点和圆的位置关系(1)导学案
人教版数学九上《24.2 点和圆、直线和圆的位置关系》(第1课时)导学案
![人教版数学九上《24.2 点和圆、直线和圆的位置关系》(第1课时)导学案](https://img.taocdn.com/s3/m/78d981055901020207409c47.png)
24.2.1 点和圆的位置关系学习目标:1.了解不在同一直线上的三个点确定一个圆。
2.掌握过不在同一直线上的三个点作圆的方法。
3.了解三角形的外接圆、三角形的外心,圆的内接三角形的概念.学习重点:1.定理:不在同一直线上的三个点确定一个圆.2.三角形的外接圆,外心,内接三角形。
学习难点:分析作圆的方法.会找圆心,确定半径。
学习过程一、知识频道(交流与发现)1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d_____r点P在圆上⇔d_____r点P在圆内⇔d_____r总一总:不在同一直线上三点 __________,这个圆的圆心在________ ___ 经过同一直线上的三点___________作圆。
3. 练一练下面四个命题中真命题的个数是()①经过三点一定可以做圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离相等.A.4个B.3个C.2个D.1个二、方法频道例1如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.解:水泵站应建在______理由:能力提升:等边三角形外接圆的半径等于边长的________倍。
解:三、习题频道(一)初试能力3、下列图形一定有外接圆的是()A.三角形B.平行四边形C.梯形D.菱形4、三角形的外心具有的性质是()A.到三边距离相等B.到三个顶点距离相等C.外心在三角形外D.外心在三角形内5、对于三角形的外心,下列说法错误的是()A.它到三角形三个顶点的距离相等B.它与三角形三个顶点的连线平分三个内角C.它到任一顶点的距离等于这三角形的外接圆半径D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点6、下列说法错误的是()A.过直线上两点和直线外一点,可以确定一个圆B.任意一个圆都有无数个内接三角形C.任意一个三角形都有无数个外接圆D.同一圆的内接三角形的外心都在同一个点上(二)能力提高1、下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2、如图是一块破碎的圆形木盖,试确定它的圆心.3、阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm.(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm.(3)边长为2cm,1cm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm.4、如图,有一个圆形铁片,用圆规和直尺将它分成面积相等的两部分.中考链接已知圆O是三角形ABC的外接圆,OD垂直AB与D交圆O与E,∠C=60度,如果圆O的半径为2,则下列结论错误的是()(A) AD=DB (B)弧AE=弧EB (C) OD=1 (D) AB= 3。
点和圆的位置关系教案
![点和圆的位置关系教案](https://img.taocdn.com/s3/m/6aec5f7777232f60ddcca1a9.png)
点和圆的位置关系教案【篇一:《点与圆的位置关系》教学设计】九年级数学教学设计教学时间:2016年 11 月 1 日第九周星期四123【篇二:圆和圆的位置关系教案设计】《圆和圆的位置关系》的教案设计教学内容1.圆和圆的五种位置关系。
2.五种位置关系的性质和判定。
教学目标 1.知识与技能掌握圆和圆的五种位置关系的定义、性质及判定方法并能解决简单的问题。
观察与现实生活有关的图片,丰富对现实空间圆的认识,建立初步的空间观念,发展形象思维。
2、过程与方法让师生共同探究圆与圆的位置关系的过程,培养学生用运动变化的观点来分析和发现问题的能力;能用观察、实验、归纳、分类、概括、猜想、验证等数学方法,得出圆和圆的五种位置关系的性质和判定。
3、情感与态度与价值观通过探究过程,满足对数学的好奇心与求知欲,并体验成功的喜悦。
教学重点和难点1.重点:两圆的五种位置中两圆半径、圆心距的数量之间的关系。
2.难点:如何得出两圆的五种位置中两圆半径、圆心距的数量关系。
教学方法:类比法、引导探索法等课时安排:1课时教学用具:刻度尺、圆规、一大一小的两个圆形纸板教学准备1.学生准备:复习直线和圆的位置关系的性质和判定;准备好一大一小的两个圆形纸板。
2.教师准备:制作《圆和圆的位置关系》的课件教学设计一、创设情境、导入新课1.复习提问:(1)直线和圆的位置关系是怎样得来的。
课件展示其过程。
①圆固定不动,一条直线经过平移,观察交点的个数得来的;②也可以是圆固定不动,在圆外的直线绕着某一点旋转得到的。
(2)填写下表:(以下粗体字为学生填的内容) r为半径,d为圆心到直线的距离 2.导入新课:(1)展示日食动画片,创设情境让学生观察日食形成的演示动画,初步形成对圆之间的相对移动形成不同的位置关系的认识。
(2)类比法引入:从交点来看直线与圆有三种位置关系,那么平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?这就是我们这节课要学习的内容.(板书课题:圆和圆的位置关系) 二.过程探索1、观察两圆相对运动在电脑上把日食过程用两个圆的相对运动用慢镜头展示出来,让同学们观察有几种位置关系。
点和圆的位置关系(教案、导学案)
![点和圆的位置关系(教案、导学案)](https://img.taocdn.com/s3/m/2beb7c2af8c75fbfc67db2be.png)
点和圆、直线和圆的位置关系点和圆的位置关系【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育项目,我国运动员在奥运会上屡获金牌,为我国赢得了荣誉,如图所示是射击靶的示意图,它是由若干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的.图中是一位运动员射击10发子弹在靶上留下的痕迹.你知道如何计算运动员的成绩吗?从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的发展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1.点与圆的位置关系我们取刚才射击靶上的一部分图形来研究点与圆存在的几种位置关系.学生交流,回答问题.教师点评:点与圆有三种位置关系:点在圆内,点在圆上,点在圆外.议一议如下图,⊙O的半径为4cm,OA=2cm,OB=4cm,OC=5cm,那么,点A、B、C与⊙O有怎样的位置关系?解:∵OB=4cm,∴OB=r,∴点B在⊙O上.∵OA=2cm<4cm,∴点A在⊙O内.∵OC=5cm>4cm,∴点C在⊙O外.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径”,反之“到圆心的距离都等于半径的点都在圆上”可知点B一定在⊙O上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系.为下面得出结论作铺垫.【归纳结论】点与圆的三种位置关系及其数量间的关系:设⊙O的半径为r,点P到圆心O的距离为d.则有:点P在⊙O外d>r点P在⊙O上d=r点P在⊙O内d<r注:①“”表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于”.②要明确“d”表示的意义,是点P到圆心O的距离.2.圆的确定探究(1)如图(1),作经过已知点的圆,这样的圆你能作出多少个?(2)如图(2),作经过已知点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:(1)过已知点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段(仅过点A,既不能确定圆心,也不能确定半径.)(2)过已知的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上.因为线段垂直平分线上的点到线段两端点的距离相等.(注:仅过点A、B,同样不能确定圆心,也不能确定半径.)思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心——三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过已知点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点”.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?解:如图,若过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P 是直线l1与直线l2的交点,由此可得:过直线l外一点P作直线l的垂线有两条l1和l2,这与以前学的“过一点有且仅有一条直线与已知直线垂直”相矛盾,∴过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢?这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法.初中阶段接触的较为简单.三、典例精析,掌握新知例1⊙O的半径为10cm,根据点P到圆心的距离:(1)8cm,(2)10cm,(3)13cm,判断点P与⊙O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm<10cm,d<r点P在⊙O内;(2)d=10cm,d=r点P在⊙O上;(3)d=13cm>10cm,d>r点P在⊙O外.例2 如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,∠BAC=90°,由勾股定理可得:2222+=+=150(m).90120AB AC又∵D是BC的中点,∴AD=1/2BC=75(m).