计算机图形学第5章几何变换

合集下载

几何变换的认识和基本原理

几何变换的认识和基本原理

几何变换的认识和基本原理几何变换是指通过对平面上的点、线、面进行位置、形状或尺寸上的改变,从而得到一个新的图形。

在计算机图形学和计算机视觉等领域,几何变换是非常重要的基础知识。

本文将介绍几何变换的认识和基本原理。

一、平移变换平移变换是指将一个图形沿着某个方向平行移动一定的距离。

平移变换可以用以下公式表示:[x', y'] = [x + dx, y + dy]其中,(x, y)是原始图形上的一个点,(dx, dy)是平移的距离,(x', y')是平移后得到的新点的坐标。

二、旋转变换旋转变换是指将一个图形绕着某个中心点按照一定的角度旋转。

旋转变换可以用以下公式表示:[x', y'] = [x*cosθ - y*sinθ, x*sinθ + y*cosθ]其中,(x, y)是原始图形上的一个点,θ是旋转的角度,(x', y')是旋转后得到的新点的坐标。

三、缩放变换缩放变换是指将一个图形按照一定的比例因子放大或缩小。

缩放变换可以用以下公式表示:[x', y'] = [s*x, s*y]其中,(x, y)是原始图形上的一个点,s是缩放的比例因子,(x', y')是缩放后得到的新点的坐标。

四、对称变换对称变换是指将一个图形关于某一直线或某一点进行对称。

对称变换可以分为关于x轴对称、关于y轴对称、关于原点对称等。

不同类型的对称变换具体的公式略有不同,但原理都是将图形上的点映射到其关于对称轴的对称位置。

五、仿射变换仿射变换是指将一个图形通过平移、旋转和缩放等基本变换来进行综合变换。

仿射变换可以用以下矩阵表示:[x', y'] = [a*x + b*y + c, d*x + e*y + f]其中,a、b、c、d、e、f为变换矩阵中的参数,(x, y)是原始图形上的一个点,(x', y')是变换后得到的新点的坐标。

《计算机图形学》05 图形的几何变换解析

《计算机图形学》05 图形的几何变换解析

o
x
o
T1 = 1 0 0 0 1 0 C/A 0 1
x
o
T2=
x
cosα -sinα 0 sinα cosα 0
0
0
1
y
y
y
o
T3 = 1 0 0 0 -1 0 0 0 1
x
o
x
o
T5=
x
1 0 0 0 1 0 -C/A 0 1
cosα sinα 0 T4 = -sinα cosα 0 0 0
1
组合变换矩阵为: cos2α sin2α T =T1×T2×T3×T4×T5= sin2α -cos2α (cos2α-1)C/A sin2α*C/A 0 0 1
原图形上的任意一点 P(x,y) 对该直线的对称变换都可用下
式实现 : [x* y* 1]=[x y 1]· T
5.3 三维图形变换
三维变换矩阵可表示为: T= a d g l b e h m c p f q i r n s
h),h是任一不为0的比例系数。 给定一个点的齐次坐标表示 : (x,y,h), 该点的二维笛卡儿直角坐标: (x / h,y / h)。 同样,对于一个三维空间的向量(x,y,z), 它在四维空间 中对应的向量即齐次坐标为 (x×h ,y×h , z×h , h) ,其中 h≠0 。 齐次坐标的概念可以推广到 n 维空间的向量。齐次坐标的 表示不是唯一的,通常当h=1时,称为规格化齐次坐标。
5.2 二维图形变换
采用齐次坐标可将二维图形变换表示成如下形式: a d 0 [ x* y* 1 ] = [ x y 1 ] b e 0 c f 1 P*
变换后的 顶点坐标
=
P
变换前的 顶点坐标

