×4=6(cm ).即A ′B ′边上的中线C ′D ′的长是6cm.方法总结:相似三角形对应中线的比等于相似比. 三、板书设计相似三角形中的对应线段之比:相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比.通过探索相似三角形中对应线段的比与相似比的关系,经历“观察-猜想-论证-归纳”的过程,渗透逻辑推理的方法,培养学生主动探究、合作交流的习惯和严谨治学的态度,并在其中体会类比的数学思想,培养学生大胆猜测、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力.第2课时 相似三角形的周长和面积之比1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方;(重点)2.掌握相似三角形的周长比、面积比在实际中的应用.(难点)一、情景导入如图所示是一个三角形的花坛,要在上面种满花草,园丁沿与AB 平行的方向画一条直线,将花坛分割出一片三角形地块,测出△CDE 的面积为10平方米,CD 长为4m ,BD 长为6m.根据所测得的数据,请你计算出整个花坛△ABC 的面积.二、合作探究探究点一:相似三角形的周长比已知△ABC ∽△A ′B ′C ′,AD 是△ABC 的中线,A ′D ′是△A ′B ′C ′的中线,若AD A ′D ′=12,且△A ′B ′C ′的周长为20cm ,求△ABC 的周长.解:因为△ABC ∽△A ′B ′C ′,所以它们周长的比等于它们的相似比,对应边中线的比等于相似比,即相似比k =AD A ′D ′=12,△ABC 的周长△A ′B ′C ′的周长=12. 已知△A ′B ′C ′的周长为20cm ,所以△ABC 的周长20=12.所以△ABC 的周长为10cm.易错提醒:在相似表达式△ABC ∽△A ′B ′C ′及对应中线比AD A ′D ′=12中,都是△ABC 在前,△A ′B ′C ′在后,而在出现问题时,△A ′B ′C ′在前,△ABC 在后,顺序已经不同了,所以相似比要随之调整或者直接把相关量代入关系式求解.探究点二:相似三角形的面积比如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CF交AD 于点F ,点E 是AB 的中点,连接EF .若四边形BDFE 的面积为6,求△ABD 的面积.解:∵CF 平分∠ACB ,DC =AC , ∴CF 是△ACD 的中线,即F 是AD 的中点. ∵点E 是AB 的中点,∴EF ∥BD ,且EF BD =12.∴∠B =∠AEF ,∠ADB =∠AFE ,∴△AEF ∽△ABD .∴S △AEF S △ABD =(12)2=14.∵S △AEF =S △ABD -S 四边形BDFE =S △ABD -6, ∴S △ABD -6S △ABD=14.∴S △ABD =8,即△ABD 的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF :BD =1:2得S △AEF :S △ABD =1:2,或S △AEF :S 四边形BDFE =1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.。

14-15学年新版北师大九年级数学上册第4章图形的相似全章教案

14-15学年新版北师大九年级数学上册第4章图形的相似全章教案

教学目标:1.知道两条线段的比的概念并且会计算两条线段的比..2.知道成比例线段的定义.3.熟记比例的性质并会应用. 教学重点:会求两条线段的比; 成比例线段的定义. 比例的性质 教学难点会求两条线段的比,注意线段长度的单位要统一;比例的基本性质 教学方法自主探索法 教学过程Ⅰ.创设问题情境,引入新课[师]同学们,大家见到过形状相同的图形吗?请举出例子来说明.[生]课本中两张图片;同一底片洗印出来的大小不同的照片;两个大小不同的正方形,等等. [师]对,大家举出的这些例子都是形状相同、大小不同的图形,即为相似图形.本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的正方形来看,它们之所以大小不同,是因为它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习. Ⅱ.新课讲解[师]大家先回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小? [生]两个数相除又叫两个数的比,如a ÷b 记作ba;度量线段时要选用同一个长度单位,比较线段的大小就是比较两条线段长度的大小.[师]由比较线段的大小就是比较两条线段长度的大小,大家能猜想线段的比吗? [生]两条线段的比就是两条线段长度的比.[师]对.比如:线段a 的长度为3厘米,线段b 的长度为6米,所以两线段a ,b 的比为3∶6=1∶2,对吗? [生]对.[师]大家同意他的观点吗?[生]不同意,因为a 、b 的长度单位不一致,所以不对.