∴民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在⊙A 外,∴⊙A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并规范书写格式.例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,已知在Rt△ABC中,∠C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作⊙B,试问A、C、D、E四点分别与⊙B的位置关系?2.如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?若能,请设计画出示意图;若不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.∵∠C=90°,AC=4,BC=3,∴AB=5.∵E、D分别为AC、AB的中点,∴DB=1/2AB=2.5,EC=1/2AC=2,2213+=EC BC∵AB=5>3,∴点A 在⊙B 外;∵CB=3,∴点C 在⊙B 上;∵DB=2.5<3,∴点D 在⊙B 内;∵EB=13 >3,∴点E 在⊙B 外.2.解:∵AB=AC ,∴ AB AC =,即A 是 BC 的中点.故连接OB ,OA ,则OA ⊥BC ,设垂足为D.在Rt △ABD 中,AD=22221312AB BD -=-=5.设⊙O 的半径为r ,则在Rt △OBD 中,r 2=(r-5)2+122,解得r=16.9.3.只要作△ABC 的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时 练习的“课后作业”部分.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.24.2点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、新课导入1.导入课题:问题:你玩过掷飞镖吗?下图中A、B、C、D、E分别是落点,你认为哪个成绩最好?你是怎么判断出来的?这个问题与我们今天要学习的内容密切相关.(板书课题)2.学习目标:(1)知道点和圆的三种位置关系及其判定方法.(2)知道不在同一直线上的三点确定一个圆,能过不在同一直线上的三点作圆.(3)知道三角形外心的概念及其性质.(4)了解反证法的证明思想及一般步骤.3.学习重、难点:重点:点和圆的位置关系;三角形的外心及其性质.难点:反证法.二、分层学习1.自学指导:(1)自学内容:教材第92页的内容.(2)自学时间:4分钟.(3)自学方法:阅读理解,观察归纳.(4)自学参考提纲:①设⊙O的半径为r,点P到圆心的距离OP=d,则②教材中“点P在圆上d=r”是什么意思?点P在圆上可以推出d=r,反过来d=r也可以推出点P在圆上.③圆可以看成是到圆心距离等于定长(半径)的点的集合;圆的内部可以看成是到圆心距离小于定长(半径)的点的集合;圆的外部可以看成是到圆心距离大于定长(半径)的点的集合.④体育课上,小明和小丽的铅球成绩分别是6.4m和5.1m,他们投出的铅球分别落在图中哪个区域内?小明投出的铅球在④区域,小丽投出的铅球落在③区域.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的答题情况.②差异指导:主要指导学困生.(2)生助生:生生互动,交流研讨,改正.4.强化:(1)点和圆的三种位置关系及其判定方法.(2)设⊙O的半径为2,点P到圆心的距离为OP=3,则点P在圆外.(3)画出由所有到已知点O的距离大于或等于1cm并且小于或等于2cm的点组成的图形.解:如图所示.1.自学指导:(1)自学内容:教材第93页“探究”至第94页的内容.(2)自学时间:10分钟.(3)自学方法:阅读,思考,动手操作,推理归纳.(4)自学参考提纲:①过一个已知点A作圆,这样的圆能作无数个,在图(1)中作图探究.②过两个已知点A、B作圆,这样的圆能作无数个,满足条件的圆的圆心在线段AB 的垂直平分线上,在图(2)中作图探究.③过不在同一直线上的三个已知点A、B、C作圆,在图(3)中作图探究.a.因为要作的圆过点A和点B,所以圆心在AB的垂直平分线上.b.因为要作的圆过点B和点C,所以圆心在BC的垂直平分线上.所以经过点A、B、C的圆的圆心在AB、BC垂直平分线的交点上,这样的圆能作1个.c.如右图,CD所在的直线垂直平分线段AB,利用这样的工具,最少使用2 次就可以找到圆形工件的圆心.d.经过四个点是不是一定能作圆?不一定.④由③可得:不在同一直线上的三点确定一个圆 .⑤三角形的外心是三角形三条垂直平分线的交点,它到三角形三个顶点的距离相等.⑥假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定假设不正确,从而得到原命题成立,这种方法叫反证法,反证法是一种间接证法(填“直接证法”或“间接证法”).⑦用反证法说明经过同一直线上的三个点不能作出一个圆的道理.假设经过同一条直线l上的A,B,C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l,这与“过一点有且只有一条直线与已知直线垂直”矛盾.所以,经过同一条直线上的三个点不能作圆.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否在提纲的指引下顺利画圆.②差异指导:根据学情确定指导方案.(2)生助生:小组内相互交流、研讨、帮助画图.4.强化:(1)不在同一直线上的三点作一个圆的作法.(2)三角形的外心及其性质.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、动手情况、小组交流协作情况以及存在的问题等.(2)指标评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手操作的能力.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)判断下列说法是否正确:(1)任意的一个三角形一定有一个外接圆. (√)(2)任意一个圆有且只有一个内接三角形. (×)(3)经过三点一定可以确定一个圆. (×)(4)三角形的外心到三角形各顶点的距离相等. (√)2.(10分)⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在圆内;点B在圆上;点C在圆外.3.(10分)若一个三角形的外心在一边上,则此三角形的形状为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.(30分)如图,分别作出锐角三角形、直角三角形、钝角三角形的外接圆,它们的外心位置有什么特点?解:如图所示:锐角三角形的外接圆的圆心在三角形内部,直角三角形的外接圆的圆心在三角形斜边中点处,锐角三角形的外接圆的圆心在三角形外部.二、综合应用(20分)5.(20分)爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m 以外的安全区域,已知这个导火索的长度为18cm,如果点导火索的人以每秒6.5m的速度撤离,那么是否安全?为什么?解:∵导火索燃烧的速度是每秒0.9cm,导火索的长度是18cm.∴导火索燃烧完需18÷0.9=20(s).又点导火索的人以每秒6.5m的速度撤离,则导火索燃烧完撤离的最大距离为6.5×20=130(m).∵130>120,∴安全.三、拓展延伸(10分)6.(10分)某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.。
点和圆的位置关系导学案
![点和圆的位置关系导学案](https://img.taocdn.com/s3/m/9a6762d6ad51f01dc281f114.png)
点与圆的位置关系导学案教学建议:教学目标:1、理解并掌握点和圆的三种位置关系及数量间的关系。
2、探求过点画圆的过程,掌握过不在同一直线上的三点画圆的方法。
3、感知数学就在身边,从而更加热爱生活,激发学生学习数学的兴趣。
教学重点:点和圆的位置关系的结论教学难点:点和圆的三种位置关系及数量关系课时安排:1课时学习目标:知识目标:理解并掌握点和圆的三种位置关系及数量间的关系。
能力目标:探求过点画圆的过程,掌握过不在同一直线上的三点画圆的方法。
情感目标:感知数学就在身边,从而更加热爱生活,激发学生学习数学的兴趣。
学习重点:点和圆的位置关系的结论,不在同一直线上的三个点确定一个圆其它们的运用。
学习难点: 点和圆的三种位置关系及数量关系学习流程:一、情境导入:1、圆的两种定义是什么?2、你能至少举例两个说明圆是如何形成的?3、圆形成后圆上这些点到圆心的距离如何?4、如果在圆外有一点呢?圆内呢?请你画图想一想.5、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A 、B 、C 三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?二、自学新知1、观察图中点A ,点B ,点C 与圆的位置关系?点A 在___,点B 在___,点C 在___B2、设⊙O 半径为r ,说出来点A ,点B ,点C 与圆心O的距离与半径的关系:OA _ r ,OB _ r ,OC _ r3、反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?4、探究(1)如图,做经过已知点A 的圆,这样的圆你能做出多少个? (2)如图做经过已知点A 、B 的圆,这样的圆你能做出多少个?他们的圆心分布有什么特点?5、思考 经过不在同一条直线上的三点做一个圆,如何确定这个圆的圆心?6、结论:_________的三点确定一个圆;_________________叫做三角形的外接圆;________________叫做三角形的外心。
人教版点和圆的位置关系获奖教案设计(共两篇)
