8、三角形内角和2----
2.三角形的内角外角及正多边形的内角和

三角形的内角外角及多边形的内角1.三角形内角与外角定理及性质⑴三角形的内角和定理:三角形的内角和为180°,直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个外角和与之相邻的内角互补.例1.如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.例2.如图,有一块直角三角板XYZ放置在△ABC中,三角板的两条直角边XY和XZ恰好分别经过点B 和点C.(1)若∠A=30°,则∠ABX+∠ACX的大小是多少?(2)若改变三角板的位置,但仍使点B、点C在三角板的边XY和边XZ上,此时∠ABX+∠ACX的大小有变化吗?请说明你的理由.例3.如图,求证:∠BOC=∠A+∠B+∠C.变式练习1.如图,∠1+∠2+∠3+∠4的度数为________.2.如图,点D,E分别是AB,AC上的点,连接BE,CD,若∠B=∠C,则∠AEB与∠ADC的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEB C.∠ADC<∠AEB D.不确定第2题第3题3.如图,B处在A处的南偏西60°方向,C处在A处的南偏东20°方向,C处在B处的正东方向,求∠ACB 的度数4.如图,已知在△ABC中,∠ABC与∠ACB的平分线相交于点O,若∠BOC=140°,求∠A的度数.5.如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为第5题第7题第8题6.已知△ABC中,∠A,∠B,∠C的外角度数之比为2∶3∶4,则这个三角形是()A.直角三角形B.等边三角形C.钝角三角形D.等腰三角形7.如图,∠1、∠2、∠3、∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠34.如图,△ABC中,∠B和∠C的外角平分线相交于点D,则∠BDC=()A.12(90°-∠A) B.90°-∠A C.12(180°-∠A) D.180°-∠A1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.2.多边形的内角:多边形相邻两边组成的角叫做它的内角.3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.6.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,7公式(1)多边形内角和公式:n 边形的内角和等于(2)n -·180° (2)多边形的外角和:多边形的外角和为360°.(3)多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例 4.下列说法:①等腰三角形是正多边形;②等边三角形是正多边形;③长方形是正多边形;④正方形是正多边形.其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个例5.如图,△ABC ,△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点,若AB =4时,则图形ABCDEFG 外围的周长是( ) A .12 B .15 C .18 D .21变式练习1.一个正多边形的一个内角为162°,则这个多边形的边数为 .2.过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,则(m -k)n 为多少?3. 如图,图中分别是正方形、正五边形、正六边形,试求出∠1,∠2,∠3的度数。
北师版小学四年级数学下册《认识三角形和四边形》第4课时 探索与发现:三角形的内角和(2)

二、新知探究1.出示回题1:猜一猜,可能是什么三角形?引导学生读题,理解题意。
师:谁来说说图意?生:图中有一个三角形,已知其中的两个角分别是60°和40°,让我们猜猜是什么三角形,要根据三个角的情况来判断。
师:请同学们自由猜一猜,在小组里说一说自己的理由。
教师巡视指导,收集学生的想法。
师:只知道两个角的度数,能不能判断是什么三角形?学生小组讨论,发表自己的见解。
生:必须知道三角形中最大的角是什么角。
师:已知这个三角形的两个角分别是60°和40°,求第三个角的度数如何计算?预设生:180°-60°-40=80°。
(板书)师:这是个什么三角形?你是怎么判断的?生:这个三角形中的最大的角是80,是锐角,这是一个锐角三角形。
(板书)2.出示问题2:你还能猜出是什么三角形吗?师:你能根据情境图中的信息,猜出是什么三角形吗?说说你的想法。
独立思考后,全班交流。
预设:180°-60°=120°可能是钝角三角形,也有可能是锐角三角形或直角三角形,还有可能是等边三角形。
[设计意图]通过学生自主探究解决问题的方法,展示研究结果,和其他学生形成成果共享,有利于突出教学重点,突破难点,让学生亲历知识的形成过程,最终形成数学结论,能更好地理解和掌握知识,同时通过交流数学知识藴藏的规律,用到的数学思想,增强学生学习数学的兴趣。
三、巩固练习1.出示随堂练习第1题。
学生独立完成,同桌互说。
2.出示填出下面各角的度数。
看谁算得准,全班交流思考过程。
3.挑战自我:探索四边形内角和。
四、课堂总结师:这节课你们学了什么知识?有什么收获?。
《三角形的内角和》评课稿2篇