几何变换的基本概念与性质

几何变换的基本概念与性质

性质:几何变换的组合具有结 合律和单位元,满足封闭性。
组合方式:顺序组合、嵌套组 合、逆序组合等。
应用:在计算机图形学、机器 人学、物理学等领域中广泛应 用。
几何变换的复合
性质:复合变换具有连续性 和可结合性,满足结合律。
定义:将两个或多个几何变 换按照一定的顺序进行组合, 得到一个新的几何变换。
域有广泛应用
举例:平面镜成 像、反射光线等
添加标题
添加标题
添加标题
添加标题
04 几何变换的应用
在图形设计中的应用
几何变换可用于创建各种复杂的几何图形和图案 通过几何变换可以生成对称、旋转、平移等图形效果 在计算机图形学中,几何变换是实现三维模型渲染和动画效果的关键技术之一 几何变换在建筑设计、平面设计、服装设计等领域有着广泛的应用
的角度
错切变换:将图形 沿某一方向倾斜一
定的角度
几何变换的实现方法
矩阵变换:通过定义 变换矩阵,对原始几 何形状进行线性变换
投影变换:通过投影 方式将三维物体转换 为二维图像,常见于
计算机图形学
仿射变换:包括平移、 旋转、缩放等基本操 作,保持形状和大小
不变
组合变换:将多个基 本变换组合起来,实 现更复杂的几何变换
在机器人学中的应用
几何变换可用于描述机器人的运动和姿态 机器人通过几何变换实现精确的定位和导航 机器人通过几何变换实现姿态调整和姿态控制 几何变换在机器人学中具有广泛的应用前景
05 几何变换的组合与复合
几何变换的组合
定义:将两个或多个几何变换 按照一定的顺序组合在一起, 形成一个新的几何变换。
感谢您的观看
汇报人:XX
计算方法:通过矩阵乘法或 相应的坐标变换公式进行计

几何变换与变换矩阵

几何变换与变换矩阵

几何变换与变换矩阵几何变换是计算机图形学中常用的一种技术,用于对二维或三维图形进行平移、旋转、缩放和剪切等操作。

这些操作可以通过变换矩阵来描述和计算。

本文将介绍几何变换的基本概念及其与变换矩阵的关系。

一、几何变换的基本概念1. 平移变换平移变换是将图形沿着指定的方向移动一定的距离。

在二维空间中,平移变换可以通过在原始坐标上加上一个向量来实现。

例如,将原始坐标(x, y)进行平移变换得到新的坐标(x', y'),可以表示为:x' = x + dxy' = y + dy其中,dx和dy分别为在x和y方向上的平移距离。

2. 旋转变换旋转变换是将图形绕指定的点或轴旋转一定的角度。

在二维空间中,旋转变换可以通过将原始坐标(x, y)绕着指定点(xc, yc)逆时针旋转θ角度得到新的坐标(x', y'),可以表示为:x' = (x - xc) * cosθ - (y - yc) * sinθ + xcy' = (x - xc) * sinθ + (y - yc) * cosθ + yc其中,(xc, yc)为旋转中心点,θ为旋转角度。

3. 缩放变换缩放变换是将图形沿着指定的方向进行放大或缩小。

在二维空间中,缩放变换可以通过将原始坐标(x, y)分别乘以指定的缩放因子sx和sy得到新的坐标(x', y'),可以表示为:x' = x * sxy' = y * sy其中,sx和sy分别为在x和y方向上的缩放因子。

4. 剪切变换剪切变换是将图形沿着指定的方向进行截取或拉伸。

在二维空间中,剪切变换可以通过将原始坐标(x, y)进行线性变换得到新的坐标(x', y'),可以表示为:x' = x + kx * yy' = y + ky * x其中,kx和ky分别为在x和y方向上的剪切因子。