![人教版点和圆的位置关系获奖教案设计(共两篇)](https://img.taocdn.com/s3/m/31eae95a76232f60ddccda38376baf1ffc4fe3df.png)
人教版点和圆的位置关系获奖教案设计(共两篇)《点和圆的位置关系》教案一.学习目标:1.理解点和圆的三种位置关系,并会运用它解决一些实际问题;2.会过不在同一直线上的三个点作圆,理解三角形的外心和外接圆的概念3.结合本节内容的学习,体会数形结合、分类讨论的数学思想.二.学习重点:点和圆的位置关系.教学过程:一.导入新知:多媒体出示射击靶的图片,利用上面射击点和圆环的位置关系,引出课题且板书课题。
二.探究新知:1.请同学黑板上摆出点与圆的所有位置关系。
2. 多媒体出示动画点与圆的所有位置关系。
3.师生归纳点与圆的所有位置关系。
设⊙O 的半径为 r,点 P 到圆心的距离为 d,则有:点 P 在圆外 d>r ;点 P 在圆上 d=r ;点 P 在圆内 d<r .4.作圆:已知圆心和半径,可以作一个圆.(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师给出结果)(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师引导给出结果)(2)圆经过已知点 A、B.(3)已知点 A、B、C,可以作几个圆?(分两种情况讨论)已知三点共线已知三点不共线结论:不在同一条直线上的三个点确定一个圆.如何经过不在同一条直线上的三个点 A、B、C 作圆?(老师引导学生找到作图方法,演示作图过程)①连接 AB、BC;②分别作线段 AB、BC 的垂直平分线DE 和 FG,DE 和FG 相交于点 O;③以点O 为圆心,OA 为半径作圆,⊙O 就是所要求作的圆.(4)归纳概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角圆.外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.三。
例题讲解:例1 已知⊙O 的半径为 5,圆心 O的坐标为(0,0),若点 P的坐标为(4,2),点 P 与⊙O 的位置关系是().A.点 P 在⊙O 内 B.点 P 在⊙O上C.点 P 在⊙O 外 D.点 P 在⊙O 上或⊙O 外例2 直角三角形的外心是______的中点,锐角三角形的外心在三角形______,钝角三角形的外心在三角形_________.四.课堂小结(1)点和圆的位置关系:设⊙O 的半径为 r,点 P 到圆心的距离为 d,则点 P 在圆外 d>r;点 P 在圆上 d=r;点 P 在圆内 d<r.(2)不在同一条直线上的三个点确定一个圆.(3)理解三角形外接圆和三角形外心的概念.(五).布置作业教科书第 95 页练习第 2,3 题.一、基础知识1.认识点和圆的位置关系及相关概念,会利用点和圆的位置关系和数量关系解题①点P在圆上d=r②点P在圆外d>r③点P在圆内d<r(注:d是点P到圆心的距离,r是圆的半径,其中从左往右推到“”是圆的位置关系的性质;从右往左推到“”是点和圆的位置的判定方法)判断点和圆的位置关系有两种:①当题目给出点和圆的图形时,根据图形判断②当没有图形,题目给出数量时,通过比较点和圆心的距离与半径的大小关系判断2.理解并掌握确定圆的条件过一点可以做无数个圆,过两点也可以做无数个圆不在同一条直线上的三个点确定一个圆(注:三个点必须是不在同一直线上;确定是“有且只有”的意思)3.认识三角形的外接圆,掌握外心的定义及特征经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形的外心,外心是三角形三条垂直平分线的交点,它到三角形三个顶点的距离相等4.认识反证法二、重难点分析本课教学重点:确定圆的条件及利用点和圆的位置关系和数量关系解题。
人教版九年级数学上册《点和圆、直线和圆的位置关系(第1课时)》示范教学设计
![人教版九年级数学上册《点和圆、直线和圆的位置关系(第1课时)》示范教学设计](https://img.taocdn.com/s3/m/92734cec64ce0508763231126edb6f1aff007134.png)
点和圆、直线和圆的位置关系(第1课时)教学目标1.理解并掌握点和圆的三种位置关系及点和圆的位置关系的判断方法.2.经历点和圆的位置关系的探究过程,体会数形结合、分类讨论的数学思想方法.3.能利用点和圆的位置关系的判断方法解决实际问题,感受点和圆的位置关系与生活中的活动紧密相连,发展分析问题、解决问题的能力.教学重点点和圆的位置关系.教学难点利用点和圆位置的关系的判断方法解决实际问题.教学过程知识回顾1.圆的定义:(1)一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一端点A所形成的图形叫做圆.(2)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.2.点和直线的位置关系:如图,点A在直线l上,点B在直线l外.【师生活动】教师出示题目,学生独立思考后回答.【设计意图】带领学生复习圆的定义和点和直线的位置关系,巩固基础,为本节课探究点和圆的位置关系做好准备.新知探究一、探究学习【问题】我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?【师生活动】教师提出问题,学生交流讨论.教师引导:解决这个问题,需要研究点和圆的位置关系.【设计意图】引入一个射击问题,从奥运会射击比赛出发,让学生观察射击时弹着点在靶上的不同位置,引出点和圆的位置关系.【问题】在同一张纸面上任意画一个⊙O和一些点,这些点和圆的位置关系有几种情况?【师生活动】学生先自己动手画图,教师再展示动画,最后学生小组讨论,得出答案.【答案】点和圆有3种位置关系:点在圆外、点在圆上、点在圆内.如图,点C,D,G在⊙O外;点A,E在⊙O上;点B,F在⊙O内.【设计意图】让学生结合图形,获得点和圆的位置关系.【问题】如图,设⊙O半径为r,点A,点B,点C到圆心O的距离与半径r有什么关系?【师生活动】学生先自己动手连接OA,OB,OC,再通过测量得出OA,OB,OC与r 的关系,最后教师进行展示.【答案】连接OA,OB,OC,如图,点C在⊙O外⇒OC>r;点A在⊙O上⇒OA=r;点B在⊙O内⇒OB<r.【思考】反过来,已知点到圆心的距离和圆的半径,能判断点和圆的位置关系吗?【师生活动】学生独立思考,教师展示动画,学生结合动画得出答案.【答案】点C在⊙O外⇐OC>r;点A在⊙O上⇐OA=r;点B在⊙O内⇐OB<r.【设计意图】学生通过度量获得点到圆心的距离的数量关系,初步了解点和圆的位置关系与点到圆心的距离的数量关系互相对应.【思考】结合下面的动图,总结你的发现.【师生活动】教师展示动图,学生观察动图,小组交流、总结.【新知】设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在⊙O外⇔d>r;点P在⊙O上⇔d=r;点P在⊙O内⇔d<r.【归纳】符号⇔读作“等价于”,它表示从符号“⇔”的左端可以推出右端,从符号“⇔”的右端也可以推出左端.【设计意图】借助动图,形象地展示点和圆的位置关系,帮助学生更好地理解点和圆的位置关系与点到圆心的距离的数量关系互相对应:由位置关系可以确定数量关系,同样由数量关系可以确定位置关系.【练习】已知⊙O的面积为25π.(1)若PO=5.5,则点P在_________;(2)若PO=4,则点P在_________;(3)若PO=_________,则点P在圆上;(4)若点P不在圆外,则PO_________.【师生活动】学生独立完成,让一名学生进行板书作答.【答案】圆外圆内5≤5【设计意图】通过练习,让学生初步掌握点和圆的位置关系的判断方法.【问题】一个圆把平面上的点分成三类,即圆上的点、圆内的点、圆外的点.你能用集合的语言表示圆上的点、圆内的点、圆外的点吗?【师生活动】教师引导学生类比圆的集合性定义进行总结.【答案】根据圆的定义可知,圆上的点可以看作是到定点的距离等于定长的点的集合;类比圆的定义可知,圆的内部的点可以看作是到定点的距离小于定长的点的集合;圆的外部的点可以看作是到定点的距离大于定长的点的集合.【练习】画出由所有到已知点O的距离小于或等于2 cm的点组成的图形.【师生活动】学生独立完成,一名学生板书作答.【答案】如图.【设计意图】让学生学会用集合的语言表示圆上的点、圆内的点、圆外的点,体会类比的数学思想方法.【问题】如图是射击靶的示意图,你知道击中靶上不同位置的成绩是如何计算的吗?【师生活动】学生小组讨论,得出答案.【答案】射击靶图上,有一组以靶心为圆心的大小不同的圆,它们把靶图由内到外分成几个区域,这些区域用由高到低的环数来表示,射击成绩用弹着点位置对应的环数表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩越好.【设计意图】回到最开始的问题,让学生感受点和圆的位置关系与生活中的活动紧密相连,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题.二、典例精讲【例题】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AC=3,BC=4,若以C为圆心,3为半径作⊙C,判断点A,B,D与⊙C的位置关系.【师生活动】学生独立完成解答,一名学生板书,教师给予指导.【答案】解:由题意,知⊙C的半径r=3.∵AC=3=r,∴点A在⊙C上.∵BC=4>r,∴点B在⊙C外.在Rt△ABC中,∠ACB=90°,由勾股定理,得AB=5.又∵CD⊥AB,∴S△ABC=12AB·CD=12AC·BC.∴CD=2.4<r.∴点D在⊙C内.【归纳】判断点和圆的位置关系的策略判断一个点和圆的位置关系时,首先要知道,点到圆心的距离,然后将这个距离与圆的半径进行比较:(1)若点到圆心的距离大于半径,则点在圆外;(2)若点到圆心的距离等于半径,则点在圆上;(3)若点到圆心的距离小于半径,则点在圆内.【设计意图】通过例题,应用点和圆的位置关系解决问题,巩固学生对点和圆的位置关系的判断方法的掌握.课堂小结板书设计点和圆的位置关系:点P在⊙O外⇔d>r;点P在⊙O上⇔d=r;点P在⊙O内⇔d<r.课后任务完成教材第95页练习第1~2题.。