《三角形的内角和》评课稿《三角形的内角和》评课稿2篇三角形的内角和是四年级下册第五单元的内容,是在学生认识三角形的特征、分类的基础上进行教学的,主要通过不同形式的动手操作验证三角形的内角和的度数。
一、亮点1.注重数学思想方法的渗透。
在教学中,孔石蕾老师首先通过猜想,让学生通过量一量锐角三角形、直角三角形和钝角三角形每个角的度数,有的学生得到三角形的内角和正好是180°,有的大于180°,而有的则小于180°,由此让学生去想办法去验证三角形的内角和的度数。
在验证的过程中,学生采用了把三角形的三个角撕下来拼成直角的方法、把三角形的三个角折成平角的方法得出了三角形的内角和是180度,接着教师又通过动画演示操作和几何画板的量角的优势,让学生清晰地看出三角形内角和的度数是180度,最后又应用这一知识进行了综合的练习。
在整个教学过程中,教师采用了猜想、验证、得出结论、应用的四个探究环节,让学生经历了知识的发生、发展过程,提高了解决问题的能力。
2.精心准备,精彩呈现。
在教学过程中,孔石蕾老师在课件的制作,几何画板的应用、知识材料的拓展、习题的选择等方面进行了精心设计和准备,教学过程流畅、教学环节紧凑,教学语言清晰,有效地达成了教学目标,使学生在学习的过程中不仅掌握了知识,也掌握了学习数学的方法。
二、建议在教学过程中,可以适当的进行知识的延伸拓展,如通过学习三角形的内角和对于后续的学习有什么影响,可以想到四边形的内角和等等方面的内容。
“三角形的内角和”是人教版小学四年级下册第五单元第四节的内容。
学生已经具备一定的关于三角形的认识的直接经验,形成了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
在教学设计过程中,周老师充分采用“挖掘教材资源,创造性的应用教材”这一数学策略。
理清教材的内在联系,找准教材的知识脉络,预设出解决教材难点的策略。
这节课从学生已有的`经验出发,让学生亲身经历“三角形内角和”的猜想-验证-推理-小结-应用的全过程。
人教版八年级上册 三角形的内角第二课时课件

C
=180°-45°-90°=45°
Hale Waihona Puke ∴∠ACB=∠ACD-∠BCD
=60°- 45° =15°
A
B
D
三、研学教材 知识点二 直角三角形的两个锐角的关系
1、直角三角形可以用符号__R_t_△__ 表 示,直角三角形ABC可以写成 _R_t_△__A_B_C___.
三、研学教材
知识点二 直角三角形的两个锐角的关系
三、研学教材
认真阅读课本第12页到第14页 的内容,完成下面练习并体验 知识点的形成过程。
三、研学教材
知识点一 三角形内角和定理的应用 例2 如右下图,C岛在A岛的北偏东50°方 向,B岛在A岛的北偏东80°方向,C岛在B 岛的北偏西40°方向.从B岛看A、C两岛的 视角∠ABC是多少度?从C岛看A、B两岛的 视角是多少度?
三、研学教材
2、已知:如图,△ABC中,∠A+∠B=90°. A 求证:△ABC是直角三角形.
证明:∵∠A+∠B+∠C=__1_8_0__°
( 三角形内角和定理 ) 又∵∠A+∠B=90°
B
C
∴∠C=180°-___9_0__°=___9_0__°
∴△ABC是__直__角___三角形
结论: 有两个角互余的三角形是__直__角__三角形
=180°- 60°- 30°=90° :
答:从B岛看A、C两岛的视角∠ABC是60°, 从C岛看A、B两岛的视角是90°.
三、研学教材 知识点一 三角形内角和定理的应用
解:过点C画CF//AD ∠CAD=50°∠CBE=40° ∴∠1=∠CAD=50° ∵CF//AD, AD//BE ∴CF//BE ∴∠2=∠CBE=40° ∴∠ACB=∠1+∠2=50°+40°=90°
人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)