二、变换矩阵的基本概念与计算方法变换矩阵是一种矩阵表示方法,用于描述几何变换的转换规则。

计算机图形学-图形的几何变换

计算机图形学-图形的几何变换

贵州大学实验报告学院:计算机科学与技术专业:软件工程班级:软件132(1)当d=0时,图形的y坐标不变,x坐标随初值(x,y)及变换系数b作线性变化。

(2)当b=0时,图形的x坐标不变,y坐标随初值(x,y)及变换系数d作线性变化。

实验步骤1.设计图形界面。

本实验使用visual studio 2012 C#搭建窗口,设置相应的组件。

如下图。

如图所示,combox此时显示的字符是“平移”,在其下面显示的是关于平移的操作组件。

当选择combox的不同项时,其下面就显示对应的操作组件。

2.运行效果如下。

(1)平移从图中可见,原图形的颜色为黄绿色,平移后的图形为黑色。

(2)旋转(3)对称如图,这是原图形关于x轴对称后由对称后的图形关于原点对称得到的图形。

在界面中可看到一个text为“新变换”的checkbox,其作用是可以自由选择变换原图形或者变换变换后的图形。

(4)缩放有图可知,此时的x、y的缩放比例都是0.5,也就是原图形的x和y都关于原点缩小为原来的一半。

(5)错切此时y上的错切系数为0,即图形的y值不变,x的值随x上的错切系数变化。

(6)三角形的一顶点保持不变,另外两个顶点按缩放比例缩小,然后关于直线-2x+4y+3对称。

这是一个组合变换的问题,要使得三角形的一顶点保持不变,就要将该顶点移动到原点,缩放后再平移回去,然后再关于直线对称就行了。

组合变换时,先作用的变换矩阵在右端,后作用的变换矩阵在左端。

(7)四边形以原点为中心,以15°为间隔旋转。

在程序中设置一个旋转增量,每变换一次,就加上旋转增量,就可得到上图的结果。

实验数据由于代码篇幅过长,下面是代码的主要部分。

private void initMatrix() {temp = new double[3][];for (int i = 0; i < temp.Length; i++){temp[i] = new double[3];}resetTemp(ref temp);temp1 = new double[3][];for (int i = 0; i < temp1.Length; i++){temp1[i] = new double[3];}resetTemp(ref temp1);//初始化平移矩阵move = new double[3][];for (int i = 0; i < move.Length; i++){move[i] = new double[3];}for (int i = 0; i < move.Length; i++) {for (int j = 0; j < move[i].Length; j++) {if (i == j){move[i][j] = 1;}else {move[i][j] = 0;}}}//初始化缩放矩阵zoom = new double[3][];for (int i = 0; i < zoom.Length; i++){zoom[i] = new double[3];}for (int i = 0; i < zoom.Length; i++){for (int j = 0; j < zoom[i].Length; j++) {if (i == j){zoom[i][j] = 1;}else {zoom[i][j] = 0;}}}//初始化旋转矩阵rotate = new double[3][];for (int i = 0; i < rotate.Length; i++){rotate[i] = new double[3];}for (int i = 0; i < rotate.Length; i++){for (int j = 0; j < rotate[i].Length; j++) {if (i == j && i == 2){rotate[i][j] = 1;}else {rotate[i][j] = 0;}}}//初始化对称矩阵symmetry = new double[3][];for (int i = 0; i < symmetry.Length; i++){symmetry[i] = new double[3];}for (int i = 0; i < symmetry.Length; i++){for (int j = 0; j < symmetry[i].Length; j++) {if (i == j){symmetry[i][j] = 1;}else {symmetry[i][j] = 0;}}}//初始化错切矩阵shear = new double[3][];for (int i = 0; i < shear.Length; i++){shear[i] = new double[3];}for (int i = 0; i < shear.Length; i++){for (int j = 0; j < shear[i].Length; j++) {if (i == j){shear[i][j] = 1;}else {shear[i][j] = 0;}}}//初始化目标齐次坐标target = new double[3][];for (int i = 0; i < target.Length; i++){target[i] = new double[1];}for (int i = 0; i < target.Length; i++){for (int j = 0; j < target[i].Length; j++) {if (i == 2 && j == 0){target[i][j] = 1;}else {target[i][j] = 0;}}}//初始化结果齐次坐标result = new double[3][];for (int i = 0; i < result.Length; i++){result[i] = new double[1];}for (int i = 0; i < result.Length; i++){for (int j = 0; j < result[i].Length; j++){if (i == 2 && j == 0){result[i][j] = 1;}else{result[i][j] = 0;}}}}private void coordinate() {Brush brush = new SolidBrush(Color.Black);Pen pen = new Pen(brush,1);//获取x轴getGph().DrawLine(pen, new Point(0, panel1.Height / 2), newPoint(panel1.Width, panel1.Height / 2));getGph().DrawLine(pen, new Point(panel1.Width, panel1.Height / 2), new Point(panel1.Width-10, panel1.Height / 2-5));getGph().DrawLine(pen, new Point(panel1.Width, panel1.Height / 2), new Point(panel1.Width - 10, panel1.Height / 2 + 5));//获取y轴getGph().DrawLine(pen, new Point(panel1.Width / 2, 0), newPoint(panel1.Width / 2, panel1.Height));getGph().DrawLine(pen, new Point(panel1.Width / 2, 0), newPoint(panel1.Width / 2-5, 10));getGph().DrawLine(pen, new Point(panel1.Width / 2 , 0), newPoint(panel1.Width / 2+5,10 ));//获取xoygetGph().DrawString("O(0,0)", new Font("微软雅黑", 8), brush, new Point(panel1.Width/2-13, panel1.Height/2));getGph().DrawString("X", new Font("微软雅黑", 8), brush, newPoint(panel1.Width-15, panel1.Height / 2+5));getGph().DrawString("Y", new Font("微软雅黑", 8), brush, newPoint(panel1.Width/2+8,5));//原点坐标centerX = panel1.Width / 2;centerY = panel1.Height / 2;}private void GetPolygon(List<Point> point,Color color) {for (int i = 0; i <point.Count; i++) {Brush brush = new SolidBrush(color);Pen pen = new Pen(brush, 1);Point st = point[i];Point end = point[(i + 1) % point.Count];st.X += centerX;st.Y += centerY;end.X += centerX;end.Y += centerY;getGph().DrawLine(pen,st,end);Brush brushString = new SolidBrush(Color.Black);getGph().DrawString("("+ (st.X-centerX) + ","+ (centerY-st.Y) + ")", new Font("微软雅黑", 6), brushString, new Point(st.X, st.Y - 12));}}private void changePolygon(double[][] matrix) {List<Point> newPoint=new List<Point>();//用来暂时存储要变换的目标链表if (checkBox1.Checked){for (int i = 0; i < point.Count; i++){newPoint.Add(point[i]);}}else {if (chgPoint.Count == 0){for (int i = 0; i < point.Count; i++){newPoint.Add(point[i]);}}else {for (int i = 0; i < chgPoint.Count; i++) {newPoint.Add(chgPoint[i]);}}}chgPoint.RemoveAll(clear);//准备接收再次变换后的顶点for (int p = 0; p < newPoint.Count; p++){target[0][0] = newPoint[p].X;target[1][0] = newPoint[p].Y;for (int i = 0; i < matrix.Length; i++){for (int j = 0; j < matrix[i].Length; j++){for (int k = 0; k < target[0].Length; k++){result[i][k] += matrix[i][j] * target[j][k];}}}chgPoint.Add(new Point((int)result[0][0], (int)result[1][0]));resetResultMatrix();}GetPolygon(chgPoint, Color.Black);}private void transformation(ref double[][] result,ref double[][] first,ref double[][] second) {//计算矩阵相乘for (int i = 0; i < first.Length; i++){for (int j = 0; j < first[i].Length; j++){for (int k = 0; k < second[0].Length; k++){result[i][k] += first[i][j] * second[j][k];}}}}。

