2020-2021中考数学专题《锐角三角函数》综合检测试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学专题《锐角三角函数》综合检测试卷及答案
一、锐角三角函数
1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且
10cos B =
. (1)求AB 的长度;
(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.
(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.
【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析.
【解析】
【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;
(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13
,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,
∵AB=AC ,AF ⊥BC ,∴BF=CF=
12
BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10
BF B == (2)连接DG ,
∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°,
又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE ,
∴AD•AE=AF•AG ,
连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG ,
∵22AB BF -=3, ∴FG=13

∴AD•AE=AF•AG=AF•(AF+FG)=3×10
3
=10;
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.
2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),
∠BPE=1
2
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:BF
PE
=,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)
【答案】(1)证明见解析(2)
1
2
BF
PE
=(3)
1
tan
2
BF
PE
α
=
【解析】
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" ,∠BOC=∠BOG=90°.
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).
(2)BF1
PE2
=.证明如下:
如图,过P作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=900,∠BPN=∠OCB.
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.
∵∠BPE=1
2
∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.
∵PF⊥BM,∴∠BFP=∠MFP=900.
又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=1
2 BM.
∴BF=1
2PE,即
BF1
PE2
=.
(3)如图,过P作PM//AC交BG于点M,交BO于点N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.
由(2)同理可得BF=1
2
BM,∠MBN=∠EPN.
∵∠BNM=∠PNE=900,∴△BMN∽△PEN.∴BM BN
PE PN
=.
在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF =tan PE α. ∴BF 1=tan PE 2
α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .
(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2
=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=
12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由
BM BN PE PN =和Rt △BNP 中BN tan =PN α即可求得BF 1=tan PE 2
α.
3.如图,四边形ABCD 是菱形,对角线AC 与BD 交于点O ,且AC =80,BD =60.动点M 、N 分别以每秒1个单位的速度从点A 、D 同时出发,分别沿A→O→D 和D→A 运动,当点N 到达点A 时,M 、N 同时停止运动.设运动时间为t 秒.
(1)求菱形ABCD 的周长;
(2)记△DMN 的面积为S ,求S 关于t 的解析式,并求S 的最大值;
(3)当t=30秒时,在线段OD 的垂直平分线上是否存在点P ,使得∠DPO=∠DON ?若存在,这样的点P 有几个?并求出点P 到线段OD 的距离;若不存在,请说明理由.
【答案】解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。

∴菱形ABCD的周长为200。

(2)过点M作MP⊥AD,垂足为点P.
①当0<t≤40时,如答图1,
∵,
∴MP=AM•sin∠OAD=t。

S=DN•MP=×t×t=t2。

②当40<t≤50时,如答图2,MD=70﹣t,
∵,
∴MP=(70﹣t)。

∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。

∴S关于t的解析式为。

当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480;
当40<t≤50时,S随t的增大而减小,最大值不超过480。