[师]那么,应怎样定义两条线段的比,以及求比时应注意什么问题呢?[生]如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么这两条线段的比(ratio )就是它们长度的比,即AB ∶CD =m ∶n ,或写成CD AB =n m ,其中,线段AB 、CD n m 表示成比值k ,则CDAB=k ,或AB =k ·CD .两条线段的比实际上就是两个数的比.注意:在量线段时要选用同一个长度单位.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.(1)如果dcb a =(b ,d 都不为0),那么ad =bc .如果ad =bc (a,b,c,d 都不等于0),那么dcb a =. (2)如果d c b a ==…=nm (b +d +…+n ≠0)那么b a n d b m c a =++++++ 例题(1)如图,已知d c b a ==3,求bb a +和d dc +;(2)如果d c b a ==k (k 为常数),那么ddc b b a +=+成立吗?为什么?(1)如果d c b a =,那么d dc b b a -=-成立吗?为什么? (2)如果f e d c b a ==,那么baf d b e c a =++++成立吗?为什么?(3)如果d c b a =,那么ddc b b a ±=±成立吗?为什么. Ⅲ.课堂练习d c b a ==3,求b b a -和d dc -, b b a -=d dc -成立吗?d c b a ==fe =2,求f d b ec a ++++(b +d +f ≠0)Ⅳ.课时小结掌握比例的性质,并能灵活运用. Ⅴ.课后作业Ⅵ.活动与探究 1.已知:d c b a ==fe =2(b +d +f ≠0)求:(1)f d b e c a ++++;(2)f d b ec a +-+-; (3)f d b e c a 3232+-+-;(4)f b ea 55--.a ∶b ∶c =4∶3∶2,且a +3b -3c =14.(1)求a ,b ,c (2)求4a -3b +c 的值.●板书设计§4.1 成比例线段二、随堂练习 三、课时小结 四、课后作业4.2平行线分线段成比例一、教学目标1.知识目标:①了解平行线分线段成比例定理②会用平行线分线段成比例定理解决实际问题2.能力目标:掌握推理证明的方法,发展演绎推理能力二、教学过程分析1.复习提问(1)什么叫比例线段?(2)比例的基本性质?2.引入新课做一做在图3-6中,小方格的边长均为1,直线l1∥l2∥l3,分别交直线m,n与格点A1,A2,A3,B1,B2,B3.图3-6(1)计算 的值,你有什么发现? (2)将2l 向下平移到如图3-7的位置,直线m,n 与2l 的交点分别为21,B A 你在问题(1)中发现结论还成立吗?如果将2l平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?3.分组讨论,得出结论平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例. 4.想一想(一)如果把图1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图2所得的对应线段的比会相等吗?依据是什么?12122323B B B B A A A A 与(二)如果把图1中l1 , l2两条直线相交,交点A刚落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?得出结论:(推论)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.5. 例题学习例1如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC。

北师大版九年级数学上册教案教学设计:第四章图形的相似

北师大版九年级数学上册教案教学设计:第四章图形的相似

第四章 图形的相似1 成比例线段专题 综合运用比例性质1. 若32a +=4b =65c +,且2a -b +3c =21,求4a -3b +c 的值.2.如图,已知BE AB =ME AM =CE AC ,求证:BCCA BC AB ++=ME AE .【知识要点】1.成比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,我们就把这四条线段叫做成比例线段. 2.比例的基本性质(1)如果a b =cd ,那么ad =bc ,(2)如果a b =bc ,那么b 2=ac ,(3)如果a b =cd ,那么a ±b b =c ±d d.【温馨提示】四条线段的长度单位不统一时,要化成统一的长度单位后,再计算判断是否成比例,防止出错. 【方法技巧】1.比例式是等式,故可利用等式性质将比例式变形.2.遇到比例式时,可设辅助未知数k ,即设这些比的比值为k ,这种借助另一个未知数的解题方法叫辅助未知数法.3.