几何变换的基本定义

几何变换的基本定义

几何变换的基本定义几何变换是指通过改变图形的位置、形状、大小或方向来实现对图形的转换。

在数学和几何学中,几何变换是广泛应用于图像处理、计算机图形学和几何推理等领域的重要概念。

本文将简要介绍几何变换的基本定义,包括平移、旋转、缩放和对称变换。

一、平移变换平移变换是指将图形沿着平行于原始位置的直线方向移动一定距离。

平移变换不改变图形的形状和大小,只改变了其位置。

设图形上的点坐标为(x, y),平移变换后的新坐标为(x', y'),则有以下公式:x' = x + ay' = y + b其中,a和b分别表示平移的水平和垂直距离。

在平面几何中,平移变换可以通过将所有点坐标加上相同的位移矢量来实现。

二、旋转变换旋转变换是指将图形绕某一点或绕原点按一定角度旋转。

旋转变换改变了图形的方向和位置,但不改变其大小和形状。

设图形上的点坐标为(x, y),旋转中心为(cx, cy),旋转角度为θ,则旋转变换后的新坐标为(x', y'),可以通过以下公式计算:x' = (x - cx) * cosθ - (y - cy) * sinθ + cxy' = (x - cx) * sinθ + (y - cy) * cosθ + cy其中,cosθ和sinθ分别表示旋转角度的余弦和正弦值。

通过调整旋转角度可以实现图形的顺时针或逆时针旋转。

三、缩放变换缩放变换是指通过改变图形的尺寸来实现对图形的变换。

缩放变换可以使图形变大或变小,但图形的形状和位置保持不变。

设图形上的点坐标为(x, y),缩放中心为(cx, cy),水平和垂直缩放比例分别为sx和sy,则缩放变换后的新坐标为(x', y'),计算公式如下:x' = (x - cx) * sx + cxy' = (y - cy) * sy + cy通过调整sx和sy的值,可以实现图形的水平或垂直方向上的缩放。