人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°2.如右图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°3.如右图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3 C.∠1=∠4 D.∠1=30°4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°5.如右图△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于.7.如右图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是.9.如右图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.12.解方程组:.参考答案一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°【分析】根据直角三角形的两锐角互余计算即可.【解答】解:在Rt△ABC中,∠B=90°,∠C=35°,则∠A=90°﹣35°=55°,故选:C.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.2.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°【分析】根据直角三角形的性质求出∠AEB的度数,根据对顶角相等求出∠DEC,根据直角三角形的两个锐角互余计算即可.【解答】解:∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.3.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3C.∠1=∠4D.∠1=30°【分析】根据垂直得出∠ADC=∠BDC=90°,再根据直角三角形的性质逐个判断即可.【解答】解:A.∵∠ACB=90°,∴∠1+∠2=90°,故本选项不符合题意;B.∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∵∠1+∠2=90°,∴∠2=∠3,故本选项不符合题意;C.∵CD⊥AB,∴∠BDC=90°,∴∠2+∠4=90°,∵∠1+∠2=90°,∴∠1=∠4,故本选项不符合题意;D.根据已知条件不能推出∠1=30°,故本选项符合题意;故选:D.【点评】本题考查了垂直定义和直角三角形的性质,注意:直角三角形的两锐角互余.4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:B.【点评】本题考查的是直角三角形的性质,熟知直角三角形的性质是解答此题的关键.5.△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°【分析】根据三角形的内角和∠B=60°,根据角平分线的定义得出∠BAE=45°,根据直角三角形的两锐角互余得出∠BAD=30°,即可根据角的和差得解.【解答】解:∵∠BAC=90°,∠B=2∠C,∴∠B=60°,∵AD⊥BC,AE平分∠BAC,∴∠ADB=90°,∠BAE=∠BAC=45°,∴∠BAD=90°﹣60°=30°,∴∠DAE=45°﹣30°=15°.故选:D.【点评】此题考查了直角三角形的性质,熟记直角三角形的两锐角互余是解题的关键.二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于75°.【分析】根据直角三角形的两锐角互余列式计算即可.【解答】解:∵直角三角形的一个锐角为15°,∴另一个锐角=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.7.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.【点评】本题考查平行线的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是36°.【分析】根据比例设两锐角分别为2k、3k,然后利用直角三角形两锐角互余列方程求解即可.【解答】解:设两锐角分别为2k、3k,由题意得2k+3k=90°,解得k=18°,所以较小锐角的度数为18×2=36°.故答案为:36°.【点评】本题考查了直角三角形的性质,解题时注意:在直角三角形中,两个锐角互余.9.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是40°.【分析】根据角平分线的定义得∠CAB=40°,由直角三角形的性质计算即可得解.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.【点评】本题考查了角平分线的定义和直角三角形的性质,熟记性质是解题的关键.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=90°.【分析】如图,连接两交点,根据两直线平行,同旁内角互补和直角三角形两锐角互余的性质解答.【解答】解:如图,连接两交点,根据矩形两边平行,得∠1+∠2+∠3+∠4=180°,又矩形的角等于90°,∴∠3+∠4=90°,∴∠1+∠2=180°﹣90°=90°.故答案为:90.【点评】本题主要考查平行线的性质和直角三角形两锐角互余的性质.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.【分析】根据同角的余角相等求出∠BHD=∠C,从而得解.【解答】解:∵AD是△ABC的高,∴∠BHD+∠HBD=90°,∵BE是△ABC的高,∴∠HBD+∠C=90°,∴∠BHD=∠C,∵∠C=50°,∴∠BHD=50°.【点评】本题考查了直角三角形两锐角互余的性质,同角的余角相等的性质,熟记性质并准确识图是解题的关键.12.解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=8,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
人教新课标四年级下册数学教案三角形的内角和2

三角形的内角和设计思路:遵循由特殊到一般的规律进行探讨活动是这节课设计的主要特点之一。
先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。
接着让学生猜想是不是所有的三角形的内角和是180°。
学生通过用量的方式得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此取得三角形的内角和是180°的结论。
接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培育学生科学实验的态度,培育学生的统计观念。
接着向学生渗透数学文化。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,慢慢加深。
整堂课让学生通过小组合作学习,经历探究知识的进程,明白解决问题策略的多样化。
培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。
让学生体验数学学习的快乐。
教材分析:依据是《新课程标准》(实验稿)。
新课标中,分两个阶段分层写进了“三角形内角和”:1.在第二学段“几何与图形”第七条中说:“通过观察、操作了解三角形内角和是180°”;2.在第三学段“空间与图形”第4条第3点中说:“利用同位角、对角相等的大体事实证明三角形的内角和定理。
三角形的内角和是三角形的一个重要特征。
本课是安排在三角形的概念及分类以后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。
教材很重视知识的探索与发现,安排了一系列的实验操作活动。
教材呈现教学内容时,不但重视表现知识的形成进程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清楚的思路。
概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
2022年北师七下《三角形的内角和2》同步练习(附答案)