人教版九年级数学上册第二十四章《直线和圆的位置关系》第1-4课时学习任务单(公开课导学案)及作业设计
![人教版九年级数学上册第二十四章《直线和圆的位置关系》第1-4课时学习任务单(公开课导学案)及作业设计](https://img.taocdn.com/s3/m/2ca0aef0b8f3f90f76c66137ee06eff9aef84994.png)
人教版九年级数学上册第二十四章《直线和圆的位置关系》学习任务单及作业设计第一课时【学习目标】了解直线和圆相交、相切、相离等概念;会判断直线和圆的位置关系;通过对直线和圆的位置关系的探究,体会分类讨论、数形结合的思想。
【课前学习任务】复习之前学过的点和圆的位置关系、直线外一点到这条直线的距离。
【课上学习任务】学习任务一:已知圆的直径是 13cm,如果圆心与直线的距离分别是:(1)4.5cm;(2)6.5cm;(3)8cm,那么直线和圆分别是怎样的位置关系?有几个公共点?答案:(1)相交,两个公共点;(2)相切,一个公共点;(3)相离,无公共点.学习任务二:Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,以 C 为圆心,r 为半径的圆与直线 AB 有怎样的位置关系?为什么?(1)r=2 cm;(2)r=2.4 cm;(3)r=3 cm.答案:(1)相离,无公共点;(2)相切,一个公共点;(3)相交,两个公共点.学习任务三:Rt△ABC,∠C=90°,AC=3 cm,BC=4cm,以 C 为圆心,(1)当 r 满足时,⊙C 与直线 AB 相离;(2)当 r 满足时,⊙C 与直线 AB 相切;(3)当 r 满足时,⊙C 与直线 AB 相交.学习任务四:Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,以 C 为圆心,若要使⊙C 与线段 AB 只有一个公共点,这时⊙C 的半径 r 要满足什么条件?答案:r=2.4 或.【作业设计】请同学们在作业本上完成下面两道课后作业:1.⊙O 的半径为 5cm,已知⊙O 与直线AB的距离为d, 根据条件填写d的范围:(1)若 AB 和⊙O 相离, 则;(2)若 AB 和⊙O 相切, 则;(3)若 AB 和⊙O 相交, 则 .答案:第二课时【学习目标】运用圆的切线的判定方法判定直线是否为圆的切线.【课前学习任务】回顾直线和圆有哪些位置关系?判定圆的切线的条件?【课上学习任务】学习任务一:作图并探究圆的切线的位置关系1.作图:已知,点 A 为⊙O 上的一点,过点 A 作⊙O 的切线.经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l 和⊙O有什么位置关系?经过半径 OA 的外端点 A 作直线l⊥OA,圆心 O 到直线 l的距离就是⊙O 的半径,即d =r,所以直线l就是⊙O 的切线.学习任务二:典型例题,掌握圆的切线的判定方法例 1 如图,AB是⊙O直径,∠ABT=45°, 且 AT=AB. 求证:AT 与⊙O 相切.证明:∵ AT=AB,∴∠ABT = ∠ATB.∵∠ABT= 45°,∴∠ATB= 45°.∴∠BAT=90°.∵ AB 是⊙O 的直径,∴ AT 与⊙O 相切.例 2 如图,直线 AB 经过⊙O 上的点 C,并且 OA=OB,CA=CB.求证:直线 AB 是⊙O 的切线.证明:连结 OC.∵ OA=OB, CA=CB,∴ OC⊥AB 于 C.∵ OC 是⊙O 的半径,∴直线 AB 是⊙O 的切线.例 3 如图,△ABC 内接于大圆 O,D 是 AB 中点,∠B=∠C,以 O 为圆心 OD 为半径作小圆 O. 求证:AB、AC 分别是小圆切线.证明:连结 OD,作OE⊥AC于E.∵ D 是 AB 的中点,∴ OD⊥AB于D ,∵ OD 为小圆 O 的半径,∴ AB 与小圆 O 相切.∵△ABC 内接于大圆 O,∴ AE = CE.∵∠B = ∠C,∴ AB = AC,∴ AD = AE.连接 OA,可得 OD = OE,∴ AC 与小圆 O 相切.【作业设计】1.如图, A 是⊙O 外一点, AO 的延长线交⊙O 于点 C, 点 B 在圆上, 且AB=BC, ∠A=30°. 求证:直线 AB 是⊙O 的切线.2.如图,点 D 是∠AOB 的平分线 OC 上任意一点,过 D 作 DE⊥OB于E,以DE 为半径作⊙D. 补全图形,判断 OA 与⊙D 的位置关系,并证明你的结论.解题思路:1.连接OB,证明 OB⊥AB 可得直线AB是⊙O的切线.2.OA 与⊙D 相切作DF⊥OA于F,因为 DE⊥OB于E,OC是∠AOB 的平分线,所以DE=DF=⊙D的半径,可得直线OA与⊙D相切.第三课时【学习目标】理解切线的性质定理;会运用切线的性质定理进行计算与证明.【课前学习任务】复习圆的切线的定义,以及判断一条直线是圆的切线的方法.【课上学习任务】学习任务一:复习1.圆的切线是如何定义的?2.判断一条直线是圆的切线有哪些方法?学习任务二:探究:问 1:如图,已知直线 l 是⊙O的切线,切点为A,连接OA,直线l⊥OA吗?由探究总结出切线的性质定理:圆的切线垂直于过切点的半径.问 2:如图,已知⊙O的切线l,但切点未知,你能作出切点A吗?由探究总结出结论 1:经过圆心且垂直于切线的直线一定经过切点.(学生课后探究)结论 2:经过圆心且垂直于切线的直线一定经过切点.学习任务三:例 1. 如图,△ABC 为等腰三角形,O 是底边 BC 的中点,腰 AB 与⊙ O 相切于点 D.求证:AC 是⊙ O 的切线.分析:根据切线的判定定理,要证明 AC 是⊙ O 的切线,只要证明由点 O 向 AC 所作的垂线段 OE 是⊙ O 的半径就可以了,而由切线的性质,OD 是⊙ O 的半径,因此只需证明OD = OE.证明:如图,过点 O 作 OE⊥AC,垂足为 E,连接 OD,OA.∵⊙ O 与 AB 相切于点 D,∴OD⊥AB.又△ABC 为等腰三角形,O 是底边 BC 的中点,∴AO 是∠BAC 的平分线.又∵OE⊥AC,OD⊥AB,∴OE=OD,即 OE 是⊙O 的半径.∵OE 为⊙O 的半径,OE⊥AC 于 E,∴AC 与⊙ O 相切.学习任务四:例 2. 如图,AB 为⊙O的直径,AC是弦,D是的中点,过点D作⊙O的切线,交 BA 的延长线于点E.(1)求证:AC∥ED ;(2)若 OA=AE =4,求弦AC的长.分析:这里有三个条件:(1)AB 为⊙O 直径;(2)D 是的中点;(3)ED 切⊙O于D.特别要关注 D 的作用:它即是弧的中点,又是切点.【作业设计】1.如图, 已知⊙O的直径AB与弦AC的夹角为35°,过点C的切线PC与AB的延长线相交于点P, 则∠P=_______°.答案: 20°2.如图,已知⊙O的半径为3,直线AB是⊙O 的切线,OC交AB于点C,且∠OCA = 30°,则 OC 的长为_________.答案: 63.如图,在 Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB = 2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.答案: BE=2 (连接 OD,作 OF⊥BE 于 F)第四课时【学习目标】1.了解切线长的概念.2.会证明切线长定理.3.了解三角形的内切圆的概念及三角形的内心的概念.4.了解多边形与圆的“切”和“接”的含义.【课前学习任务】熟练掌握圆的切线的性质与判定,了解三角形的外接圆的相关知识. 【课上学习任务】学习任务一:若点 P 在圆上,作已知⊙O 的切线的作法及作图依据.作法:①连接 OP,②过 P 点作线段 OP 的垂线 l,直线 l 即⊙O 的切线.作图依据:经过半径的外端并且垂直于这条半径的直线是圆的切线.若点 P 在⊙O 外作法:连接 OP,①作线段 OP 的中点 M.②作以 M 为圆心,OM 长为半径的⊙M,与⊙O 交于 A,B 两点.③作直线 PA,PB,则直线 PA,PB 即为⊙O 的两条切线.学习任务二:完成圆的切线与切线长的比较,体会圆的切线与切线长的区别.学习任务三:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.切线切线长切线是直线切线长是切线上一条线段的长,即圆外一点与切点之间的距离。
点和圆的位置关系(说课教案)
![点和圆的位置关系(说课教案)](https://img.taocdn.com/s3/m/1966872233687e21af45a98a.png)
人教版数学九年级上册第二十四章§24.2.1点和圆的位置关系说课稿远安县外国语学校刘山河《24.2.1点与圆的位置关系》说课稿尊敬的各位老师:大家好!今天我说课的内容是人教版九年级上册《点和圆的位置关系》。
下面,我从教材分析,学情分析、教学目标及重难点,教学环节、和教学反思六个方面进行阐述。
【教材分析】圆的教学在平面几何中乃至整个中学教学中都占有重要的地位,而点和圆的位置关系的应用又比较广泛,又是在学习了圆的有关性质的基础上进行的,为后面的直线和圆、圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。
【学情分析】九年级学生有了一定的分析力和归纳力,根据他们的特点,通过复习旧知引入这节课内容,通过点和圆的相对运动,揭示点和圆的位置关系,培养学生运动变化的辩证唯物主义观点;通过对探索过程的反思,进一步强化对分类和化归思想的认识。
【教学目标及重难点】依据教材和大纲,分析学生的认知水平,这节课的教学目标及重难点如下:一、教学目标和过程方法:1、探索并掌握点与圆的位置关系,及这三种位置关系对应的圆的半径与点到圆心的距离之间的关系。
经历探索点与圆的位置关系的过程,体会数学分类思考的数学思想。
2、探索如何过一点、两点和三点作圆,了解不在同一直线上的三点确定一个圆。
通过探索不在同一直线上的三点确定一个圆的问题,进一步体会解决数学问题的策略.3、了解三角形的外接圆和三角形的外心。
4、了解反证法,进一步体会解决数学问题的策略。
二、重点和难点重点:1、用数量关系判断点与圆的位置关系;2、不在同一直线上的三点确定一个圆。
难点:点和圆的位置关系的运用。
【教学环节安排】根据教学内容和目标,本节课设计如下几个环节,下面我将重点说明一下教学环节的安排及设计意图。