几何变换的基本概念与应用

几何变换的基本概念与应用

几何变换的基本概念与应用几何变换是指对图形或物体进行平移、旋转、缩放、对称等操作,从而改变其形状、大小或位置的过程。

在数学和计算机图形学中,几何变换是一种常见而重要的操作,广泛应用于建模、渲染、动画等领域。

本文将介绍几何变换的基本概念和常见应用。

一、平移变换平移变换是指将图形沿着给定的平移向量进行移动的操作。

平移变换不改变图形的形状和大小,只改变其位置。

在二维几何中,平移变换可以用以下公式表示:新坐标 = 旧坐标 + 平移向量平移变换在计算机界面的窗口移动、图像处理中的图像平移等方面得到广泛应用。

通过平移变换,我们能够调整图像或物体在屏幕上的位置,实现目标的定位和移动。

二、旋转变换旋转变换是指将图形绕着一个固定点旋转一定角度的操作。

旋转变换可以改变图形的方向和位置,但不改变其大小和形状。

在二维几何中,旋转变换可以用以下公式表示:新坐标 = 旧坐标 * 旋转矩阵旋转变换在计算机图形学领域常用于三维建模、动画制作、游戏设计等。

通过旋转变换,我们能够实现物体的自转、摄像机的视角变换等效果。

三、缩放变换缩放变换是指按照一定比例对图形进行放大或缩小的操作。

缩放变换会改变图形的大小和形状,但不改变其位置。

在二维几何中,缩放变换可以用以下公式表示:新坐标 = 旧坐标 * 缩放因子缩放变换在计算机辅助设计中广泛应用,可用于调整模型的比例、改变图像的尺寸等。

通过缩放变换,我们能够实现对图形的放大或缩小效果。

四、对称变换对称变换是指将图形按照某个轴线进行镜像翻转的操作。

对称变换不改变图形的位置、大小和形状,只改变图形的方向。

在二维几何中,对称变换可以用以下公式表示:新坐标 = 旧坐标 * 对称矩阵对称变换常用于计算机游戏中的镜像效果、平面图形的对称性处理等。

通过对称变换,我们能够实现图形的翻转、倒影等效果。

五、应用案例几何变换在计算机图形学、计算机视觉、计算机辅助设计等领域有广泛的应用。

以下是一些典型的应用案例:1. 计算机动画:通过组合平移、旋转、缩放等几何变换,可以实现物体的运动、旋转、放大缩小等动画效果。

几何变换的基本概念与性质

几何变换的基本概念与性质

几何变换的基本概念与性质几何变换是指在平面或空间中对图形进行变换的操作。

通过对图形的平移、旋转、缩放和对称等操作,可以改变图形的位置、形状和大小。

几何变换在数学、物理和计算机图形学等领域都有广泛应用,具有重要的理论和实际价值。

本文将介绍几何变换的基本概念和性质,以及其在不同领域的应用。

一、平移变换平移变换是指将图形按照指定的方向和距离进行移动的操作。

在平面几何中,平移变换在坐标系中的表示为{(x,y)→(x+a,y+b)},其中a和b分别表示沿x轴和y轴的平移距离。

平移变换可以保持图形的形状和大小不变,只改变其位置。

例如,将一个矩形图形沿x轴平移10个单位,结果是矩形整体右移10个单位。

平移变换具有以下性质:1. 平移变换不改变图形的形状和大小。

2. 平移变换满足平移合成律,即多次平移变换的结果与一个平移变换等效。

二、旋转变换旋转变换是指将图形按照指定的中心点和角度进行旋转的操作。

在平面几何中,旋转变换在坐标系中的表示为{(x,y)→[x*cosθ-y*sinθ,x*sinθ+y*cosθ]},其中θ表示旋转的角度。

旋转变换可以改变图形的位置、形状和大小,但保持图形的某些性质不变,如图形的对称性或平行关系。

旋转变换具有以下性质:1. 旋转变换不改变图形的对称性和重心位置。

2. 旋转变换满足旋转合成律,即多次旋转变换的结果与一个旋转变换等效。

3. 在平面几何中,任意图形都可以通过旋转变换得到相似图形。

三、缩放变换缩放变换是指将图形按照指定的比例进行放大或缩小的操作。

在平面几何中,缩放变换在坐标系中的表示为{(x,y)→(kx,ky)},其中k表示缩放的比例因子。

缩放变换可以改变图形的大小,但保持图形的形状和对称性不变。

缩放变换具有以下性质:1. 缩放变换不改变图形的形状和对称性。

2. 缩放变换满足缩放合成律,即多次缩放变换的结果与一个缩放变换等效。

四、对称变换对称变换是指将图形按照指定的直线对称、点对称或中心对称进行镜像的操作。

计算机图形学基础教程(Visual C++版)第05章 二维图形变换与裁剪(清华大学出版社 孔令德)