1.几位同学用三根木棒拼成的图形如下图,那么其中符合三角形定义的是()2.如图,过A,B,C,D,E五个点中任意三点画三角形.(1)其中以AB为一边可以画出____________个三角形;(2)其中以C为顶点可以画出____________个三角形.3.如图,以CD为公共边的三角形是____________;∠EFB是____________的内角;在△BCE中,BE所对的角是____________,∠CBE 所对的边是____________;以∠A为公共角的三角形是____________.△ABC中,假设∠A=95°,∠B=40°,那么∠C的度数为()A.35°B.40°C.45°D.50°△ABC中,∠A∶∠B∶∠C=3∶4∶5,那么∠C等于()A.45°B.60°C.75°D.90°6.如图,在△ABC中,点D,E,F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°,那么∠EFD等于()A.80°B.75°C.70°D.65°7.在一个直角三角形中,有一个锐角等于60°,那么另一个锐角的度数是()A.120°B.90°C.60°D.30°8.(如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A作直线l 的垂线交直线b于点C,假设∠1=58°,那么∠2的度数为()A.58°B.42°C.32°D.28°9.如图,将一块含有30°角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°△ABC中,∠A=20°,∠B=60°,那么△ABC的形状是() 11.如下图的三角形被木板遮住了一局部,这个三角形是()12.根据以下条件,判断△ABC的形状.(1)∠A=40°,∠B=80°;(2)∠A∶∠B∶∠C=2∶3∶7.提升训练13.如图,在△ABC中,D,E是BC,AC上的点,连接BE,AD,交于点F,问:(1)图中有多少个三角形并把它们表示出来.(2)△BDF的三个顶点是什么三条边是什么(3)以AB为边的三角形有哪些(4)以F为顶点的三角形有哪些14.如图,请猜测∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.15.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EP平分∠BEF,FP平分∠DFE.试说明:△PEF是直角三角形.16.(1)如图①,CD是直角三角形ABC斜边AB上的高,图中有与∠A相等的角吗为什么(2)如图②,把图①中的CD平移到ED处,图中还有与∠A相等的角吗为什么(3)如图③,把图①中的CD平移到ED处,交BC的延长线于点E,图中还有与∠A相等的角吗为什么参考答案1.【答案】D2.【答案】(1)3(2)6解:(1)其中以AB为一边可以画出3个三角形,分别为△ABE,△ABD,△ABC;(2)其中以C为顶点可以画出6个三角形,分别为△ABC,△BCD,△BCE,△ADC,△DEC,△ACE.3.【答案】△CDF与△BCD;△BEF;∠BCE;CE;△ABD,△ACE和△ABC4.【答案】C5.【答案】C6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】D12.解:(1)∠C=180°-∠A-∠B=60°,因为40°<60°<80°<90°,所以△ABC是锐角三角形.(2)设∠A=2x,∠B=3x,∠C=7x,那么2x+3x+7x=180°,解得x=15°.所以∠C=7×15°=105°.所以△ABC是钝角三角形.13.解:(1)8个:△ABC,△ABF,△ABE,△ABD,△BDF,△AEF,△ACD,△BCE(2)三个顶点:B,D,F三条边:BD,BF,DF(3)△ABC,△ABF,△ABD,△ABE(4)△ABF,△BDF,△AEF14.解:猜测:∠A+∠B+∠C+∠D+∠E+∠F=360°.理由:因为∠A+∠B+∠AMB=180°,∠AMB+∠BMP=180°,所以∠BMP=∠A+∠∠ENM=∠E+∠F,∠MPC=∠C+∠∠BMP+∠ENM+∠MPC=(180°-∠NMP)+(180°-∠MNP)+(180°-∠MPN)=540°-(∠NMP+∠MNP+∠MPN)=360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.分析:此题不能直接求出每个角的度数,但可将这些角放置在不同三角形中,根据三角形内角和等于180°和补角的定义,得出∠BMP=∠A+∠B,∠ENM=∠E+∠F,∠MPC=∠C+∠D,然后运用这些条件并结合三角形内角和等于180°和补角求出∠A+∠B+∠C+∠D+∠E+∠转化思想和整体思想.15.解:因为AB∥CD,所以∠BEF+∠DFE=180°.又因为EP平分∠BEF,FP平分∠DFE,所以∠PEF=∠BEF,∠PFE=∠DFE.所以∠PEF+∠PFE=(∠BEF+∠DFE)=90°. 又因为∠PEF+∠PFE+∠P=180°,所以∠P=90°.所以△PEF是直角三角形.16.解:(1)有.理由:因为CD⊥AB,所以∠B+∠BCD=90°. 因为∠ACB=90°,所以∠B+∠A=90°.所以∠BCD=∠A.(2)有.理由:因为ED⊥AB,所以∠B+∠BED=90°. 因为∠ACB=90°,所以∠B+∠A=90°.所以∠BED=∠A.(3)有.理由:因为ED⊥AB,所以∠B+∠E=90°.因为∠ACB=90°,所以∠B+∠A=90°.所以∠E=∠A.第四章三角形一、选择题1.以下长度的三条线段能组成三角形的是〔〕A. 5cm 2cm 3cmB. 5cm 2cm 2cmC. 5cm 2cm 4cmD. 5cm 12cm 6cm2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是〔〕A. 带①去B. 带②去C. 带③去D. ①②③都带去3.不能判定两个三角形全等的条件是〔〕A. 三条边对应相等B. 两角及一边对应相等C. 两边及夹角对应相等D. 两边及一边的对角相等4.一个角的平分线的尺规作图的理论依据是〔〕A. SASB. SSSC. ASAD. A AS5.三角形两条边分别为3和7,那么第三边可以为〔〕A. 2B. 3C. 9D. 1 06.以下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】

归纳
三角形的外角应具备的条件:
(1)角的顶点是三角形的顶点; (2)角的一边是三角形的一边; (3)另一边是三角形中一边的延长线.
要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.
证明:∵∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和), ∠B=∠C (已知), ∴∠C= ∠EAC(等式的性质). ∵AD平分 ∠EAC(已知). ∴∠DAC= ∠EAC(角平分线的定义). ∴∠DAC=∠C(等量代换). ∴AD∥BC(内错角相等,两直线平行).
2.如图,AB//CD,∠A=37°,∠C=63°,那么∠F等于 ( ) A.26° B.63°C.37° D.60°
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,∵ ∠ABD=28° ,∠BEC=91°,∴ ∠BFC=119°.
解:
F
A
C
D
E
B
三角形内角和定理
三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角. 注意:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.
教科书 第183页习题7.7 第2、3题
三角形内角和定理第2课时
准备好了吗?一起去探索吧!
三角形内角和定理
1.了解三角形外角的定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理的推论即外角的两个定理进行几何证明与计算.3.引导学生从内和外、相等和不等的不同角度对三角形的角作全面的思考,体会几何中简单不等关系的证明.4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.
《三角形的内角和》教案