1、出示“学生飞镖比赛”图片,将比赛结果抽象出来形成图片。
2、出示问题,“如图,某地计划修建一座圆形水池,圆心距离大树底部10米。
为了保护大树,水池半径r可以取多少米?”设计意图:r10米①通过图片,让学生从“形”的角度直接认识并归纳“点和圆的三种位置关系”。
5.1圆(一)导学案
![5.1圆(一)导学案](https://img.taocdn.com/s3/m/cbeae2fcba0d4a7302763a15.png)
响水县双语学校九(8)数学导学案(021)课题: 5.1圆(1)学习目标:1、理解圆的有关概念。
2、经历探索点与圆的位置关系的过程,会运用点到圆心的距离与半径之间的数量关系判断点与圆的位置关系。
3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重点:理解、掌握圆的概念. 学习难点:会确定点和圆的位置关系. 教学过程一、情境引入:思考:平面上的一个圆把平面上的点分成哪几部分? 二、探究学习:1.尝试:量一量(1)利用圆规画一个⊙O ,使⊙O 的半径r=3cm.(2)在平面内任意取一点P ,点与圆有哪几种位置关系?若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么: ①点P 在圆 d r ②点P 在圆 d r ③点P 在圆 d2.概括总结.(1)圆是到定点距离 定长的点的集合.(2)圆的内部是到 的点的集合;(3)圆的外部是 的点的集合 。
试一试:已知点P 、Q ,且PQ=4cm ,⑴画出下列图形:到点P 的距离等于2cm 的点的集合;到点Q 的距离等于3cm 的点的集合。
⑵在所画图中,到点P 的距离等于2cm ,且到点Q 的距离等于3cm 的点有几个?请在图中将它们表示出来。
⑶在所画图中,到点P 的距离小于或等于2cm ,且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来。
3.典型例题:例1、如图已知矩形ABCD 的边AB=3厘米,AD=4厘米(直接写出答案)(1)以点A 为圆心,3厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何? (2)以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何? (3)以点A 为圆心,5厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?⇔⇔⇔P Q例2. 2013年8月22日,第十二号台风“潭美”登陆福建,A市接到台风警报时,台风中心位于A市正南方向125km的B处,正以15km/h的速度沿BC方向移动。
1124初三【数学(人教版)】24.2.1点和圆的位置关系(1)+任务单
![1124初三【数学(人教版)】24.2.1点和圆的位置关系(1)+任务单](https://img.taocdn.com/s3/m/1eca1f2476eeaeaad0f3302a.png)
课程基本信息课例编号2020QJ09SXRJ057 学科数学年级九学期秋季课题24.2.1点和圆的位置关系(1)教科书书名:义务教育教科书九年级上册数学出版社:人民教育出版社出版日期: 2014年 3月学生信息姓名学校班级学号学习目标1.了解点和圆的位置关系关注数形之间的转化,2.过一点、过两点可以作无数个圆,并熟知圆心分布.课前学习任务回顾本章知识结构图,认清本节课所处的位置.课上学习任务【学习任务一】整理概念:点和圆的位置关系设⊙O的半径为r,点P到圆心的距离为d,则有巩固练习1. 画出由所有到已知点O的距离大于或等于2 cm,并且小于或等于3 cm的点组成的图形.(请用刻度尺和圆规)2.体育课上,小明和小丽的铅球成绩分别是6.4 m和5.1 m,他们投出的铅球分别落在图中哪个区域内?3.已知⊙O的面积为25π:(1)若PO=5.5,则点P在;(2)若PO=4,则点P在;(3)若PO= ,则点P在圆上;(4)若点P不在圆外,则PO_________。
【学习任务三】探究“过已知点作圆”经过一个已知点A作圆.经过两个已知点A,B作圆.巩固练习4.如图,已知矩形ABCD 的边AB =3 cm ,AD =4 cm .(1)以点A 为圆心,3 cm 为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(2)以点A 为圆心,4 cm 为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(3)以点A 为圆心,5 cm 为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?推荐的学习资源教科书P 92-93A D CB。
第二十四章《圆》导学案(全章)
![第二十四章《圆》导学案(全章)](https://img.taocdn.com/s3/m/a21b5a5b284ac850ac0242d3.png)
AQP24.1.1圆(第1课时)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm.(1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】为圆心, 为半径的圆.为圆心,以 为半径的圆上. 3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是5.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系左下图,一根长4米的绳子,一端拴在树上,另一端拴着 .7.已知:如右上图,△ABC ,试用直尺和圆规画出过A ,B ,C 三点的⊙O .8.△ABC 中,∠A=90°,AD⊥BC 于D ,AC=5cm ,AB=12cm ,以D 为圆心,AD 为半径作圆,则三个顶点与圆的位置关系是什么?画图说明理由.9.如右图,(1)若点O 为⊙O 的圆心,则线段__________是圆O 的半径; 线段________是圆O 的弦,其中最长的弦是______; ______是劣弧;______是半圆.(2)若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______.10.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.树S小狗4m24.1.1圆(第2课时)【自主学习】 (一)复习巩固: 1.圆的集合定义.2.点与圆的三种位置关系.⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( )(二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧: ,弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④同心圆: 相同, 不相等的两个圆叫做同心圆. ⑤等圆:能够互相 的两个圆叫做等圆.⑥等弧:在 或 中,能够互相 的弧叫做等弧. 2.同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 3.下列语句中,不正确的个数是( )①直径是弦; ②弧是半圆; ③长度相等的弧是等弧; •④经过圆内任一定点可以作无数条直径. A .1个 B .2个 C .3个 D .4个 4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个第6题ABA CD31圆周的弧叫做( ) A .劣弧 B .半圆 C .优弧 D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.10.如图,CD 是⊙O 的弦,CE=DF ,半径OA 、OB 分别过E 、F 点. 求证:△OEF 是等腰三角形.BACEDOO BAC FE11.如图,在⊙O中,半径OC与直径AB垂直,OE=OF,则BE与CF的大小关系如何?并说明理由。
浙教版初三上数学第3章圆的基本性质点与圆的位置关系与三角形的外接圆导学案
![浙教版初三上数学第3章圆的基本性质点与圆的位置关系与三角形的外接圆导学案](https://img.taocdn.com/s3/m/b51e84affc0a79563c1ec5da50e2524de518d0a0.png)
A. 点P ,M 均在⊙A 内B. 点P ,M 均在⊙A 外C. 点P 在⊙A 内,点M 在⊙A 外D. 以上选项都不正确例2图 例3图【例3】如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范畴是________.【巩固训练】1. 在数轴上,点A 表示的实数为3,点B 表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是( )A. 当a <5时,点B 在⊙A 内B. 当a <1时,点B 在⊙A 外C. 当1<a <5时,点B 在⊙A 内D. 当a >5时,点B 在⊙A 外2. 点P 到⊙O 的最近点的距离为4cm ,最远点的距离为9cm ,则⊙O 的半径是( )A. 2.5cmB. 6.5cmC. 2.5cm 或6.5cmD. 5cm 或13cm3. 在矩形ABCD 中,AB =8,BC =3 5, 点P 在边AB 上,且BP =3AP .假如⊙P 是以点P 为圆心,PD 长为半径的圆,那么下列判定正确的是( )A. 点B ,C 均在⊙P 外B. 点B 在⊙P 外,点C 在⊙P 内C. 点B 在⊙P 内,点C 在⊙P 外D. 点B ,C 均在⊙P 内第4题 第5题 4. 如图所示,在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是5. 己知ABC △中,Rt C ∠=∠,3AC =,4BC =,点P 为边AB 的中点,以点C 为圆心,长度r 为半径画圆,使得点A ,P 在⊙C 内,点B 在⊙C 外,则半径r 的取值范畴是( )A.542r <<B.532r << C.34r << D.3r > 6. ⊙O 的半径长为2,点P 到圆心O 的距离为m (m >0),且m 使关于x 的方程012222=-+-m x x 有实数根,试确定点P 的位置。