计算机图形学基础教程(Visual C++版)第05章 二维图形变换与裁剪(清华大学出版社 孔令德)
x O
y
5-19 设备坐标系
图形学中常用的坐标系
规格化设备坐标系(Normalized Device Coordinate,NDC) 将设备坐标系规格化到(0.0,0.0)到(1.0,1.0)的 范围内而定义的坐标系。 规格化设备坐标系独立于具体输出设备。 一旦图形变换到规格化设备坐标系中,只要作一个简 单的乘法运算即可映射到具体的设备坐标系中。
wyt (xw,yw) 0000 wyb
vyt (xv,yv) 0000 vyb
wxl
wxr
vxl
已知窗口内的一点P的坐标(xw,yw),求视区中 对应点P’的坐标(xv,yv) 这属于相对于任一参考点的二维几何变换
vxr
变换步骤为:
1.将窗口左下角点(wxl,wyb)平移到观察坐标系 原点
写成方程为:
xv S x xw vxl wxl S x yv S y yw vyb wyb S y
则窗视变换的展开式为:

xv a x w b yv c y w d
裁剪
图形变换到观察坐标系下,需要按照窗口进行 裁剪,即只保留窗口内的那部分图形,去掉窗 口外的图形 假设窗口是标准矩形,即边与坐标轴平行的矩 形,由 上(y=wyt)、 下(y=wyb)、 左(x=wxl)、 右(x=wxr) 四条边描述
30
裁剪——点的裁剪
点是构成图形的基本元素 点的裁剪:
wxl x wxr, 且wyb y wyt
把图形全部打散成点进行裁剪?
31
二维直线段的裁剪
直线的裁剪是二维图形裁剪的基础 裁剪的实质是判断直线是否与窗口相交,如相 交则进一步确定位于窗口内的部分

计算机图形学第五章图形变换

计算机图形学第五章图形变换

第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。

难 点:理解常用的平移、比例、旋转变换,特别是复合变换。

课时安排:授课4学时。

图形变换包括二维几何变换,二维观察变换,三维几何变换和三维观察变换。

为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变换的组合,现都采用齐次坐标系来表示各种变换。

齐次坐标系齐次坐标系:n维空间中的物体可用n+1维齐次坐标空间来表示。

例如二维空间直线ax+by+c=0,在齐次空间成为aX+bY+cW=0,以X、Y和W为三维变量,构成没有常数项的三维平面(因此得名齐次空间)。

点P(x、y)在齐次坐标系中用P(wx,wy,w)表示,其中W是不为零的比例系数。

所以从n维的通常空间到n+1维的齐次空间变换是一到多的变换,而其反变换是多到一的变换。

例如齐次空间点P(X、Y、W)对应的笛卡尔坐标是x=X/W和y=Y/W。

将通常笛卡尔坐标用齐次坐标表示时,W的值取1。

采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统一地用矩阵乘法来实现变换的组合。

齐次坐标系在三维透视变换中有更重要的作用,它使非线形变换也能采用线形变换的矩阵表示形式。

5.1 二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。

二维几何变换主要包括:平移、比例、旋转、对称、错切、仿射和复合变换。

5.1.1 二维平移变换如图所示,它使图形移动位置。

新图p'的每一图元点是原图形p中每个图元点在x和y方向分别移动Tx和Ty产生,所以对应点之间的坐标值满足关系式x'=x+Txy'=y+Ty可利用矩阵形式表示成:[x' y']=[x y]+[Tx Ty]简记为:P'=P+T,T=[Tx Ty]是平移变换矩阵(行向量)。

从矩阵形式来看,平移变换是矩阵加法,而比例和旋转变换则是矩阵乘法。

计算机形学中的几何变换与投影算法基础

计算机形学中的几何变换与投影算法基础

计算机形学中的几何变换与投影算法基础在计算机图形学中,几何变换与投影算法是实现三维对象表示、变换和可视化的基础。

通过对三维空间中的对象进行变换和投影,可以将其呈现在二维平面上,从而实现更直观的可视化效果。

本文将介绍计算机形学中的几何变换和投影算法的基本概念和应用。

一、几何变换几何变换是指通过对三维对象进行平移、旋转、缩放等操作,改变其在空间中的位置和形状。

在计算机图形学中,常用的几何变换包括平移、旋转、缩放和剪切。

1. 平移平移是指将对象沿着指定方向移动一定的距离。

在计算机图形学中,平移变换可以通过将对象的每个顶点坐标增加一个平移向量来实现。

平移变换公式如下:[x'] = [1 0 0 tx] [x][y'] [0 1 0 ty] [y][z'] [0 0 1 tz] [z][1 ] [0 0 0 1] [1]其中,(tx, ty, tz)表示平移向量。