利用比例的基本性质可求长度,通常是“知三求一”,有时也可以设适当未知数列方程求解.参考答案:1.解:设32a +=4b =65c +=k ,则a +2=3k ,b =4k ,c +5=6k , 即a =3k -2,b =4k ,c =6k -5.∵2a -b +3c =21,∴2(3k -2)-4k +3(6k -5)=21, ∴k =2.∴a =4,b =8,c =7. ∴4a -3b +c =4×4-3×8+7=-1. 2.证明:∵BE AB =ME AM =CE AC ,∴ CEBE AC AB ++=EM AM ,即BC AC AB +=ME AM ,∴BC CA BC AB ++=MEME AM +, 即BCCA BC AB ++=ME AE .2 平行线分线段成比例专题 平行线分线段成比例定理的灵活运用如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q ,求证:MN +PQ =2PN .【知识要点】1.两条直线被一组平行线所截,所得的应对线段成比例。

新北师大版九年级数学上册第四章4.3相似多边形教学设计1

新北师大版九年级数学上册第四章4.3相似多边形教学设计1

第四章图形的相似3相似多边形(续表)(1)两个全等多边形的性质是什么?如何判定两个多边回顾形是全等的?(2)两个形状相同的多边形,除了全等外,还有什么关系?【课堂引入】1.播放一些著名的建筑图片,让学生在音乐中欣赏,感受活动生活Ψ形状相同的图形,并找出图屮哪些图形是相同的.创设情境导入新课【探究1】各小组派代表展示自己课前所收集到的资料(可以是照片、资料、也可以是亲自仿制),并解说从中获取的信息及对于现实生活的实际意义(选3〜4个小组代表讲解)・【探究2】教师展示课件(播放动画)图4—3—5在这两个多边形中,是否有相等的内角?相等的内角的两边是否成比例?初步感知定义.归纳总结,形成概念:1.各角分别相等、各边成比例的两个多边形叫做相似多边形.2.相似多边形对应边的比叫做相似比.表示相似比时,多边形的顺序必须与相似比的前项和后项分别对应.如图4-3-5中,六边形ABCDEF 与六边形A I B I C I D I E I F l 的相似比为kι=l :2,六边形A lB IC ID lE IF l 与六边形ABCDEF 的相似比为k 2=2.3.相似用“s”表示,读作“相似于”.像图屮的两个多边形我们记作六边形ABCDEFS 六边形A l BlClDlE 1F 1.例1下列每组图形形状相同,它们的对应角活动二:实践 探究 交流 新知学生回忆 并回答,为本课的 学习提供迁移或 类比方法.通过课件 的展示,让学生留 心观察生活中存 在着大量形状相 同的图形,增加学 生的感性认识,带 着音乐欣赏美丽 的图片提高了学 生学习的兴趣.从 而让学生感受到 数学学习的内容 都是现实的、有趣 的,让学生感到数 学就在我们身边.为了培养 学生从多角度理 解问题,运用探究 3屮两个典型的反 例,引导学生讨论 探究,使学生认识 到:不相似的两个 多边形的角也可 能对应相等,不相 似的两个多边形 的边也可能对应 成比例;反过来 说:只具备各角分 别对应相等或各 边分别对应成比 例的多边形不一 定相似.进而使学 生明确:判断两个 多边形相似,“各 角分别相 等”“各边成比 例”这两个条件有怎样的关【拓展提升】例1如图4—3—10所示的两个四边形相似,求未知边X,例2如图4一3-11,在长为10伽,宽为6伽的矩形中,是多少? 图4一3—11例3如图4—3-12,E,F 分别为矩形ABCD 的边AD,BC 的中点,若矩形ABCDS 矩形EABF,AB=I,求矩形ABCD 的面积.图4-3-12考查学生对于知识点的理解与应用,同时考查学生是否能够利用相似多边形的性质解决问题,是否能够写出规范的步骤.通过检测学生的常握情况,反馈教学,便于教师及时调控.另外分层检测满足不同学生的学习需求,增强学生解决问题的能力.活动四:课堂 总结 反思【当堂训练】 1.课本用7中的随堂练习当堂检测,及时反馈学习效果. 提纲挈领,重点突出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1成比例线段教学目标:1.知道两条线段的比的概念并且会计算两条线段的比..2.知道成比例线段的定义.3.熟记比例的性质并会应用. 教学重点:会求两条线段的比; 成比例线段的定义. 比例的性质 教学难点会求两条线段的比,注意线段长度的单位要统一;比例的基本性质 教学方法自主探索法 教学过程Ⅰ.创设问题情境,引入新课[师]同学们,大家见到过形状相同的图形吗?请举出例子来说明.[生]课本中两张图片;同一底片洗印出来的大小不同的照片;两个大小不同的正方形,等等.[师]对,大家举出的这些例子都是形状相同、大小不同的图形,即为相似图形.本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的正方形来看,它们之所以大小不同,是因为它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习. Ⅱ.