32点和圆的位置关系教案
![32点和圆的位置关系教案](https://img.taocdn.com/s3/m/5ae6a5c3ee06eff9aff80711.png)
点和圆的位置关系一、教学目标(一)知识与技能:1.掌握点和圆的三种位置关系的判别;2.了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)过程与方法:1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力;2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.(三)情感态度与价值观:1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神;2.学会与人合作,并能与他人交流思维的过程和结果.二、教学重点、难点重点:1.能从点和圆的位置关系,判断点和圆心的距离与半径的大小关系;2.学会用已知点到圆心的距离与半径的大小关系,判断点与圆的位置关系;3.认识三角形的外接圆,三角形的外心的概念,会画三角形的外接圆.难点:经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.三、教学过程问题我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.右图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?我们知道,圆上所有的点到圆心的距离都等于半径.如图,设⊙O的半径为r,点A在圆内,点B在圆上,点C在圆外.容易看出:OA<r,OB=r,OC>r.反过来,如果OA<r,OB=r,OC>r,则可以得到点A在_____,点B在_____,点C在_____.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.符号⇔读作“等价于”,它表示从符号⇔的左端可以得到右端,从右端也可以得到左端.射击靶图上,有一组以靶心为圆心的大小不同的圆,它们把靶图由内到外分成几个区域,这些区域用由高到低的环数来表示,射击成绩用弹着点位置对应的环数表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩就起好.练习巩固已知⊙O的半径为8cm,点P到圆心O的距离为d,则:(1)当d=5cm时,点P在⊙O____;(2)当d=8cm时,点P在⊙O____;(3)当d=10cm时,点P在⊙O____.探究我们知道,已知圆心和半径,可以作一个圆.经过一个已知点A能不能作圆,这样的圆你能作出多少个?经过两个已知点A,B能不能作圆?如果能,圆心分布有什以特点?可以作无数个圆. 可以作无数个圆,圆心在线段AB的垂直平分线上.思考经过不在同一条直线上的三个点A,B,C能不能作圆?如果能,如何确定所作圆的圆心?如图,分别作出线段AB的垂直平分线l1和线段BC的垂直平分线l2,设它们的交点为O,则OA=OB=OC.于是以点O为圆心,OA(或OB、OC)为半径,便可作出经过A、B、C三点的圆.因为过A、B、C三点的圆的圆心只能是点O,半径等于OA,所以这样的圆只有一个,即不在同一直线上的三个点确定一个圆.由右图可以看出,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.⊙O是△ABC的外接圆,点O是△ABC的外心.反过来,△ABC是⊙O的内接三角形.思考三角形的外心一定在三角形的内部吗?分别作出下面三个三角形的外接圆,看看它们的外心的位置有什么特点?锐角三角形的外心在三角形内部,直角三角形的外心在斜边的中点上,钝角三角形的外心在三角形的外部.思考经过同一直线上的三个点能作出一个圆吗?如图,假设经过同一直线l上的A、B、C三点可以作一个圆.设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l,这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,经过同一直线上的三点不能作圆.上面证明“经过同一直线上的三个点不能作圆”的方法与我们以前学过的证明不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设经过同一直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法.用反证法证明平行线的性质“两直线平行,同位角相等”.如图,我们要证明:如果AB∥CD,那么∠1=∠2.假设∠1≠∠2,过点O作直线A′B′,使∠EOB′=∠2.根据“同位角相等,两直线平行”,可得A′B′∥CD.这样,过点O就有两条直线AB、A′B′都平行于CD,这与平行公理“过直线外一点有且仅有一条直线与已知直线平行”矛盾.这说明假设∠1≠∠2不正确,从而∠1=∠2.练习1.画出由所有到已知点O的距离大于或等于2cm并且小于或等于3cm的点组成的图形. 解:如图,阴影部分及边界为所求的图形.2.体育课上,小明和小丽的铅球成绩分别是6.4m和5.1m,他们投出的铅球分别落在图中哪个区域内?3.如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心?课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相离,它是三角形三边垂直平分线的交点. 在圆中充分利用这一点可解决相关的计算问题.。
24.1、1 圆导学案
![24.1、1 圆导学案](https://img.taocdn.com/s3/m/d5c6f4215901020207409c0c.png)
第31课时 24.1、1 圆学习目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.一、板书课题,揭示目标今天开始我们一起学习圆的有关知识(投影课题及目标).(见学习目标)二、指导自学认真看课本P78-P79练习前的内容:回答1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?3:图上各点到定点(圆心O)的距离有什么规律?4:到定点的距离等于定长的点又有什么特点?三、学生自学,教师巡视1、学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2、检查自学效果完成课本练习.请几位同学板演,其余学生在座位上完成.四、更正、讨论、归纳、总结1.学生自由更正,或写出不同解法;2.讨论、归纳学生点评教师小结:本节课应掌握:1.圆的有关概念;五、课堂作业六、教学反思第32课时 24.1、2垂直于弦的直径 学习目标从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 一、板书课题,揭示目标 今天我们学习垂直于弦的直径 (投影课题及目标).(见学习目标) 二、指导自学认真看课本P80-P81练习前的内容: 完成书上的思考与探究内容5分钟后,比谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2、检查自学效果 完成课本练习.1.如图4,AB 为⊙O 直径,E 是 BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.BA(4) (5)2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______(只需写一个正确的结论)请几位同学板演,其余学生在座位上完成.四、更正、讨论、归纳、总结1.学生自由更正,或写出不同解法;2.讨论、归纳学生点评教师小结:1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.2.垂径定理及其推论以及它们的应用.五、课堂作业1.教材P87 复习巩固11.如图24-11,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM•⊥CD,•分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.六、教学反思第33课时 24.1、3弧、弦、圆心角 学习目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.教学重点: 在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.教学难点: 探索定理和推导及其应用 一、板书课题,揭示目标今天我们一起来学习24.1、3弧、弦、圆心角 (投影课题及目标).(见学习目标) 二、指导自学认真看课本P82-P83练习前的内容:完成书上的探究内容,通过归纳填空,理解定理。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案)
![【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案)](https://img.taocdn.com/s3/m/75c0dd4184868762cbaed586.png)
