空-谱融合的条件随机场高光谱影像分类方法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WEILifei1,YU Ming1,ZHONGYanfei2,YUANZiran1,HUANGCan1
1.FacultyofResourcesandEnvironmentalScience,HubeiUniversity,Wuhan430062,China;2.NationalLaboratory forInformationEngineeringinSurveying,MappingandRemoteSensing,WuhanUniversity,Wuhan430079,China
随着传感器技术的完善同时具备高空间分辨率和高光谱分辨率的遥感数据大量产生与单独的高光谱分辨率遥感数据相比这类数据除了具有丰富而连续的光谱波段还具有较高的空间分辨率但同时也存在影像上地物出现高度的细节化以及同物异谱与同谱异物的现象更加明显的局限降低了光谱可分性15因此单纯利用光谱分类无法满足越来越高的空间分辨率
Abstract:Hyperspectralremotesensingimagehasthecharacteristicsofrichspectralinformationand combiningimagewithspectrum,whichhasbeenwidelyappliedintheearthobservation.Mostoftraditional hyperspectralimageclassificationmodelsdon’tmakefullyuseofspatialfeatureinformation,relytoomuch onthespectralimformation,makingtheclassification accuracystillhave alotofroom toimprove. Conditionalrandomfield (CRF)isakindofprobability modethatcanbetterintegratespatialcontext information.Itplaysamoreandmoreimportantroleinhyperspectralimageclassification.However,most CRFmodelshavetheproblem ofexcesssmoothness,whichwillresultinthelossofdetailinformation. Aimingatthisproblem,thispaperproposedahyperspectralimageclassificationmethodbasedonspaceG spectralfusionconditionalrandomfield.Theproposed methoddesignssuitablepotentialfunctionsina pairwiseconditionalrandomfield model,fusingthespectralandspatialfeaturestoconsiderthespatial featureinformationandretainthedetailsineachclass.Theexperimentsontwosetsofhyperspectralimage showedthat,compared withthetraditionalmethods,theproposedclassification methodcaneffectively improvetheclassificationaccuracy,protecttheedgesandshapesofthefeatures,andrelieveexcessive smoothing,whileretainingdetailedinformation. Key words:hyperspectralremote sensingimagery;conditionalrandom field;spaceGspectralfusion; imageclassification Foundationsupport:TheNationalKeyResearchandDevelopmentProgramofChina (No.2017YFB0504202); TheNationalNaturalScienceFoundationofChina (No.41622107);TheSpecialProjectsforTechnological InnovationinHubei(No.2018ABA078);TheOpenFundofKeyLaboratoryofMinistryofEducationforSpatial DataMiningandInformationSharing(No.2018LSDMIS05);TheOpenFundofKeyLaboratoryofAgricultural RemoteSensingoftheMinistryofAgriculture (No.20170007)
第 49 卷 第 3 期
20 20 年 3 月
测 绘 学 报 ActaGeodaeticaetCartographicaSinica
Vol.49,No.3 March,2020
引文格式:魏立飞,余铭,钟燕飞,等.空G谱融合的条件随机场高光谱影像分 类 方 法[J].测 绘 学 报,2020,49(3):343G354.DOI:10.11947/j. AGCS.2020.20190042. WEI Lifei,YU Ming,ZHONG Yanfei,etal.Hyperspectralimage classification method based on spaceGspectralfusion conditionalrandom field[J].Acta Geodaetica et Cartographica Sinica,2020,49(3):343G354.DOI:10.11947/j.AGCS. 2020.20190042.