《三角形的内角和》教案《三角形的内角和》教案1一、学生知识状况分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.二、教学任务分析上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。
为此,本节课的教学目标是:知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.三、教学过程分析本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。
想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。
想一想,如果只剪下一个角呢?活动目的:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
初中数学人教版八年级上册11三角形的内角和(2课时) 教案

11.2与三角形有关的角三角形的内角第1课时三角形的内角和一、教学目标1.探索并掌握三角形内角和定理.2.学会运用三角形内角和定理.二、教学重难点1.三角形内角和定理.2.三角形内角和定理的推导过程.三、教学设计◆活动1新课导入1.问题:三角形的内角和是多少度?2.在直角△ABC中,∠C=90°,则∠A与∠B的关系是____∠A+∠B=90°__.3.三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为__100°__.本节课我们一起学习有关三角形内角和的有关知识.◆活动2探究新知1.现在有一副三角板.提出问题:(1)每个三角板的每个角各是多少度?(2)每个三角板三个内角的和各是多少度?(3)猜一猜,任意一个三角形的三个内角和都相同吗?等于多少度?学生完成并交流展示.2.教材P11探究.提出问题:(1)在图(1)中,直线l与△ABC的边BC有什么关系?(2)在图(2)中,直线l与△ABC的边AB有什么关系?(3)利用图(1)或图(2)能证明三角形的内角和定理吗?这样证明的依据是什么?(4)你还能想出其他方法证明三角形的内角和定理吗?学生完成并交流展示.◆活动3知识归纳三角形的内角和定理:__三角形三个内角的和等于180°__.◆活动4例题与练习例1教材P12例1.例2教材P12例2.例3若△ABC的一个内角∠A是另一个内角∠B的23,也是第三个内角∠C的45,求△ABC三个内角的度数.解:依题意,得∠A=23∠B,∠A=45∠C,∴∠B=32∠A,∠C=54∠A.∵∠A+∠B+∠C=180°,∴∠A+32∠A+54∠A=180°,∴∠A=48°,∠B=72°,∠C=60°.例4如图,将△ABC沿EF折叠,使点C落在点C′处,试探求∠1,∠2与∠C的数量关系.解:由折叠的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE.∴∠1=180°-2∠CEF,∠2=180°-2∠CFE,∴∠1+∠2=360°-2(∠CEF+∠CFE)=360°-2(180°-∠C)=2∠C,即∠1+∠2=2∠C.练习1.教材P13练习第1,2题.2.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(C) A.80° B.70° C.60° D.50°(第2题图)(第3题图) 3.如图,AB∥CD,AD平分∠BAC.若∠BAD=70°,则∠ACD的度数是(A)A.40° B.35° C.50° D.45°4.当三角形中的一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__30°__.5.如图,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC 的度数.解:∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP,∴∠2+∠BCP=∠2+∠ABP=∠ABC=70°,∴∠BPC=180°-(∠2+∠BCP)=180°-70°=110°.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结三角形的内角和定理.四、作业和反思1.作业布置(1)教材P16习题11.2第3,9题;(2)《名师测控》对应课时练习.2.教学反思第2课时直角三角形的两个锐角互余一、教学目标1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.二、教学重难点1.了解直角三角形两个锐角的关系,掌握直角三角形的判定.2.掌握直角三角形的判定,会运用直角三角形的性质和判定进行相关计算.三、教学设计◆活动1新课导入三角形中求角的度数问题,当角之间存在数量关系时,一般根据三角形内角和为180°建立方程来解决.◆活动2探究新知1.教材P13练习下面的内容.提出问题.(1)在△ABC中,∠C=90°,∠A与∠B之间有什么关系?(2)你能证明吗?如何证明?学生完成并交流展示.2.在△ABC中,若∠B+∠A=90°,那么△ABC是什么形状的三角形?并说明理由.学生完成并交流展示.◆活动3知识归纳1.直角三角形的两个锐角__互余__.2.有两个角互余的三角形是__直角__三角形.◆活动4例题与练习例1教材P14例3.例2如图,点E是△ABC中AC边上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴△ADE是直角三角形,∴∠1+∠A=90°.又∵∠1=∠2,∴∠2+∠A=90°,∴∠C=180°-(∠2+∠A)=180°-90°=90°,∴△ABC是直角三角形.例3(1)如图①,在△ABC中,AD⊥BC于点D,CE⊥AB于点E.试猜测∠1与∠2的关系,并说明理由;(2)如图②,在△ABC中,如果∠BAC是钝角,BD⊥AC于点D,CE⊥AB于点E,那么(1)中的结论是否仍然成立?请说明理由.解:(1)∠1=∠2.理由如下:∵AD⊥BC,CE⊥AB,∴△ABD和△BCE都是直角三角形,∴∠1+∠B=90°,∠2+∠B=90°,∴∠1=∠2;(2)结论仍然成立.理由如下:∵BD⊥AC,CE⊥AB,∴∠D=∠E=90°,∴∠1+∠4=90°,∠2+∠3=90°.又∵∠3=∠4,∴∠1=∠2.练习1.教材P14练习第1,2题.2.如图,在△ABC中,AD是边BC上的高,BE平分∠ABC交边AC于点E,∠BAC=60°,∠ABE=25°,则∠DAC的度数是(B)A.15° B.20° C.25° D.30°(第2题图)(第3题图) 3.如图,将有一块含有60°角的直角三角板的两个顶点分别放在长方形的对边上.如果∠1=18°,那么∠2的度数是__12°__.4.如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,试说明△EPF为直角三角形.解:∵AB∥CD,∴∠BEF+∠DFE=180°.∵EP为∠BEF的平分线,FP为∠DFE的平分线,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°,∴△EPF为直角三角形.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.直角三角形的性质——两锐角互余.2.直角三角形的判定——有两角互余的三角形是直角三角形.四、作业与反思1.作业布置(1)教材P16习题11.2第4,10题;(2)《名师测控》对应课时练习.2.教学反思。
三角形内角和与外角