1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径长是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.2.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.3.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径长r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.4.圆与圆的位置关系两个不相等的圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d 与半径长r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 求圆的方程求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题.采用待定系数法求圆的方程的一般步骤为:(1)选择圆的方程的某一形式;(2)由题意得a ,b ,r (或D ,E ,F )的方程(组);(3)解出a ,b ,r (或D ,E ,F );(4)代入圆的方程.例1 有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解 方法一 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l , 得⎩⎪⎨⎪⎧(a -3)2+(b -6)2=(a -5)2+(b -2)2=r 2,b -6a -3×43=-1.解得a =5,b =92,r 2=254.∴圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 方法二 设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C ,由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.∴所求圆的方程为:x 2+y 2-10x -9y +39=0.方法三 设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 方程为y -6=-34(x-3),即3x +4y -33=0. 又k AB =6-23-5=-2,∴k BP =12,∴直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.∴P (7,3).∴圆心为AP 中点⎝⎛⎭⎫5,92,半径为|AC |=52.∴所求圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 跟踪训练1 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是______. 答案 ()x -22+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心,且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32,所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 题型二 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是高考考查的重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例2 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5, 因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪训练2 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.作示意图如图,作MC ⊥AB 于C . 在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1, 解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型三 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例3 在△ABO 中,|OB |=3,|OA |=4,|AB |=5,P 是△ABO 的内切圆上一点,求以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值与最小值. 解 如图所示,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0). 设内切圆的半径为r ,点P 的坐标为(x ,y ), 则2r +|AB |=|OA |+|OB |,∴r =1.故内切圆的方程为(x -1)2+(y -1)2=1, 整理得x 2+y 2-2x -2y =-1.①由已知得|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2 =3x 2+3y 2-8x -6y +25.② 由①可知x 2+y 2-2y =2x -1,③将③代入②得|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22. ∵0≤x ≤2,∴|P A |2+|PB |2+|PO |2的最大值为22,最小值为18.又三个圆的面积之和为π⎝⎛⎭⎫|P A |22+π⎝⎛⎭⎫|PB |22+π⎝⎛⎭⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), ∴以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值为112π,最小值为92π.跟踪训练3 已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,由题意,知直线x +y =t 与圆(x -3)2+(y -3)2=6有公共点, 所以d ≤r ,即|3+3-t |2≤ 6.所以6-23≤t ≤6+2 3.所以x +y 的最小值为6-23,最大值为6+2 3.题型四 分类讨论思想分类讨论思想是中学数学的基本思想之一,是历年高考的重点,其实质就是将整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论.例4 已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0. 由题意可知⎝⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 方程为x =-4或4x +3y +25=0.跟踪训练4 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34.直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. 题型五 数形结合思想数形结合思想:在解析几何中,数形结合思想是必不可少的,而在本章中,数形结合思想最主要体现在几何条件的转化上,尤其是针对“方法梳理”中提到的第二类问题,往往题目会给出动点满足的几何条件,这就不能仅仅依靠代数来“翻译”了,必须结合图形,仔细观察分析,有时可能需要比较“绕”的转化才能将一个看似奇怪(或者不好利用)的几何条件列出一个相对简洁的式子,但这样可以在很大程度上减少计算量,大大降低出错的机率. 例5 已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程. 解 画图如下:由直线方程易知l 2平行于x 轴,l 1与l 3互相垂直, ∴三个交点A ,B ,C 构成直角三角形, ∴经过A ,B ,C 三点的圆就是以AB 为直径的圆.由⎩⎪⎨⎪⎧ x -2y =0,y +1=0,解得⎩⎪⎨⎪⎧x =-2,y =-1.∴点A 的坐标为(-2,-1).由⎩⎪⎨⎪⎧ 2x +y -1=0,y +1=0,解得⎩⎪⎨⎪⎧x =1,y =-1.∴点B 的坐标为(1,-1).∴线段AB 的中点坐标为(-12,-1).又∵|AB |=|1-(-2)|=3.∴圆的方程是(x +12)2+(y +1)2=94.跟踪训练5 已知点A (-1,0),B (2,0),动点M (x ,y )满足|MA ||MB |=12,设动点M 的轨迹为C .(1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线l :y =x +m 交轨迹C 于P ,Q 两点,是否存在以线段PQ 为直径的圆经过点A ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)由题意,得|MA |=(x +1)2+y 2, |MB |=(x -2)2+y 2.∵|MA ||MB |=12,∴(x +1)2+y 2(x -2)2+y 2=12, 化简,得(x +2)2+y 2=4.∴轨迹C 是以(-2,0)为圆心,2为半径的圆. (2)设过点B 的直线为y =k (x -2). 由题意,得圆心到直线的距离d =|-4k |k 2+1≤2.解得-33≤k ≤33.即k min =-33. (3)假设存在,设P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =x +m ,(x +2)2+y 2=4,得2x 2+2(m +2)x +m 2=0. ∴x 1+x 2=-m -2,x 1x 2=m 22. ①y 1+y 2=m -2,y 1y 2=m 2-4m2. ②设以PQ 为直径经过点A 的圆的圆心为O ,则O 的坐标为O (x 1+x 22,y 1+y 22),|OA |=|OP |, (x 1+x 22+1)2+(y 1+y 22)2 =(x 1+x 22-x 1)2+(y 2-y 12)2. 整理得(x 1+x 2+2)2+(y 1+y 2)2=(x 1+x 2)2+(y 1+y 2)2-4x 1x 2-4y 1y 2,③ 将①②代入③得m 2-3m -1=0, 解得m =3±132.故当m =3±132时,存在线段PQ 为直径的圆经过点A .初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。
九年级数学《点和圆的位置关系》教案
![九年级数学《点和圆的位置关系》教案](https://img.taocdn.com/s3/m/2ecc0956a36925c52cc58bd63186bceb19e8edce.png)
24.2.1点与圆的位置关系观察:我国射击运动员在奥运会上屡获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。
