湖南省永州市2019-2020学年中考数学第二次调研试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省永州市2019-2020学年中考数学第二次调研试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()
A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8
2.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()
A.60°B.65°C.70°D.75°
3.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()
A.5.3×103B.5.3×104C.5.3×107D.5.3×108
4.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()
①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.
A.①②B.①④C.②③D.③④
5.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()
A.9分B.8分C.7分D.6分
6.已知实数a<0,则下列事件中是必然事件的是()
A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
7.如图所示图形中,不是正方体的展开图的是()
A.B.
C.D.
8.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()
A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣7
9.若关于x 的不等式组2
x a
x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )
A .a≤﹣1
B .﹣2≤a <﹣1
C .a <﹣1
D .﹣2<a≤﹣1
10.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下: 选手 1 2 3 4 5 6 7 8 9 10 时间(min)
129
136
140
145
146
148
154
158
165
175
由此所得的以下推断不正确...的是( ) A .这组样本数据的平均数超过130 B .这组样本数据的中位数是147
C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差
D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 11.已知空气的单位体积质量是0.001239g/cm 3,则用科学记数法表示该数为( ) A .1.239×10﹣3g/cm 3 B .1.239×10﹣2g/cm 3 C .0.1239×10﹣2g/cm 3
D .12.39×10﹣4g/cm 3
12.下列各数中负数是( )
A .﹣(﹣2)
B .﹣|﹣2|
C .(﹣2)2
D .﹣(﹣2)3 二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.
14.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
15.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .
16.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.
17.抛物线y=x2﹣2x+3的对称轴是直线_____.
18.因式分解:3a3﹣3a=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)
(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;
(2)补全两个统计图;
(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;
(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.
20.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
21.(6分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
求证:AB=DF.
22.(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
(1)求甲、乙两队合作完成这项工程需要多少天?
(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
23.(8分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.
(1)用a ,b ,x 表示纸片剩余部分的面积;
(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
24.(10分)如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED =EA . (1)求∠DOA 的度数;
(2)求证:直线ED 与⊙O 相切.
25.(10分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.
26.(12分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出
租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?
27.(12分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000071的小数点向或移动7位得到7.1,
所以0.00000071用科学记数法表示为7.1×10﹣7,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.D
【解析】
【详解】
解:连接OD
∵∠AOD=60°,
∴ACD=30°.
∵∠CEB是△ACE的外角,
∴△CEB=∠ACD+∠CAO=30°+45°=75°
故选:D
3.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:5300万=53000000=7
⨯.
5.310
故选C.
【点睛】
在把一个绝对值较大的数用科学记数法表示为10n
a⨯的形式时,我们要注意两点:①a必须满足:
≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).
a
110
4.B
【解析】
分析:本题是考察数轴上的点的大小的关系.
解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.
故选B.
5.C
【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,
故答案为:C.
点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6.B
【解析】
A、a+3<0是随机事件,故A错误;
B、a﹣3<0是必然事件,故B正确;
C、3a>0是不可能事件,故C错误;
D、a3>0是随机事件,故D错误;
故选B.
点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.C
【解析】
【分析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
【详解】
解:A、B、D都是正方体的展开图,故选项错误;
C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
故选C.
【点睛】
此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
8.B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000637的小数点向右移动6位得到6.37
所以0.00000637用科学记数法表示为6.37×10﹣6, 故选B . 【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9.B 【解析】 【分析】
根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围. 【详解】
解:∵x 的不等式组2x a
x >⎧⎨
<⎩
恰有3个整数解, ∴整数解为1,0,-1, ∴-2≤a <-1. 故选B. 【点睛】
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分. 10.C 【解析】
分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷
10=149.6(min),故这组样本数据的平均数超过130,A 正确,C 错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷
2=147(min),故B 正确,D 正确.故选C. 点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位. 11.A 【解析】
试题分析:0.001219=1.219×10﹣1.故选A . 考点:科学记数法—表示较小的数. 12.B 【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.先将图2以点A为旋转中心逆时针旋转90 ,再将旋转后的图形向左平移5个单位.
【解析】
【分析】
变换图形2,可先旋转,然后平移与图2拼成一个矩形.
【详解】
先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.
故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.