综上所述,S的最大值为480。

(3)存在2个点P,使得∠DPO=∠DON。

如答图3所示,过点N作NF⊥OD于点F,
则NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。

∴OF=12。

∴。

作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,
则FG=GH。

∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG。

∴。

∴。

设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG,∴。

∴PK=。

根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′。

∴存在两个点P到OD的距离都是
【解析】
试题分析:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.
(1)根据勾股定理及菱形的性质,求出菱形的周长;
(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;
(3)如答图4所示,作ON的垂直平分线,交EF于点I,连接OI,IN.过点N作
NG⊥OD,NH⊥EF,垂足分别为G,H.易得△DNG∽△DAO,由EF垂直平分OD,得到OE=ED=15,EG=NH=3,再设OI=R,EI=x,根据勾股定理,在Rt△OEI和Rt△NIH中,得到关于R和x的方程组,解得R和x的值,把二者相加就是点P到OD的距离,即PE=PI+IE=R+x,又根据对称性可得,在BD下方还存在一个点P′也满足条件,故存在两个点P,到OD的距离也相同,从而问题解决.
试题解析:(1)如图①)在菱形ABCD中,OA=AC=40, OD=BD=30,
∵AC⊥BD,
∴AD==50,
∴菱形ABCD的周长为200;
(2)(如图②)过点M作MH⊥AD于点H.
① (如图②甲)①当0<t≤40时,
∵sin∠OAD===,
∴MH=t,
∴S=DN·MH=t2.
②(如图②乙)当40<t≤50时,
∴MD=80-t,
∵sin∠ADO=-,
∴MH=(70-t),
∴S=DN·MH,
=-t2+28t
=-(t-35)2+490.
∴S=,
当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而增大,当t=40时,最大值为480.综上所述,S的最大值为480;
(3)存在2个点P,使得∠DPO=∠DON.
(如图④)作ON的垂直平分线,交EF于点I,连接OI,IN.
过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.
当t=30时,DN=OD=30,易知△DNG∽△DAO,
∴NG=24,DG=18.
∵EF垂直平分OD,
∴OE=ED=15,EG=NH=3,
设OI=R,EI=x,则
在Rt△OEI中,有R2=152+x2……①,
在Rt△NIH中,有R2=32+(24-x)2……②,
由①,②可得:,
∴PE=PI+IE=.
根据对称性可得,在BD下方还存在一个点P′也满足条件,
∴存在两个点P,到OD的距离都是.
考点:相似性综合题.
4.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(2≈1.413≈1.73,结果保留整数)
【答案】95m
【解析】
【分析】过点C 作CE ⊥AN 于点E , CF ⊥MN 于点F .在△ACE 中,求AE =203m ,在RT △MFC 中,设MN =x m ,则AN =xm .FC =3xm ,可得x +203=3 ( x -20),解方程可得答案..
【详解】解:过点C 作CE ⊥AN 于点E , CF ⊥MN 于点F .
在△ACE 中,AC =40m ,∠CAE =30°
∴CE =FN =20m ,AE =203m
设MN =x m ,则AN =xm .FC =3xm ,
在RT △MFC 中
MF =MN -FN =MN -CE =x -20
FC =NE =NA +AE =x +203
∵∠MCF =30°
∴FC =3MF ,
即x +203=3 ( x -20)
解得:x =40331
- =60+203≈95m
答:电视塔MN 的高度约为95m .
【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.
5.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,
连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F . (Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标; (Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H . ①求证BDE DBA ∆≅∆; ②求点H 的坐标.
(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).
【答案】(Ⅰ)点D 的坐标为5472
(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258
);(Ⅲ)60α=︒或300︒. 【解析】 【分析】
(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明
△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】
(Ⅰ)∵点()30A ,
,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,
∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.
在Rt OAB ∆中,225OB OA AB +=,
过A D 、分别作B,DN OA AM O ⊥⊥ 在Rt ΔOAM 中,OM OA 3
cos BOA OA OB 5
∠===, ∴9OM 5
=
∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5
==
. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =3
5
, ∴72DN 25=
,54ON 25
=
. ∴点D 的坐标为5472,2525⎛⎫
⎪⎝⎭
.
(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===︒==. ∴OD AD =.

DOA ODA ∠∠=.
又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒ ∴ABD BDE ∠∠=.
又∵BD BD =, ∴ΔBDE ΔDBA ≅.
②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==, 又∵
BHE DHA ∠∠=,
∴ΔBHE ΔDHA ≅. ∴DH=BH ,
设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()2
22x 34x =+-,得25x 8
=