三角形内角和定理的证明知识梳理:一.三角形内角和定理:三角形的内角和等于180°.符号表示:△ABC中,∠A+∠B+∠C=180°.变式:∠A=180°-∠B-∠C.谈重点三角形内角和解读(1)三角形内角和等于180°是三角形的一个重要性质.与三角形的具体形状或种类没有关系,即所有三角形的内角和都等于180°;(2)三角形内角和等于180°是三角形本身固有的一个隐含条件,在有关角的计算或日常生活中应用广泛;(3)利用定理在三角形中已知两角可求第三角,或已知各角的关系求各角;(4)三角形内角和的一个重要结论:直角三角形的两个锐角互余.例:1、在一个三角形中,下列说法错误的是().A.可以有一个锐角和一个钝角B.可以有两个锐角C.可以有一个锐角和一个直角D.可以有两个钝角2、已知一个三角形三个内角度数的比是1∶5∶6,则其最大内角的度数为().A.60°B.75°C.90°D.120°3、一副三角板(分别含45°角和60°角)如图1叠放在一起,求图中∠α的度数。
分析:欲求∠α的度数,需先求出∠BAE,而∠BAE+∠B=∠FED,求∠BAE要用三角形外角的性质。
二.三角形的外角(1)定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.如图所示,∠ACD和∠BCE是△ABC的两个外角,而∠DCE不是三角形的外角.(2)三角形外角的特征三角形的外角特征:①顶点是三角形的一个顶点;②外角的一边是三角形的边;③外角的另一条边是三角形某条边的延长线.(3)三角形外角的实质是一个内角的邻补角,两个角的和等于180°.如上图中,∠ACB+∠ACD=180°.三角形外角定理:三角形的一个外角等于与他不相邻的两个内角的和。
如刚才的例子,∠ACD=∠A+∠B。
试证明之:例:1、如图所示,∠1为三角形的外角的是().2、如图所示,在△ABC中D是AC延长线上的一点,∠BCD等于()A.72°B.82°C.98°D.124°(1)如右图所示,△ABC中,AB=AC,BD是∠ABC的平分线,若∠ADB=93•°,•则∠A=_________.3.(2)三角形的三个外角中,最多有______个锐角.3、已知△ABC中,点P是△ABC内的一点,连接BP、CP,试说明:∠BPC=∠ABP+∠ACP+∠A。
三角形内角和定义的概念

