安宁区高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安宁区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)
2. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)
3. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )
A .3个
B .2个
C .1个
D .无穷多个
4. 点集{(x ,y )|(|x|﹣1)2
+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )
A .
B .
C .
D .
5. 与﹣463°终边相同的角可以表示为(k ∈Z )( )
A .k360°+463°
B .k360°+103°
C .k360°+257°
D .k360°﹣257°
6. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}01
2
|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
7. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A .1
B .2
C .3
D .4
8. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )
A .﹣1<a <2
B .﹣3<a <6
C .a <﹣3或a >6
D .a <﹣1或a >2
9. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
10.在二项式的展开式中,含x 4
的项的系数是( )
A .﹣10
B .10
C .﹣5
D .5
11.若a=ln2,b=5
,c=
xdx ,则a ,b ,c 的大小关系( )
A .a <b <c
B B .b <a <c
C C .b <c <a
D .c <b <a
12.复数z=在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
二、填空题
13.用“<”或“>”号填空:30.8 30.7.
14.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则
b
a
的值为 ▲ . 16.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 . 18x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
三、解答题
19.已知p :,q :x 2﹣(a 2+1)x+a 2
<0,若p 是q 的必要不充分条件,求实数a 的取值范围.
20.已知S n 为等差数列{a n }的前n 项和,且a 4=7,S 4=16. (1)求数列{a n }的通项公式; (2)设b n =,求数列{b n }的前n 项和T n .
21.已知曲线2
1
()f x e x ax
=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.
(1)讨论()y f x =的单调性;
(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.
22.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.
23.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;
,整理得下表:
,求这50天的日利润单位:元的平均数;
②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.
24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)
(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,
2⎛⎫
⎪⎝⎭
上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.
安宁区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:根据题意,可作出函数图象:
∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)
故选A.
2.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a<0,由f′(x)>0得<x<0,此时函数递增,
由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),
若存在唯一的零点x0,且x0>0,
则f()>0,即2a()3﹣3()2+1>0,
()2<1,即﹣1<<0,
解得a<﹣1,
故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
3.【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,
又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,
即M={x|﹣1≤x≤3},
在此范围内的奇数有1和3.
所以集合M∩N={1,3}共有2个元素,
故选B.
4.【答案】A
【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.
由图可得面积S==+=+2.
故选:A.
【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.
5.【答案】C
【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)
即:k360°+257°,(k∈Z)
故选C
【点评】本题考查终边相同的角,是基础题.
6.【答案】C
7.【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=,
第5行的第1、3个数分别为,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.8.【答案】C
【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2﹣12(a+6)>0,
从而有a>6或a<﹣3,
故选:C.
【点评】本题主要考查函数在某点取得极值的条件.属基础题.
9.【答案】A
【解析】解:由已知得到如图
由===;
故选:A.
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.10.【答案】B
【解析】解:对于,
对于10﹣3r=4,
∴r=2,
则x4的项的系数是C52(﹣1)2=10
故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
11.【答案】C
【解析】解:∵a=ln2<lne即,
b=5=,
c=xdx=,
∴a,b,c的大小关系为:b<c<a.
故选:C.
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.12.【答案】A
【解析】解:∵z===+i,
∴复数z在复平面上对应的点位于第一象限.
故选A.
【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.
二、填空题
13.【答案】>
【解析】解:∵y=3x是增函数,
又0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
14.【答案】(﹣1,1].
【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:
由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1]
15.【答案】
1 2
考点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
16.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
17.【答案】(﹣1,﹣1).
【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,
即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),
故答案为:(﹣1,﹣1).
18.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a 的值,这样使得题目简化,注意运算不要出错.
三、解答题
19.【答案】
【解析】解:由p :
⇒﹣1≤x <2,
方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2

若|a|>1,则q :1<x <a 2,此时应满足a 2
≤2,解得1<|a|≤

当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2
<x <1,此时应满足|a|<1,
综上﹣.
【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决
本题的关键.
20.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,依题意得…(2分)
解得:a 1=1,d=2a n =2n ﹣1… (2)由①得…(7分)
∴…(11分)

…(12分)
【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.
21.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2
+∞. 【解析】
试题解析:(1)由条件可得2
21
'(1)1f e e a
=-
=-,∴1a =, 由21()f x e x x =+,可得222
22
11'()e x f x e x x -=-=,
由'()0f x >,可得2210,0,
e x x ⎧->⎨≠⎩解得1x e >或1
x e <-;
由'()0f x <,可得2210,0,
e x x ⎧-<⎨≠⎩解得10x e -<<或1
0x e <<.
所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1
(0,)e
上单调递减.
(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,
由()ln kf s t t ≥,可得ln ()
t t
k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立,
即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max
()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值.
由(1)可知,()f s 在1(0,)e 上单调递减,在1
(,)e +∞上单调递增,
故()f s 的最小值为1
()2f e e
=,
由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立, 所以()g t 在(1,]e 上的最大值为()ln g e e e e ==,
所以只需122
e k e ≥
=, 所以实数的取值范围是1
[,)2
+∞.
考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.
【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).
22.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
23.【答案】
【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n N
y n n n N
+≥∈⎧=⎨
-<∈⎩
Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.

3809
4401150015530105605
477.2
50
⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为11151018
5025
P ++==
24.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛
⎫ ⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-
⎥-⎝⎦
. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,
12)上无零点,只需要对x ∈(0,1
2
)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;
试题解析:
(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,
由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.
故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,
故要使函数上无零点,
只要对任意的
,f (x )>0恒成立,即对
恒成立.
令,则

再令,

,故m (x )在
上为减函数,于是

从而,l (x )>0,于是l (x )在上为增函数,所以

故要使
恒成立,只要a ∈[2﹣4ln2,+∞),
综上,若函数f (x )在10,
2⎛

⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,
当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;
当a ≠2时,f ′(x )=,x ∈(0,e]
当x=
时,f ′(x )=0.
由题意得,f (x )在(0,e]上不单调,故,即

又因为,当x →0时,2﹣a >0,f (x )→+∞,

所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:

令h (a )=,
则h
,令h ′(a )=0,得a=0或a=2,
故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;

时,h ′(a )<0,函数h (a )单调递减.
所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:
.④
综合①④可知,当a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的
x i(i=1,2),使f(x i)=g(x0)成立.。

相关文档
最新文档