∴25AH 8
=
. ∴点H 的坐标为253,
8⎛⎫ ⎪⎝⎭
. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,
∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=
1
2
AB=2, ∴cos ∠BAF=
OA AF =1
2
, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,
同理解得:∠BAF′=60°, ∴旋转角α=360°-60°=300°.
综上所述:α60=︒或300︒. 【点睛】
本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.
6.如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,连接BD ,将△ABD 绕B 点作顺时针方向旋转得到△A ′B ′D ′(B ′与B 重合),且点D ′刚好落在BC 的延长上,A ′D ′与CD 相交于点E . (1)求矩形ABCD 与△A ′B ′D ′重叠部分(如图1中阴影部分A ′B ′CE )的面积;
(2)将△A ′B ′D ′以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.
【答案】(1)45
2
;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32 669-. 【解析】 【分析】
(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=
'''''
=A B CE
A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤
115时和当11
5
<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】
解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,
根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′=
'''''
=A B CE A D CD ∴
682
=CE ∴CE =3
2
cm ,
∴S ABCE =S ABD ′﹣S CED ′=86345
22222
⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =3
2
(x +1), ∴S △CD ′E =32x 2+3x +32
, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当
115≤x ≤4时,B ′C =8﹣2x ,CE =4
3
(8﹣2x )
∴()2
14y 8223x =
⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;
②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245
, ∵AN 2+A ′N 2=36, ∴(6﹣
245)2+(2x +18
5
)2=36, 解得:x =
669-,x =669
--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24
5
, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +18
5
)2 解得:x =
32
. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32秒、6695
-.
【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
7.在△ABC 中,∠B =45°,∠C =30°,点D 是边BC 上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接DE .
(1)如图①,当点E 落在边BA 的延长线上时,∠EDC = 度(直接填空);
(2)如图②,当点E落在边AC上时,求证:BD=1
2 EC;
(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.
【答案】(1)90;(2)详见解析;(3)
633 tan EAC
-
∠=
【解析】
【分析】
(1)利用三角形的外角的性质即可解决问题;
(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,
由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=
6-33

【详解】
(1)如图1中,
∵∠EDC=∠B+∠BED,∠B=∠BED=45°,
∴∠EDC=90°,
故答案为90;
(2)如图2中,作PA⊥AB交BC于P,连接PE.
∵∠DAE=∠BAP=90°,
∴∠BAD=∠PAE,
∵∠B=45°,
∴∠B=∠APB=45°,
∴AB=AP,
∵AD=AE,
∴△BAD≌△PAE(SAS),
∴BD=PE,∠APE=∠B=45°,
∴∠EPD=∠EPC=90°,
∵∠C=30°,
∴EC=2PE=2BD;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.
设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,
∴EP3,EH=2PH=2x,
∴FH=31,CF3FH=33
∵△BAD≌△PAE,
∴BD=EP3,AE=AD,
在Rt△ABG中,∵AB=2
∴AG=GB=2,
在Rt△AGC中,AC=2AG=4,
∵AE2=AD2=AF2+EF2,
∴22+(23)231)2+(4﹣3﹣32,
整理得:9x2﹣12x=0,
解得x=4
3
(舍弃)或0
∴PH=0,此时E,P,H共点,∴AF=1+3,
∴tan∠EAF=EF
AF =
31
31
-
+
=2﹣3.
根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33

【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
8.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.
(1)若c=63+2,
①BC=,¶DE的长为;
②当CP=62时,判断CP与⊙A的位置关系,井加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)
【答案】(1)①12,π;②详见解析;(2)①6
5
;②
6
5
(3)答案见详解
【解析】
【分析】
(1)①先求出AB,AC,进而求出BC和∠ABC,最后用弧长公式即可得出结论;②判断出△APC是直角三角形,即可得出结论;
(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;
(3)画图图形,同(2)的方法即可得出结论. 【详解】 (1)①如图1,
∵c =3+2, ∴OC =3,
∴AC =3﹣2=3 ∵AB =6,
在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC
AB
3 ∴∠ABC =60°, ∵AE =AB ,
∴△ABE 是等边三角形, ∴∠BAE =60°, ∴∠DAE =30°,
∴»DE
的长为306
180
π⨯=π, 故答案为12,π; ②CP 与⊙A 相切.
证明:∵AP =AB =6,AC =OC ﹣OA =3 ∴AP 2+CP 2=108, 又AC 2=(32=108, ∴AP 2+PC 2=AC 2.
∴∠APC =90°,即:CP ⊥AP . 而AP 是半径, ∴CP 与⊙A 相切.
(2)若c =10,即AC =10﹣2=8,则BC =10.
①若点P 在»BE
上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,
S △ABC =
12AB ×AC =1
2BC ×AF , ∴AF =AB AC BC ⋅=24
5