三角形内角和的定义1. 概念定义三角形内角和是指一个三角形内部的三个角度之和。
对于任意一个三角形ABC,其内角和可以表示为∠A + ∠B + ∠C,其中∠A、∠B、∠C分别代表三角形的三个内角。
2. 重要性三角形内角和是几何学中一个非常重要的概念,它具有以下重要性:(1)三角形内角和定理三角形内角和定理是几何学中的基本定理之一,它指出任意一个三角形的内角和等于180度。
即∠A + ∠B + ∠C = 180°。
这个定理的证明可以通过直角三角形的角度和为180度来推导,或者通过平行线和同位角的性质来证明。
这个定理在解决三角形相关问题时非常有用,可以用来求解三角形内角的大小、判断三角形的形状等。
(2)三角形分类根据三角形内角和的大小,可以将三角形分为不同的类型,如锐角三角形、直角三角形和钝角三角形。
锐角三角形的内角和小于180度,直角三角形的内角和等于180度,钝角三角形的内角和大于180度。
通过三角形内角和的分类,可以更好地理解三角形的性质和特点。
(3)三角形面积计算三角形内角和与三角形的面积之间存在一定的关系。
根据三角形的面积公式S =0.5 * a * b * sinC,其中a、b分别为三角形的两边长,C为夹角,可以通过已知的两边长和夹角来计算三角形的面积。
而夹角C可以通过三角形内角和定理计算得到,即C = 180° - ∠A - ∠B。
因此,三角形内角和在计算三角形的面积时起到了重要的作用。
(4)解决几何问题在解决几何问题时,经常需要利用三角形内角和的性质来推导和求解。
例如,可以利用三角形内角和定理来证明两条直线平行、判断三角形的形状、证明两个三角形相似等。
通过运用三角形内角和的概念,可以更好地解决与三角形相关的几何问题。
3. 应用举例三角形内角和的概念在实际问题中有广泛的应用。
以下举例说明:(1)地理测量在地理测量中,经常需要计算地球表面上的三角形的内角和。
例如,在测量地球上两个地点的距离时,可以利用地球的曲率和两个地点的经纬度来构成一个三角形,然后通过计算三角形的内角和来计算两个地点之间的距离。
三角形的内角和的教学设计一等奖

1、三角形的内角和的教学设计一等奖篇一:(最新苏教版优质课教学设计)三角形的内角和三角形的内角和教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3.使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:探究和验证“三角形内角和等于180°”。
教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:一、创设情境,产生疑问1.理解内角和含义。
2.故事激趣提问:三兄弟围绕什么问题在争吵?你有什么看法?二、自主学习,合作探究1.提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2.进行验证。
(1)验证教师提供的三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800 吗?有谁验证出来不是1800 的吗?提问:你又能得到什么结论?还有怀疑吗?3.得出结论。
完整版三角形的内角和与外角和关系基础知识讲解

三角形的内角和与外角和关系(基础)知识讲解【学习目标】1理解三角形内角和定理的证明方法;2•掌握三角形内角和定理及三角形的外角性质;3•能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题【要点梳理】要点一、三角形的内角和1. 三角形内角和定理:三角形的内角和为180° •2. 结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1 •定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角•如图,/ ACD是△ ABC的一个外角.L L)要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2 )三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2. 性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据•另外,在证明角的不等关系时也常想到外角的性质.3. 三角形的外角和:三角形的外角和等于360° .要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180° ,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1 .证明:三角形的内角和为180° .【答案与解析】解:已知:如图,已知△ ABC求证:/ A+Z B+Z C= 180° .••• AB // CD (已作),••• /仁/A (两直线平行,内错角相等)/ B=/ 2 (两直线平行,同位角相等) 又•••/ ACB+/ 1 + / 2=180°(平角定义), •••/ ACB+/ A+/ B=180。
8年级上数学公式及定理

初二数学上册【公式定理】,期末复习必看八上数学第一章:三角形1、三角形三条边的关系 ( AB+AC>BC)定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边2、三角形内角和定理:三角形三个内角的和等于180° 。
推论1 直角三角形的两个锐角互余。
.推论2 三角形的外角等于和它不相邻的两个内角的和。
推论3 三角形的一个外角大于与它不相邻的每一个内角。
推论4 三角形的外角和等于360°。
3、多边形内角和定理:n边形的内角的和等于(n - 2)×180° 。
推论:任意多边形的外角和等于360°。
第二章全等三角形4、全等三角形性质:全等三角形的对应边相等,全等三角形的对应角相等。
全等三角形的判定:①边边边公理(SSS)三边分别相等的两个三角形全等。
②边角边公理(SAS)两边和它们的夹角分别相等的两个三角形全等。
③角边角公理(ASA)两角和它们的夹边分别相等的两个三角形全等。
④角角边推论(AAS)两角和其中一个角的对边分别相等的两个三角形全等。
⑤斜边、直角边公理(HL)斜边和一条直角边分别相等的两个直角三角形全等。
5、角的平分线①性质定理:角的平分线上的点到这个角的两边的距离相等。
几何语言: ∵OC是∠AOB的角平分线(或者∠AOC=∠BOC) PE⊥OA,PF⊥OB ,点P在OC上∴PE=PF(角平分线性质定理)②判定定理 :角的内部到角的两边的距离相等的点,在角的平分线上。
几何语言: ∵PE⊥OA,PF⊥OB PE=PF ∴点P在∠AOB的角平分线上(角平分线判定定理)第三章轴对称6、轴对称性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
7、线段的垂直平分线①定理: 线段垂直平分线上的点与这条线段两个端点的距离相等。
几何语言: ∵MN⊥AB于C,AB=BC,(MN垂直平分AB), 点P为MN上任一点∴PA=PB(线段垂直平分线性质)②逆定理 :与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计 1 教学内容:本节课的教学内容是义务教育课程标准试验教科书数 学四班级下册第五单位的第四课时《三角形的内角和》,主要内容是: 验证三角形的内角和是 180°等。 教学内容分析:三角形的内角和是 180 是三角形的一个重要性质, 它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的 基础。 教学对象分析:作为四班级的学生已有肯定的生活阅历,在平常 的生活中已经接触到三角形,在尊重学生已有的学问的基础上和利用 他们已把握的学习方法,老师把课堂教学组织生动、活泼,突出学问 性、趣味性和生活性,使学生能在轻松开心的气氛中学习。 教学目标: 1、学问目标:学生通过量、剪、拼、摆等操作学具活动,找到 新旧学问之间的联系,主动把握三角形内角和是 180°,并运用所学 学问解决简洁的实际问题。 2、能力目标:培养学生的观察、归纳、概括能力和初步的空间 想象力。 3、情感目标:培养学生的创新意识、探究精神和实践能力,在 学生亲自动手和归纳中,感受到理性的美。 教学重点:理解并把握三角形的内角和是 180°。
第 7 页 共 71 页
就是∠1+∠2+∠3=180°,借助图像 ∠2=180°-∠1-∠3 或∠2=180°-(∠1+∠3) =180°-140°-25°=180°-(140°+25°) =40°-25°=180°-165° =15°=15° 2、一个等腰三角形的顶角是 80°,它的两个底角各是多少度? 学生分析:因为等腰三角形的两个底角相等,又因为三角形的内
教学目标 1、通过试验、操作、推理归纳出三角形内角和是 180°。 2、能运用三角形的内角和是 180°这一规律,求三角形未知角 的度数并运用解决实际生活问题。 3、通过拼摆,感受数学的转化思想。 教学重点 探究发觉和验证“三角形的内角和 180 度”。 教学难点 验证三角形的内角和是 180 度。 教学预备 多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量 角器等。
三角形的所有性质