通过对对象的每个顶点应用上述变换矩阵,可以实现平移效果。

2. 旋转旋转是指将对象绕指定轴进行旋转。

在计算机图形学中,常用的旋转有绕X轴、Y轴和Z轴旋转。

旋转变换可以通过将对象的每个顶点坐标乘以一个旋转矩阵来实现。

旋转变换矩阵的形式如下:[x'] = [1 0 0 0] [x][y'] [0 cosθ -sinθ 0] [y][z'] [0 sinθ cosθ 0] [z][1 ] [0 0 0 1] [1]其中,θ表示旋转角度。

通过对对象的每个顶点应用上述变换矩阵,可以实现旋转效果。

3. 缩放缩放是指改变对象的尺寸大小。

在计算机图形学中,缩放变换可以通过将对象的每个顶点坐标乘以一个缩放因子来实现。

缩放因子分别作用于X、Y和Z轴的坐标,从而改变对象在各个轴上的尺寸。

缩放变换公式如下:[x'] = [sx 0 0 0] [x][y'] [0 sy 0 0] [y][z'] [0 0 sz 0] [z][1 ] [0 0 0 1] [1]其中,(sx, sy, sz)表示缩放因子。

几何变换的基本概念与操作

几何变换的基本概念与操作

几何变换的基本概念与操作几何变换是计算机图形学中的重要概念,它可以将一个图形对象从一个位置、方向或大小变换到另一个位置、方向或大小,通过不同的变换操作,可以实现各种形状和位置的变化。

本文将介绍几何变换的基本概念和操作,包括平移、旋转、缩放和反射四种变换。

一、平移平移是指将图形对象按照指定的向量在平面内沿着直线移动,其作用是改变图形对象的位置而不改变其形状和大小。

平移操作可以用一个向量表示,向量的坐标分别表示在x轴和y轴方向上的移动距离。

平移操作的数学表达式如下:```P' = P + T```其中,P表示原始点的坐标,P'表示平移后点的坐标,T表示平移向量的坐标。

二、旋转旋转是指将图形对象按照指定的角度围绕一个中心点旋转,其作用是改变图形对象的方向而不改变其形状和大小。

旋转操作可以用一个角度表示,角度的正负决定了旋转的方向。

旋转操作的数学表达式如下:P' = R * P```其中,P表示原始点的坐标,P'表示旋转后点的坐标,R表示旋转矩阵。

三、缩放缩放是指将图形对象按照指定的比例在水平和垂直方向上进行放大或缩小,其作用是改变图形对象的大小而不改变其形状。

缩放操作可以用一个缩放因子表示,缩放因子大于1表示放大,缩放因子小于1表示缩小。

缩放操作的数学表达式如下:```P' = S * P```其中,P表示原始点的坐标,P'表示缩放后点的坐标,S表示缩放矩阵。

四、反射反射是指将图形对象按照指定的轴线进行镜像翻转,其作用是改变图形对象的位置和方向而不改变其形状和大小。

反射操作可以用一个轴线表示,轴线可以是水平、垂直或任意一条直线。

反射操作的数学表达式如下:P' = M * P```其中,P表示原始点的坐标,P'表示反射后点的坐标,M表示反射矩阵。

综上所述,几何变换是计算机图形学中的重要概念,通过平移、旋转、缩放和反射四种基本操作,可以实现对图形对象的位置、方向和大小的变化。

计算机图形学几何变换课件

计算机图形学几何变换课件

• 平移变换可以用矩阵表示,对于二维平移变换, 矩阵为
平移变换
``` 1 0 tx
0 1 ty
平移变换
``` 其中tx和ty分别表示在x和y轴上的平移距离。对于三维平移变换,矩阵为
平移变换
1 2 3
平移变换
平移变换
```
其中tx、ty和tz分别表示在x、y和z轴上的平移距离。
缩放变换
缩放变换
缩放变换
``` s00 0s0
缩放变换
缩放变换
缩放变换
01 02 03
缩放变换
缩放变换
其中s1、s2和s3分别表示在x、y和z轴 上的缩放比例。
旋转变换
旋转变换
旋转变换
旋转变换
旋转变换
旋转变换
旋转变换
旋转变换
齐次坐标和矩阵表示
03
非线性几何变换
CHAPTER
仿射变换
OpenGL或其他图形库的应用
01
OpenGL
02
DirectX
03
Unity3D
06
课程总结与展望
CHAPTER
本课程的主要内容回顾
矩阵表示法
投影变换
几何变换基础
组合变换
仿射变换
计算机图形学几何变换的未来发展
实时渲染技术 虚拟现实与增强现实 人工智能与几何变换
学生如何进一步深入学习计算机图形学
计算机图形学几何变 换课 件
contents
目录
• 引言 • 线性几何变换 • 非线性几何变换 • 组合几何变换 • 几何变换的计算机实现 • 课程总结与展望
01
引言
CHAPTER
计算机图形学的定义
计算机图形学