∴PF =AP ﹣AF =6
5

②如图3,若点P 在»DE
上,作PG ⊥BC 于点G ,
当点P 与点D 重合时,PG 最大. 此时,sin ∠ACB =PG AB CP BC
=, 即PG =
AB CP BC ⋅=6
5
∴若c =10,点P 与BC 距离的最大值是6
5
; (3)当c =1时,如图4,
过点P 作PM ⊥BC ,sin ∠BCP =AB PM
BC CD
= ∴PM =
3737AB CD BC ⋅===4237
37
; 当c =6时,如图5,同c =10的①情况,PF =6131213
613
-,
当c=9时,如图6,同c=10的①情况,PF=
4285
6
85 -,
当c=11时,如图7,
点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG 18117

【点睛】
此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.
9.如图,公路AB为东西走向,在点A北偏东36.5︒方向上,距离5千米处是村庄M,在点A北偏东53.5︒方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:
(1)M,N两村庄之间的距离;
(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)
【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米.
【解析】
【分析】
(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.
(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.
【详解】
解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.
(1)在Rt△ANE中,AN=10,∠NAB=36.5°
∴NE=AN•sin∠NAB=10•sin36.5°=6,
AE=AN•cos∠NAB=10•cos36.5°=8,
过M作MC⊥AB于点C,
在Rt△MAC中,AM=5,∠MAB=53.5°
∴AC=MA•sin∠AMB=MA•sin36.5°=3,
MC=MA•cos∠AMC=MA•cos36.5°=4,
过点M作MD⊥NE于点D,
在Rt△MND中,MD=AE-AC=5,
ND=NE-MC=2,
∴MN22
29
52
即M,N29
(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.
DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得
MN′=22
510
+=55(千米)
∴村庄M、N到P站的最短距离和是55千米.
【点睛】
本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.
10.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.
(1)求证:四边形ACED是矩形;
(2)若AC=4,BC=3,求sin∠ABD的值.
【答案】(1)证明见解析(2)
613
【解析】
【分析】
(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;
(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.
【详解】
(1)证明:∵将△ABC沿AC翻折得到△AEC,
∴BC=CE,AC⊥CE,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD=CE,AD∥CE,
∴四边形ACED是平行四边形,
∵AC⊥CE,
∴四边形ACED是矩形.
(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,
∵BE=2BC=2×3=6,DE=AC=4,
∴在Rt△BDE中,
2222
BD BE DE64213
=+=+=∵S△BDE=1
2
×DE•AD=
1
2
AF•BD,
∴AF =613213=, ∵Rt △ABC 中,AB
=2234+=5,
∴Rt △ABF 中,
sin ∠ABF =sin ∠ABD =613613135
AF AB ==
方法二、如图2所示,过点O 作OF ⊥AB 于点F ,
同理可得,OB =
1132BD =, ∵S △AOB =
11OF AB OA BC 22⋅=⋅, ∴OF =23655
⨯=, ∵在Rt △BOF 中,
sin ∠FBO =061365
513F OB ==, ∴sin ∠ABD =
61365.
【点睛】
本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .
11.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C
作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.
(2)若2ABD BDC ∠=∠.
①求证:CF 是O e 的切线.
②当6BD =,3tan 4
F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203
CF =
. 【解析】
【分析】 (1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=
BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=
OC CF =34
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点, 90ADB ∴∠=︒,
CE DB ⊥Q ,
90DEC ∴∠=︒,
//CF AD ∴,
180DAC ACF ∴∠+∠=︒.
(2)①如图,连接OC .
OA OC =Q ,12∴∠=∠.
312∠=∠+∠Q ,
321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠,
421∴∠=∠,
43∴∠=∠,
//OC DB ∴.
CE DB ⊥Q ,
OC CF ∴⊥.
又OC Q 为O e 的半径,
CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4BAD F ∴∠==
, 34
BD AD ∴=. 6BD =Q 483AD BD ∴=
=, 226810AB ∴=+=,5OB OC ==.
OC CF Q ⊥,
90OCF ∴∠=︒,
3tan 4
OC F CF ∴==, 解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
12.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.
(1)用含t的代数式表示线段DC的长:_________________;
(2)当t =__________时,点Q与点C重合时;
(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.
【解析】
【分析】
(1)先求出AC,用三角函数求出AD,即可得出结论;
(2)利用AQ=AC,即可得出结论;
(3)分三种情况,利用锐角三角函数,即可得出结论.
【详解】
(1)∵AP= , AB=4,∠A=30°
∴AC= , AD=
∴CD=;
(2)AQ=2AD=
当AQ=AC时,Q与C重合
即=
∴t=1;
(3)①如图,当PQ的垂直平分线过AB的中点F时,
∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.
∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=
②如图,当PQ的垂直平分线过AC的中点N时,
∴∠QMN =90°,AN=AC=,QM=PQ=AP=t.
在Rt△NMQ中,
∵AN+NQ=AQ,∴
③如图,当PQ的垂直平分线过BC的中点F时,
∴BF=BC=1,PE=PQ=t,∠H=30°.
∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.
在Rt△PEH中,PH=2PE=2t.
∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.
即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.
13.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.
(1)如图1,当P与A′重合时,求∠ACA′的度数;
(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;
(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.
【答案】(1)60°;(2)PQ=7
2
;(3)存在,S四边形PA'B′Q=33
【解析】
【分析】
(1)由旋转可得:AC=A'C=2,进而得到BC3
=∠A'BC=90°,可得
cos∠A'CB
3
'
BC
A C
==∠A'CB=30°,∠ACA'=60°;
(2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 32=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC 3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=
PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.
【详解】
(1)由旋转可得:AC =A 'C =2.
∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.
∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C =
=,∴∠A 'CB =30°,∴∠ACA '=60°;
(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,
∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 32=,∴PB 32
=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=
PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形
PA 'B 'Q =33-;
【点睛】
本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
14.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.
(1)求抛物线表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,
①求点P坐标;
②过此二点的直线交y轴于F, 此直线上一动点G,当
GB+
2
GF最小时,求点G坐标.
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313
【解析】
【分析】
(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求
得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+
2 2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠ACB=
13
13
,tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,
因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MB
BN