空G谱融合的条件随机场高光谱影像分类方法
魏 立 飞1,余 铭1,钟 燕 飞2,袁 自 然1,黄 灿1
1.湖北大学资源环境学院,湖 北 武 汉 430062;2.武 汉 大 学 测 绘 遥 感 信 息 工 程 国 家 重 点 实 验 室,湖 北 武汉 430079
Hale Waihona Puke Hyperspectralimageclassification method basedonspaceGspectralfusion conditionalrandomfield
1.FacultyofResourcesandEnvironmentalScience,HubeiUniversity,Wuhan430062,China;2.NationalLaboratory forInformationEngineeringinSurveying,MappingandRemoteSensing,WuhanUniversity,Wuhan430079,China
随着传感器技术的完善同时具备高空间分辨率和高光谱分辨率的遥感数据大量产生与单独的高光谱分辨率遥感数据相比这类数据除了具有丰富而连续的光谱波段还具有较高的空间分辨率但同时也存在影像上地物出现高度的细节化以及同物异谱与同谱异物的现象更加明显的局限降低了光谱可分性15因此单纯利用光谱分类无法满足越来越高的空间分辨率
Abstract:Hyperspectralremotesensingimagehasthecharacteristicsofrichspectralinformationand combiningimagewithspectrum,whichhasbeenwidelyappliedintheearthobservation.Mostoftraditional hyperspectralimageclassificationmodelsdon’tmakefullyuseofspatialfeatureinformation,relytoomuch onthespectralimformation,makingtheclassification accuracystillhave alotofroom toimprove. Conditionalrandomfield (CRF)isakindofprobability modethatcanbetterintegratespatialcontext information.Itplaysamoreandmoreimportantroleinhyperspectralimageclassification.However,most CRFmodelshavetheproblem ofexcesssmoothness,whichwillresultinthelossofdetailinformation. Aimingatthisproblem,thispaperproposedahyperspectralimageclassificationmethodbasedonspaceG spectralfusionconditionalrandomfield.Theproposed methoddesignssuitablepotentialfunctionsina pairwiseconditionalrandomfield model,fusingthespectralandspatialfeaturestoconsiderthespatial featureinformationandretainthedetailsineachclass.Theexperimentsontwosetsofhyperspectralimage showedthat,compared withthetraditionalmethods,theproposedclassification methodcaneffectively improvetheclassificationaccuracy,protecttheedgesandshapesofthefeatures,andrelieveexcessive smoothing,whileretainingdetailedinformation. Key words:hyperspectralremote sensingimagery;conditionalrandom field;spaceGspectralfusion; imageclassification Foundationsupport:TheNationalKeyResearchandDevelopmentProgramofChina (No.2017YFB0504202); TheNationalNaturalScienceFoundationofChina (No.41622107);TheSpecialProjectsforTechnological InnovationinHubei(No.2018ABA078);TheOpenFundofKeyLaboratoryofMinistryofEducationforSpatial DataMiningandInformationSharing(No.2018LSDMIS05);TheOpenFundofKeyLaboratoryofAgricultural RemoteSensingoftheMinistryofAgriculture (No.20170007)
第 49 卷 第 3 期
20 20 年 3 月
测 绘 学 报 ActaGeodaeticaetCartographicaSinica
Vol.49,No.3 March,2020
引文格式:魏立飞,余铭,钟燕飞,等.空G谱融合的条件随机场高光谱影像分 类 方 法[J].测 绘 学 报,2020,49(3):343G354.DOI:10.11947/j. AGCS.2020.20190042. WEI Lifei,YU Ming,ZHONG Yanfei,etal.Hyperspectralimage classification method based on spaceGspectralfusion conditionalrandom field[J].Acta Geodaetica et Cartographica Sinica,2020,49(3):343G354.DOI:10.11947/j.AGCS. 2020.20190042.
空G谱融合的条件随机场高光谱影像分类方法
魏 立 飞1,余 铭1,钟 燕 飞2,袁 自 然1,黄 灿1
1.湖北大学资源环境学院,湖 北 武 汉 430062;2.武 汉 大 学 测 绘 遥 感 信 息 工 程 国 家 重 点 实 验 室,湖 北 武汉 430079
Hale Waihona Puke Hyperspectralimageclassification method basedonspaceGspectralfusion conditionalrandomfield