三角形的性质1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。
直角三角形斜边的中线等于斜边的一半。
5.三角形共有六心:三角形的内心、外心、重心、垂心、欧拉线内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点性质:到三边的距离相等。
界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。
性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。
欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
6.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。
7.一个三角形最少有2个锐角。
8.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线9.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。
10.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a??+b??=c??那么这个三角形就一定是直角三角形。
三角形的边角之间的关系(1)三角形三内角和等于180°;(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形两边之和大于第三边,两边之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边. (6)三角形中的四条特殊的线段:角平分线,中线,高,中位线. (7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等. (8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等. (9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
初中数学有关三角形的公理和定理

初中数学有关三角形的公理和定理
一、一般性质
1、三角形内角和定理:三角形的内角和等于180°
2、三角形外角的性质:
①三角形的一个外角等于与它不相邻的两个内角的和;
②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°
3、三边关系:
(1)两边之和大于第三边;
(2)两边之差小于第三边
4、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
5、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
6、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
二、特殊性质:
7、等腰三角形、等边三角形
(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线
和底边上的高互相重合
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形
8、直角三角形:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲
三角形内角和(二)
一、例题学习:
(五年级)
班级
姓名
1、例 3,如图△ABC 是直角等腰三角形,在△底边上又有一个等腰三角形 BEC ,∠ A ABE=100,求等腰三角形 BEC 各内角的度数。
A
2、试一试:在正三角形 ABC 中,∠1=∠2=∠3=∠4, 求∠5 的度数。
A
3、例 4,如图:直角△ABC 与△ADE 如图重叠,∠ADE=200
, ∠ACB=400
,求:∠AED 的度数。
C
4、试一试,如图,三角形 ABC 是直角三角形,三角形 EBC 是 等腰三角形,已知∠1=600
,∠2=700
,求∠3 和∠4 的度数。
A
600
E
900
∠3
D
∠4
700
B
C
二、课堂练习:
1、如图,在等腰三角形 ABC 中,BD 是∠B 是平分线,
求∠BDC 的度数。
E
100
B C
5
1
3 2
4
B
C
1000
B
C
D
A
第八讲
2、如图直角△ABC 中,有一个正方形BDEF,已知∠1=250,A
第八讲1
求∠2,∠3,∠4 各是多少度?3
F E
2
4
B D C
3、如图,已知∠1=600,∠2=250,∠3=200,求∠4 的度数。
A
1
E
2 4 3
B C
4、如图所示,求∠1 和∠2 的度数。
1200
三角形内角和基本训练(二)
一、选择题:
1、有一个角是600 的()三角形是等边三角形。
A.任意B.等腰C.直角D.钝角
2、一个等腰三角形,一条边长10 厘米,另一条边5 厘米,第三条边的长度只能是()A.5 厘米B. 15 厘米C. 8 厘米D. 10 厘米
3、把一个大三角形分成两个小三角形,每个三角形的内角和是()
A.900 B. 1800 C. 3600 D. 2700
4、三角形中,已知一个内角是900,是另一个内角的2 倍,那第三个内角是()度。
A.900 B. 300 C. 450 D. 600
5、下面各图形的内角和是多少?
B C。