2
3
,所以BN=
3
2
MB,当MB为
直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),

14
12554
a b
a b
-++


-++




解得
1
6
a
b


-




∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,
∵B(5,-1),C(0,4),

15
4
k m
m
-+





,解得
1
4
k
m



-



∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),
∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,
解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+2
2
GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴26,2,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠ACB=213
13,tan∠ACB=
2
3

∵AE为直径,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213=4
AE
,∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,
∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3

∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
15.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)
(1)如果∠A=30°,
①如图1,∠DCB等于多少度;
②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;
(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)
【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=
2DE•tanα.理由见解析.
【解析】
【分析】
(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;
②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,
(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.
【详解】
(1)①∵∠A=30°,∠ACB=90°,
∴∠B=60°,
∵AD=DB,
∴CD=AD=DB,
∴△CDB是等边三角形,
∴∠DCB=60°.
②如图1,结论:CP=BF.理由如下:
∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,
∴△CDB为等边三角形.
∴∠CDB=60°
∵线段DP绕点D逆时针旋转60°得到线段DF,
∵∠PDF=60°,DP=DF,
∴∠FDB=∠CDP,
在△DCP和△DBF中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩

∴△DCP ≌△DBF ,
∴CP =BF.
(2)结论:BF ﹣BP =2DEtanα.
理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,
∴DC =DB =AD ,DE ∥AC ,
∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,
∴∠BDC =∠A+∠ACD =2α,
∵∠PDF =2α,
∴∠FDB =∠CDP =2α+∠PDB ,
∵线段DP 绕点D 逆时针旋转2α得到线段DF ,
∴DP =DF ,
在△DCP 和△DBF 中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩

∴△DCP ≌△DBF ,
∴CP =BF ,
而 CP =BC+BP ,
∴BF ﹣BP =BC ,
在Rt △CDE 中,∠DEC =90°,
∴tan ∠CDE =
CE DE
, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,
即BF ﹣BP =2DEtanα.
【点睛】
本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.。

相关文档
最新文档