新课讲解1.两条线段的比的概念[师]大家先回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小? [生]两个数相除又叫两个数的比,如a ÷b 记作ba;度量线段时要选用同一个长度单位,比较线段的大小就是比较两条线段长度的大小.[师]由比较线段的大小就是比较两条线段长度的大小,大家能猜想线段的比吗? [生]两条线段的比就是两条线段长度的比. [师]对.比如:线段a 的长度为3厘米,线段b 的长度为6米,所以两线段a ,b 的比为3∶6=1∶2,对吗? [生]对.[师]大家同意他的观点吗?[生]不同意,因为a 、b 的长度单位不一致,所以不对.[师]那么,应怎样定义两条线段的比,以及求比时应注意什么问题呢?[生]如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么这两条线段的比(ratio )就是它们长度的比,即AB ∶CD =m ∶n ,或写成CD AB =nm,其中,线段AB 、CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k ,则CDAB=k ,或AB =k ·CD .两条线段的比实际上就是两个数的比.注意:在量线段时要选用同一个长度单位. 2.比例线段的概念四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 3.比例的性质(1)如果dcb a =(b ,d 都不为0),那么ad =bc . 如果ad =bc (a,b,c,d 都不等于0),那么dcb a =.(2)如果d c b a ==…=nm (b +d +…+n ≠0)那么b an d b m c a =++++++例题(1)如图,已知d c b a ==3,求b b a +和ddc +;(2)如果dc b a ==k (k 为常数),那么d dc b b a +=+成立吗?为什么? 4.想一想(1)如果dc b a =,那么d dc b b a -=-成立吗?为什么? (2)如果f e d c b a ==,那么baf d b e c a =++++成立吗?为什么? (3)如果dc b a =,那么d dc b b a ±=±成立吗?为什么.Ⅳ.课时小结掌握比例的性质,并能灵活运用. Ⅴ.课后作业完成习题4.1及习题4.2 Ⅵ.活动与探究1.已知:d c b a ==f e=2(b +d +f ≠0)求:(1)f d b e c a ++++;(2)f d b e c a +-+-;(3)f d b e c a 3232+-+-;(4)fb ea 55--.2.已知a∶b∶c=4∶3∶2,且a+3b-3c=14.(1)求a,b,c(2)求4a-3b+c的值.●板书设计4.2平行线分线段成比例一、教学目标1.知识目标:①了解平行线分线段成比例定理②会用平行线分线段成比例定理解决实际问题 2.能力目标:掌握推理证明的方法,发展演绎推理能力 二、教学过程分析1.复习提问(1)什么叫比例线段? (2)比例的基本性质? 2.引入新课 做一做在图3-6中,小方格的边长均为1,直线l 1 ∥ l 2∥ l 3,分别交直线m ,n 与格点A 1,A 2,A 3,B 1,B 2,B 3.图3-6(1)计算 的值,你有什么发现? (2)将2l 向下平移到如图3-7的位置,直线m,n 与2l 的交点分别为21,B A 你在问题(1)中发现结论还成立吗?如果将2l 平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?12122323B B B B A A A A 与3.分组讨论,得出结论平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.4.想一想(一)如果把图1中l1 , l2两条直线相交,交点A刚落到l3上,如图2所得的对应线段的比会相等吗?依据是什么?(二)如果把图1中l1 , l2两条直线相交,交点A刚落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?得出结论:(推论)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例. 5. 例题学习例1如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC。

