2019-2020学年八年级数学上册 变量与函数的导学案人教新课标版.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级数学上册变量与函数的导学案人教新课标版
班级:组别:姓名:
【学习目标】
1、通过探索具体问题中的数量关系和变化规律来了解
常量、变量的意义;
2、学会用含一个变量的代数式表示另一个变量;
3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;
4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定
一、预习导学
一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1.请同学们根据题意填写下表:
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含t的式子表示s.__s=_________________t 的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
探究活动:
活动一:思考并完成课本94页的问题2—5。
小结:
在一个变化过程中,我们称数值发生变化
....的量_______;
在一个变化过程中,我们称数值始终不变
....的量______;活动二:问题引申,探索概念
(一)观察探究:
1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.
2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)
归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。
3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们来看课本96页思考的两个问题,通过观察、思考、讨论后回答:(二)归纳概念:
一般地,在一个变化过程中,如果有两个变量
....x与
y,并且对于x•的每一个确定的值,y•都有唯一
..确定的
值与其对应
....,•那么我们就说x•是_________,y是x的________.如果当x=a时y=b,那么b•叫做当自变量的值为a时的_________.
活动三:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子,这样的识字叫做函数解析式。
(2)指出自变量x 的取植范围。
(3)汽车行驶200km时,油箱中还有多少汽油?
二、预习检测
1、若球体体积为V,半径为R,则V=
3
4
R3.其中变量是_______、•_______,常量是________.自变量是,是的函数,R的取值范围是
2、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高L与年数n之间的函数关系式__________.其中变量是_______、•_______,常量是________.自变量是,是的函数,n 的取值范围是
3、已知2x-3y=1,若把y看成x的函数,则可以表示为___________.其中变量是_____、•_____,常量是________.自变量是,是的函数,x 的取值范围是
4、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、•_______,常量是________.自变量是,是的函数,t的取值范围是
三、当堂训练
1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()
A.Q=8x B.Q=8x-50 C .Q=50-8x D.Q=8x+50
2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()
A.S是变量 B.t是变量 C.v是变量
D.S是常量
3.在一个变化过程中,__________________的量是变量,•________________的量是常量.
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.
x与y之间的关系是_____________.
5.长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为___________,则这个问题中,___________常量;_________是变量.
6.写出下列问题中的关系式,并指出其中的变量和常量.
(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.
(2)直角三角形中一个锐角α与另一个锐角β
之间的关系.
(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨).四、学习体会:
1、本节课你有哪些收获?
2、你还有什么问题或想法需要和大家交流?。