问题引入课题:这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。
【学生活动】学生观察图片,思考问题:我国射击运动员在奥运会上屡获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?结合计算机演示,对点与圆的位置关系产生初步的映象。
学生举例:生活中的点与圆的位置关系图形,或实物。
【赏析】通过回顾2004年雅典奥运会贾占波夺金时刻惊心动魄的一幕,引入点与圆的位置关系探究。
出示图片,学生观察,训练学生观察及归纳能力。
活动2、实践与探索点与圆的位置关系观察图中点A,点B,点C与圆的位置关系?.问题1:设⊙O半径为r,说出点A,点B,点【教师活动】展示PPT第5-6张:问题1、2、3.引导学生观察、分析、归纳得出点与圆的三种位置关系。
【学生活动】学生观察图形,分析归纳得出以下结论:【媒体使用】展示PPT第5-6张。
【赏析】利用多媒体演示提高学生兴趣,增加教学直观性,突破教C与圆心O的距离与半径的关系。
问题2:问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?若点A在⊙O内,OA<r,若点A在⊙O上,OB=r,若点A在⊙O外。
OC>r.反过来也成立,即若OA<r,点A在⊙O内,若OB=r,点A在⊙O上,若OC>r.点A在⊙O外。
学重点。
通过学生自主观察分析归纳得出结论,培养学生能力活动3:尝试应用,巩固新知你知道击中靶上不同位置的成绩是如计算的吗?【教师活动】引导学生观察图片回顾贾占波夺冠过程,分析射击比赛计算成绩方法。
人教版数学九年级上册同步导学案-24
![人教版数学九年级上册同步导学案-24](https://img.taocdn.com/s3/m/6393c7d9bd64783e08122b24.png)
《24.2.2直线和圆的位置关系(1)》导学案课题直线和圆的位置关系(1)数学年级九年级上册知识目标1.知道直线和圆相交、相切、相离的定义.2.根据定义来判断直线和圆的位置关系.3.根据圆心到直线的距离与圆的半径之间的数量关系,揭示直线和圆的位置.重点难点重点:探索并了解直线和圆的位置关系难点:掌握识别直线和圆的位置关系的方法教学过程知识链接1、点和圆的位置关系有几种?“大漠孤烟直,长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象。
如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线与圆的公共点的个数想象一下,直线和圆的位置关系是怎样的吗?今天这节课我们一起来学习这个课题。
板书课题合作探究直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如图(1),如果我们把太阳看作一个圆,把地平线看作一条直线,太阳升起的过程中,太阳和地平线会有几种位置关系?由此你能得出直线和圆的位置关系吗?如图(2),在纸上画一条直线l,把钥匙环看作一个圆.在纸上移动钥匙环,你能发现在移动钥匙环的过程中,它与直线l的公共点个数的变化情况吗?把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;在纸上移动钥匙环,它与直线l的公共点个数的有相交、相离和相切三种变化情况.从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?归纳:直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.如图(1),直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.如图(2),直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.如图(3),直线和圆没有公共点,这时我们说这条直线和圆相离.想一想:如果,公共点的个数不好判断,该怎么办?“直线和圆的位置关系”能否像“点和圆的位置关系”一样进行数量分析?1.请同学们用直尺在圆上移动,观察移动的过程中,除了公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?相关知识:点到直线的距离是指从直线外一点(A)到直线(l)的垂线段(OA)的长度.2.怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?根据直线和圆相交、相切、相离的定义,容易得到:直线l和⊙O相交d<r;直线l和⊙O相切d=r;直线l和⊙O相离d>r.例、如图,Rt△ABC的斜AB=10cm,∠A=30°.(1) 以点C为圆心,当半径为多少时,AB与☉C相切?(2) 以点C为圆心,半径r分别为4cm,5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?相切与时,当半径为,中,有在,,边上的高作过点CABBDBCCDBCBDABCRCMBCBDcmABACDABCΘ=-===∆====∠2352355.221:t5211030)1(22(2)r=4<CD,此时圆与斜边AB相离r=5>CD,此时圆与斜边AB相交教师应重点关注:(1) 学生能否利用直线和圆公共点的个数判断直线和圆的位置关系;(2)学生能否利用圆心到直线的距离和半径间的数量关系判断直线和圆的位置关系.自主尝试 1.看图判断直线l与☉O的位置关系?答案(1)相离(2)相交(3)相切(4)相交(5)相交(注意:直线是可以无限延伸的.)2.练一练:判断正误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
点和圆的位置关系(一)
班级_____________姓名_____________
学习目标:
1.掌握点和圆的位置关系的概念 2.利用点和圆的位置关系解答具体问题. 活动一,情景引入:
在射击比赛中射击靶的示意图是由许多同心圆构成的,那么选手击中靶上不同位置的成绩是如何计算的呢? 规则:如果射击点未在环线上,那么射击点落在几环就是几环;如果落在环线上,那么取环线靠内的环的环数,未上靶的为0环。
如右图为一位选手9枪过后的成绩, 请用字母按要求指出射击点的环数:
10环的有:_____________ ;9环的有:______________ 8环的有:______________ ;7环的有:______________ 6环的有:______________ ;5环的有:______________
该选手射击的总环数是______环。
活动二,探究新知
如右图,⊙O 是第十环的放大图,其中A 、B 、C 如果⊙O 得半径是5cm ,OA=3.5cm ,OB=6.8cm ,OC=5cm ,那么达到10环的有__________,
未达到10环的是_____
于是,我知道了点和圆有下列几种位置关系 设⊙O 的半径为r ,点P 到圆心的距离OP 为则有:点P 在圆外⇔d ___r 点P 在圆上⇔d _____r 点P 在圆内⇔d _____r
同学们能用命题的形式来表述点和圆的位置关系吗?
如:1.如果点P 到圆心的距离d 大于圆的半径,那么点P 在圆外,反之亦然。
2.————————————————————————————————————.
3.________________________________________________________________________。
活动三,运用新知
已知,如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,斜边AB 边上 的高为CD ,若以点C 为圆心,分别以R 1=2,R 2=2.4,R 3=3为半径 作⊙C 1,⊙C 2,⊙C 3,试判断点D 与这三个圆的位置关系.
3
B
C
A
活动四,运用新知
例:如图,在矩形ABCD 中,AB=3 ,AD=4 ,
(1)以点A 为圆心,3为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(2)以点A 为圆心,4为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何? (3)以点A 为圆心,5为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?
(4)以点A 为圆心,r 为半径作圆A ,要使点B 、C 、D 至少有一点在⊙A 内,至少有一点在⊙A 外,求⊙A 的半径r 的取值范围。
活动五,拓展延伸 爆破时,导火线燃烧的速度是每秒0.9m ,点导火线的人需要跑到离爆破点120m 以外的安全区域,这个导火索长度为18 cm ,那么点导火索的人每秒钟跑6.5m 是否安全?
活动六,当堂测试
1.已知⊙P 的半径为3,点Q 在⊙P 外,点R 在⊙P 上,点H 在⊙P 内, 则PQ_____ 3 ,PR_____ 3 ,PH_____ 3 。
2.⊙O 的半径为10cm ,A 、B 、C 三点到圆心的距离分别为8cm 、10cm 、12cm ,则点A 、 B 、C 与⊙O 的位置关系是: 点A 在_______;点B 在_______;点C 在_______。
3.正方形ABCD 的边长为2cm ,以A 为圆心2cm 为半径作⊙A , 则点B 在⊙A____;点C 在⊙A____;点D 在⊙A______。
4.已知⊙O 的半径为5 cm ,A 为线段OP 的中点,当OP=6 cm 时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定 5.两个圆的圆心都是O ,半径分别为r 1、r 2,且r 1<OA <r 2,那么点A 在( ) A .⊙r 1内 B .⊙r 2外 C .⊙r 1外,⊙r 2内 D .⊙r 1内,⊙
r 2外 6.如图已知等边三角形ABC 的边长为,下列以A 为圆心的各圆中,半径是3cm 的圆是( )
7.如图,在△ABC 中,∠C=90°,AB=5cm ,BC=4cm ,以点A 为圆心,3cm 为半径作⊙A ,试判断: (1) 点C 与⊙A 的位置关系;(2)点B 与⊙A 的位置关系;(3)AB 的中点D 与⊙A 的位置关系.。