(1)如果AE=7 ,EB=5,FC=4.那么AF的长是多少?(2)如果AB=10 ,AE=6,A F=5.那么FC的长是多少?且DF∥AC,EF∥BC.求证:OD∶OA=OE∶OB6.课时小结1、平行线分线段成比例定理:(1)两直线被一组平行线所截,所得的对应线段成比例(关键要能熟练地找出对应线段)(2)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.7.课后作业习题4.3 知识技能第1,2题4.4.1探索三角形相似的条件(一)教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件.2.使学生掌握相似三角形判定定理1.3.使学生初步掌握相似三角形的判定定理1的应用.教学重点:准确找出相似三角形的对应边和对应角度.教学难点:掌握相似三角形判定定理1及其应用.教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.二、 给出定义1. 从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’ 可知△ABC ∽△A’B’C’.2. 板书定义.叫学生写在笔记本上.三、合作学习:合探1 同学们观察我们的直角三角尺,直观上看它们是什么关系?到底需要满足几个条件两个三角形能够相相似?合探2 与同伴合作,两个人分别画△ABC 和△A ′B ′C ′,使得∠A 和∠A ′都等于∠α,∠B 和∠B ′都等于∠β,此时,∠C 与∠C ′相等吗?三边的比C B BC C A AC B A AB '''''',,相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试.四、导入定理判定定理1:两角分别相等的两个三角形相似.这个定理的出现为判定两三角形相似增加了一条新的途径.例:如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC ,AB =7,AD =5,DE =10,求BC 的长。

解:∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C.∴△ADE ∽△ABC (两角分别相等的两个三角形相似).∴AD AB =DE BC. ∴BC =A B ×DE AD = 7×105=14.五、学生练习:1. 讨论随堂练习第1题有一个锐角相等的两个直角三角形是否相似?为什么?2.自己独立完成随堂练习第2题六、小结本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理.七、作业:习题4.54.4.2探索三角形相似的条件(二)教学目的: 使学生掌握三角形相似的判定定理2,3,和它们的应用.教学重点: 判定定理2和3教学难点: 判定定理的应用教学过程:一、复习:1.判定三角形相似目前有哪些方法?2.回忆三角形相似判定定理1的证明的方法.二、新授(一)导入新课三角形全等的判定中AAS 和ASA 对应于相似三角形的判定的判定定理1,那么SAS 和SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做1. (1)画△ABC 与△A ′B ′C ′,使∠A =∠A ′,B A AB ''和C A AC ''都等于给定的值k .设法比较 ∠B 与∠B ′的大小(或∠C 与∠C ′的大小)、△ABC 与△A ′B ′C ′相似吗?(2)改变k 值的大小,再试一试.定理2:两边成比例且夹角相等的两个三角形相似.2. 画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和A C CA ''都等于给定的值k . (1)设法比较∠A 与∠A ′的大小;(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.改变k 值的大小,再试一试.定理3:三边:成比例的两个三角形相似.(三)例题学习例1:如图,D ,E 分别是△ABC 的边AC ,AB 上的点,AE =1.5,AC =2,BC =3,且AD AB =34,求DE 的长.解:∵AE =1.5,AC =2, ∴AE AC =34, ∵AD AB =34, ∴AD AB =AE AC . 又∵∠EAD=∠CAB ,∴△ADE ∽△ABC (两边成比例且夹角相等的两个三角形相似).∴DE BC =AD AB =34. ∵BC =3, ∴DE =34 BC =34×3=94. 例2:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE,∠BAD=20°,求∠CAE 的度数. 解:∵ABAD =BC DE =AC AE, ∴△ABC ∽△ADE (三边成比例的两个三角形相似).∴∠BAC=∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD=∠CAE .∵∠BAD=20°,∴∠CAE=20°.三:巩固练习四、小结本节学习了相似三角形两个判定定理,一定用时要注意它们使用的条件.五、作业:习题4.74.4.3 探索三角形相似的条件——黄金分割教学目标(一)教学知识点:1.知道黄金分割的定义. 2.会找一条线段的黄金分割点.3.会判断某一点是否为一条线段的黄金分割点.(二)能力训练要求:通过找一条线段的黄金分割点,培养学生的理解与动手能力.(三)情感与价值观要求:理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.