【点睛】
本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
14.1
【解析】
【分析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
15.4
试题分析:由中线性质,可得AG=2GD ,则
1121211
1222232326
BGF CGE ABG ABD ABC S S S S S ==
=⨯=⨯⨯=⨯=V V V V V ,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的. 考点:中线的性质. 16.-1. 【解析】 【分析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解. 【详解】
∵一元二次方程x 2+mx+1=0的一个根为-1,设另一根为x 1, 由根与系数关系:-1•x 1=1, 解得x 1=-1. 故答案为-1. 17.x=1 【解析】 【分析】
把解析式化为顶点式可求得答案. 【详解】
解:∵y=x 2-2x+3=(x-1)2+2, ∴对称轴是直线x=1, 故答案为x=1. 【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 18.3a (a+1)(a ﹣1). 【解析】 【分析】
首先提取公因式3a ,进而利用平方差公式分解因式得出答案. 【详解】
解:原式=3a (a 2﹣1) =3a (a+1)(a ﹣1). 故答案为3a (a+1)(a ﹣1).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.
【解析】
【分析】
(1)由C 组人数及其所占百分比可得总人数,用360°乘以A 组人数所占比例可得;
(2)根据百分比之和为1求得A 组百分比补全图1,总人数乘以B 的百分比求得其人数即可补全图2; (3)总人数乘以样本中A 所占百分比可得;
(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.
【详解】
(1)这次被抽查的学生共有25÷
50%=50人, 扇形统计图中,“A 组”所对应的圆心度数为360°×1550
=108°, 故答案为50、108°;
(2)图1中A 对应的百分比为1-20%-50%=30%,图2中B 类别人数为50×
20%=5, 补全图形如下:
(3)估计“每天都会节约粮食”的学生人数为2000×
30%=600人; (4)不正确,
因为在样本中浪费粮食的人数所占比例不是20%,
所以这种说法不正确.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
20.(1)证明见解析;(2)BC=;.
【解析】(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相
等得到直角,从而证明∠ABF=90°.
(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴=.
∴BF==.
21.详见解析.
【解析】
【分析】
根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出
△ABE≌△DFA即可.
【详解】
证明:在矩形ABCD中
∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵∠AFD=∠B,∠DAF=∠AEB ,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.
【点睛】
本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.
22.(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
【解析】
【分析】
(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
【详解】
(1)设甲、乙两队合作完成这项工程需要x 天 根据题意得,,
解得 x=36,
经检验x=36是分式方程的解,
答:甲、乙两队合作完成这项工程需要36天,
(2)
设甲、乙需要合作y 天,根据题意得,
,
解得y≤7
答:甲、乙两队至多要合作7天.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
23.(1)ab ﹣4x 1(13
【解析】
【分析】
(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.
(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.
【详解】
解:(1)ab ﹣4x 1.
(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.
解得x 13x 1=3-. 3
24.(1)∠DOA =100°;(2)证明见解析.
【解析】
试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA 的度数;(2)连接OE ,利用SSS 证明△EAO ≌△EDO ,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED 与⊙O 相切. 试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;
(2)证明:连接OE ,
在△EAO和△EDO中,
AO=DO,EA=ED,EO=EO,
∴△EAO≌△EDO,
得到∠EDO=∠EAO=90°,
∴直线ED与⊙O相切.
考点:圆周角定理;全等三角形的判定及性质;切线的判定定理
25.见解析
【解析】
【分析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.
【详解】
如图所示:P点即为所求.
【点睛】
本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.
26.(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.
【解析】
试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,
由50x﹣1100>0,
解得x>22,
又∵x是5的倍数,
∴每辆车的日租金至少应为25元;
(2)设每辆车的净收入为y元,
当0<x≤100时,y1=50x﹣1100,
∵y1随x的增大而增大,
∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,
y2=(50﹣
100
5
x
)x﹣1100
=﹣1
5
x2+70x﹣1100
=﹣1
5
(x﹣175)2+5025,
当x=175时,y2的最大值为5025,
5025>3900,
故当每辆车的日租金为175元时,每天的净收入最多是5025元.
考点:二次函数的应用.
27.(1)见解析;(1)见解析.
【解析】
【分析】
(1)由全等三角形的判定定理AAS证得结论.
(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.
【详解】
解:(1)证明:如图,∵四边形ABCD是平行四边形,
∴AD∥BC.
又∵点F在CB的延长线上,
∴AD∥CF.
∴∠1=∠1.
∵点E是AB边的中点,
∴AE=BE,
∵在△ADE与△BFE中,
12
DEA FEB AE BE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADE≌△BFE(AAS).
(1)CE⊥DF.理由如下:
如图,连接CE,
由(1)知,△ADE≌△BFE,
∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,
∴∠1=∠2.
∴∠2=∠1.
∴CD=CF.
∴CE⊥DF.。