计算机图形学第5章图形几何变换

计算机图形学第5章图形几何变换
计算机图形学
二维基本变换-错切变换
a 人们所要描述的图形均在用户域中定义。 b 用户域是一个实数域,理论上是连续无限的。
2. 窗口区:用户指定的任一区域(W) a 窗口区W小于或等于用户域WD b 小于用户域的窗口区W叫做用户域的子域。
c 窗口可以有多种类型,矩形窗口、圆形窗口、多边形窗口 等等 d 窗口可以嵌套,即在第一层窗口中可再定义第二层窗口, 在第I层窗口中可再定义第I+1层窗口等等。
(c f ):对图形进行平移变换 。
⎜⎜⎝⎛
g h
⎟⎟⎠⎞:对图形做投影变换。
g:在x = 1 处产生一个灭点。 g
h:在x = 1 处产生一个灭点。 h
(i):对整体图形进行伸缩 变换。
∵ (x *
y * 1) = (x
y
1)⎜⎜⎛
1 0
0 1
0 ⎟⎞ 0⎟
⎜⎝ 0 0 i ⎟⎠
计算机∴图若形i学> 1,则总体缩小;否则,总 体放大。
把用户坐标系与设备坐标系联系起来; 可由简单图形生成复杂图形; 可用二维图形表示三维形体; 动态显示。
计算机图形学
二维图形的显示流程图
计算机图形学
图形的几何变换
图形变换:对图形的几何信息经过几何变换后产 生新的图形。
图形变换的两种形式: 1.图形不变,坐标系改变; 2.图形改变,坐标系不变。
二维基本变换-对称变换
(x *
y * 1) = (x
y
1)⎜⎜⎛
a b
d e
0 0
⎟⎞ ⎟
=
(ax
+
by
dx + ey
1)
⎜⎝ 0 0 1⎟⎠
当b=d=0,a=-1,e=1时,(x* y* 1)=(-x y 1):与y轴对称的反射变换 。

几何变换的概念与分类

几何变换的概念与分类

几何变换的概念与分类几何变换(Geometric transformation)是指在几何空间中,通过一系列数学操作改变图形的形状、大小、位置或方向的过程。

几何变换是解决计算机图形学、计算机视觉和几何建模等领域中的重要问题之一。

本文将介绍几何变换的概念与分类,以及具体的应用案例。

一、概念几何变换是通过对图形进行一系列数学操作来改变其属性的方法。

常见的几何变换包括平移(Translation)、旋转(Rotation)、缩放(Scaling)和翻转(Reflection)等。

其中,平移是指在平面或者空间中保持图形大小和形状不变的情况下,仅改变图形的位置;旋转是指绕某一点或某一轴将图形按一定角度进行旋转;缩放是指通过乘以一个比例因子来改变图形的大小;翻转是指将图形关于某一轴进行对称。

二、分类根据几何变换的性质和特点,可以将几何变换分为刚体变换和仿射变换两大类。

1. 刚体变换刚体变换(Rigid transformation)是指变换过程中保持图形大小、形状和相对位置不变的几何变换。

常见的刚体变换包括平移和旋转。

平移是通过改变图形的位置来实现,旋转则是通过围绕某一点进行旋转来实现。

刚体变换可以应用于很多领域。

例如,在计算机动画中,通过对角色模型进行平移和旋转,可以实现动作的平移和旋转效果;在机器人运动规划中,通过对机器人进行平移和旋转来规划其路径。

2. 仿射变换仿射变换(Affine transformation)是指在变换过程中图形的边长比例和平行性质保持不变的几何变换。

除了平移和旋转,仿射变换还包括缩放和翻转。

缩放是通过改变图形的大小来实现,翻转则是通过关于某一轴进行对称来实现。

仿射变换是计算机图形学、计算机视觉和几何建模等领域中非常重要的变换方式。

例如,在图像处理中,通过对图像进行仿射变换可以实现图像的旋转、缩放和翻转效果;在地理信息系统(GIS)中,通过对地图进行仿射变换可以实现地图的伸缩和旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档