教学重点:了解黄金分割的意义,并能运用.教学难点:找黄金分割点和画黄金矩形.教学方法:讲解法教具准备:投影片一张:(记作§4.4 A )教学过程Ⅰ.创设问题情境,引入新课[师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C 把AB 分成两段AC 和BC ,使得画出的图形匀称美观呢?本节课就研究这个问题.Ⅱ.讲授新课[师]在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算AB AC 、AC BC ,它们的值相等吗?[生]相等. [师]所以ACBC AB AC =. 1.黄金分割的定义 一般地,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中ABAC ≈0.618. 2. 计算黄金比.解:由AC AB =BC AC,得∴AC 2=AB ·BC. 设AB =1,AC =x ,则BC =1- x.∴x 2=1×(1-x ) ∴x 2+ x -1=03.作一条线段的黄金分割点.如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接DA ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.[师]你知道为什么吗?若点C 为线段AB 的黄金分割点,则点C 分线段AB 所成的两条线段AC 、BC 间须满足ACBC AB AC =.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB =1. 证明:∵AB =1,AC =x ,BD =21AB =21 ∴AD =x +21 在Rt △ABD 中,由勾股定理,得(x +21)2=12+(21)2 ∴x 2+x +41=1+41 ∴x 2=1-x ∴x 2=1·(1-x ) ∴AC 2=AB ·BC 即:ACBC AB AC = 即点C 是线段AB 的一个黄金分割点,在x 2=1-x 中整理,得x 2+x -1=0∴x =2512411±-=+±-∵AC 为线段长,只能取正 ∴AC =215-≈0.618 ∴ABAC ≈0.618 ∴黄金比约为0.618.3.想一想古希腊时期的巴台农神庙.把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,BC AB BE BC =,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?[师]请大家互相交流.[生]因为四边形AEFD 是正方形,所以AD =BC =AE ,又因为BC AB BE BC =,所以AE AB BE AE =,即AEBE AB AE =,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比.[师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗?Ⅲ.课时小结本节课学习了:1.黄金分割点的定义及黄金比.2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业:习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割点;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.4.5相似三角形判定定理的证明一、教学目标1.知识目标:①了解相似三角形判定定理②会证明相似三角形判定定理2.能力目标:掌握推理证明的方法,发展演绎推理能力二、教学过程分析1.复习提问相似三角形的判定方法有哪些?(1)两角对应相等,两三角形相似.(2)三边对应成比例,两三角形相似.(3)两边对应成比例且夹角相等,两三角形相似.2.探究学习,得出新知探究1如果∠A =∠A ′,∠B =∠B ′,那么,△ABC ∽△A′B′C′.如何证明呢?应用1已知:如图,∠ABD=∠C,AD=2, AC=8,求AB.解:∵∠A= ∠A,∠ABD=∠C,∴△ABD ∽△ACB ,∴AB : AC=AD : AB,∴AB2 = AD ·AC.∵AD=2, AC=8,∴AB =4.探究2 如果∠B =∠B 1 , 那么,△ABC ∽△A 1B 1C 1.应用2已知:如图,在四边形ABCD 中,∠B =∠ACD ,AB =6,BC =4,AC =5,CD = 721 ,求AD 的长.探究3探究3:如果 那么,△ABC ∽△A ′B ′C ′.1111,AB BC k A B B C ==,AB BC AC A B B C A C ==''''''应用3 画一画任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同桌交流一下,看看是否有同样的结论.4.课时小结一、相似三角形判定定理的证明1.两角对应相等,两三角形相似.2.三边对应成比例,两三角形相似.3.两边对应成比例且夹角相等,两三角形相似.二、相似三角形判定定理的应用5.课后作业习题4.9 知识技能第2,3题4.6 利用相似三角形测高教学目标(一)教学知识点1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验.2.熟悉测量工具的使用技能,了解小镜子使用的物理原理.(二)能力训练要求1.通过测量活动,使学生初步学会数学建模的方法.2.提高综合运用知识的能力.(三)情感与价值观要求在增强相互协作的同时,经历成功的体验,激发学习数学的兴趣.教学重点1.测量旗杆高度的数学依据.2.有序安排测量活动,并指导学生能顺利进行测量.教学难点1.方法2中如何调节标杆,使眼睛、标杆顶端、旗杆顶部三点成一线.2.方法3中镜子的适当调节.教学方法1.分组活动.2.交流研讨作报告.工具准备小镜子、标杆、皮尺等测量工具各3套.教具准备投影片一:(记作§4.6 A)投影片二:(记作§4.6 B)投影片三:(记作§4.6 C)投影片四:调查数据表.(记作§4.6 D)教学过程Ⅰ.创设问题情境,引出课题今天我们要做一节活动课,任务是利用三角形相似的有关知识,测量我校操场上旗杆的高度.请同学们回忆判定两三角形相似的有关条件.(两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.)Ⅱ.新课讲解[师]外边阳光明媚,天公作美,助我们顺利完成我们今天的活动课目——测量旗杆的高度.首先我们应该清楚测量原理.请同学们根据预习与讨论情况分组说明三种测量方法的数学原理.甲组:利用阳光下的影子.(出示投影片§4.6 A)从图中我们可以看出人与阳光下的影子和旗杆与阳光下的影子构成了两个相似三角形(如图①),即△EAD ∽△ABC ,因为直立于旗杆影子顶端处的同学的身高和他的影长以及旗杆的影长均可测量得出,根据BCAD AB EA =可得BC =EA ADBA ⋅,代入测量数据即可求出旗杆BC 的高度.[师]有理有据.你们讨论得很成功.请乙组出代表说明方法2. 乙组:利用标杆.(出示投影片§4.6 B )图②标杆、旗杆都平行,过眼睛所在点D 作旗杆BC 的垂线交旗杆BC 于G ,交标杆EF 于H ,于是得△DHF ∽△DGC .因为可以量得AE 、AB ,观测者身高AD 、标杆长EF ,且DH =AE , DG =AB由DGDH GC FH =得GC =DH DGFH ⋅. ∴旗杆高度BC =GC +GB =GC +AD .[同学A ]我认为还可以这样做.过D 、F 分别作EF 、BC 的垂线交EF 于H ,交BC 于M ,因标杆与旗杆平行,容易证明△DHF ∽△FMC∴由DHMFH MC =可求得MC 的长.于是旗杆的长BC =MC +MB =MC +EF .乙组代表:如果这样的话,我认为测量观测者的脚到标杆底部距离与标杆底部到旗杆底部距离适合同学A的做法.这样可以减少运算量.[师]请丙组同学出代表讲解.图③[师]同学们清楚原理后,请按我们事先分好的三大组进行活动,为节省时间,每组分出三个小组分别实施三种方法,要求每小组中有观测员,测量员,记录员,运算员,复查员.活动内容是:测量我校操场上的旗杆高度.[师]通过大家的精诚合作与共同努力,现在各组都得到了要求数据和最后结果,请各组出示结果,并讨论下列问题:1.你还有哪些测量旗杆高度的方法?2.今天所用的三种测量方法各有哪些优缺点?通过下表对照说明测量数据的误差情况,以及测量方法的优劣性.对照上表,结合各组实际操作中遇到的问题,我们综合大家讨论情况做出如下结论.1.测量中允许有正常的误差.我校旗杆高度为20 m,同学们本次测量获得成功.2.方法一与方法三误差范围较小,方法二误差范围较大,因为肉眼观测带有技术性,不如直接测量、仪器操作得到数据准确.3.大家一致认为方法一简单易行,是个好办法.4.方法三用到了物理知识,可以考查我们综合运用知识解决问题的能力.5.同学们提出“通过测量角度能否求得旗杆的高度呢”.有大胆的设想,老师很佩服,在大家学习了三角函数后相信会有更多的测量方法呢.Ⅲ.课堂练习高4 m 的旗杆在水平地面上的影子长6 m ,此时测得附近一个建筑物的影子长24 m ,求该建筑物的高度.图4-37分析:画出上述示意图,即可发现:△ABC ∽△A ′B ′C ′ 所以B A AB ''=C B BC'' 于是得,BC =6424⨯=''''⋅B A C B AB =16 (m ). 即该建筑物的高度是16 m.Ⅳ.课时小结这节课我们通过分组活动,交流研讨,学会了测量旗杆高度的几种常用方法,并且明白了它的数学原理——相似三角形的有关知识,初步积累了一些数学建模的经验.Ⅴ.课后作业 习题4.10 ●板书设计4.7.1 相似三角形的性质(一)教学目标(一)教学知识点:相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求:1. 熟练应用相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比。

相关文档
最新文档