三角形内角和与外角和的专题训练
11.2.3三角形内角和与外角复习题
三角形内角和与外角练习题
1.已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC 的延长线上.试证明∠1<∠2.
2.如图,在△ABC中,AD,AE分别是△ABC的高线和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数;
(2)若∠B=α,∠C=β,用含α,β的式子表示∠DAE.
3.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_________;(2)仔细观察,在图2中“8字形”的个数:_________个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;
4.如图,在△ABC中,已知∠B=60°,∠C=30°,AE是△ABC角平分线,求:(1)作BC边上的高AD;
(2)∠DAE的度数.
5.如图,在△ABC中,已知∠B=40°,∠C=60°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
6.如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=48°,求∠BAC 的度数.。
《三角形的内角和及外角定理》热点专题高分特训(含答案)
A.40° B.24° C.50° D.45° 答案:A 解题思路:
试题难度:三颗星知识点:三角形外角定理 8.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC 的度数为()
A.30° B.45° C.60° D.75° 答案:A 解题思路:
试题难度:三颗星知识点:角度的计算 6.如图,一个直角三角形纸片 ABC,剪去直角后,得到一个四边形 GBCH, 则∠1+∠2=( )
A.90° B.180° C.240° D.270° 答案:D 解题思路:
试题难度:三颗星知识点:三角形的内角和 7.如图,在四边形 ABCD 中,∠A=62°,∠B=38°,∠BCD=140°,则∠D 的度数为) (
三角形的内角和及外角定理(人教版)
一、单选题(共 12 道,每道 8 分) 1.已知△ABC 中,∠B 是∠A 的 2 倍,∠C 比∠A 大 20°,则∠A 等于( ) A.30° B.40° C.60° D.80° 答案:B 解题思路:
试题难度:三颗星知识点:三角形内角和 2.如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线, 则∠CAD 的度数为( )
试题难度:三颗星知识点:三角形的内角和 4.如图,在△ABC 中,∠B=∠C,FD⊥BC 于点 D,DE⊥AB 于点 E,∠AFD=158°, 则∠EDF=( )
A.79° B.68° C.44° D.42° 答案:B 解题思路:
试题难度:三颗星知识点:角度的计算 5.如图,在△ABC 中,∠BAC=4∠1=4∠C,BD⊥CA 于点 D,则∠DBA=) (
A.40° B.45° C.50° D.55° 答案:A 解题思路:
试题难度:三颗星知识点:三角形的内角和 3.如图,在△ABC 中,AE 平分∠BAC,AD⊥BC 于点 D,若∠BAC=128°,∠C=36°,பைடு நூலகம்则∠DAE 的度数为( )
人教版八年级上册数学第11章 三角形 阶段题型专训 三角形内角和及内、外角关系应用的八种常见题型
应用:某零件如图②所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验 员量得∠BDC=145°时,就断定这个零件不合格.你能说出其中的道理吗?
解:如图,连接BC. 由上述结论得: 合格零件中∠BDC=∠A+∠ABD+∠ACD=143°, 又∵检验员量得∠BDC=145°≠143°,∴这个零件不合格.
2.如图,在△ABC中,点P是∠ABC,∠ACB的平分线的交点. (1)若∠A=80°,求∠BPC的度数.
解:∵BP,CP 分别为∠ABC,∠ACB 的平分线, ∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180° -80°)=50°. ∴∠BPC=180°-(∠PBC+∠PCB)=180°-50°=130°.
(2)求∠D的度数.
解:∵D 是外角∠ACH 与内角∠ABC 平分线的交点, ∴∠DCH=12∠ACH,∠DBC=12∠ABC, ∴∠D=∠DCH-∠DBC=12(∠ACH-∠ABC)=12∠A=30°.
8.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.
【点拨】连接CG,利用转化思想,将求∠1+∠2+∠3+∠4+∠5+∠6+∠7的 和转化为求多边形DCGFE的内角和.
解:如图,连接CG. 在△COG和△AOB中,∠COG=∠AOB, ∴∠6+∠7=∠OCG+∠OGC. 在五边形CDEFG中,∠1+∠2+∠3+∠4+∠5+∠OCG+∠OGC=540°, ∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.
专题训练七与三角形中内外角有关的计算全方位求角度讲课文档
度数是( B )
A.10°
B.15°
C.25°
D.30°
[解析] 因为∠B=45°,所以∠BAC=45°,所以∠EAF= 135°,所以∠AFD=135°+30°=165°,所以∠BFD=180°- ∠AFD=15°.故选 B.
图 7-ZT-1
第2页,共18页。
专题训练(七) 与三角形中内、外角有关的计算 ——全方位求角度
第15页,共18页。
专题训练(七) 与三角形中内、外角有关的计算
——全方位求角度
类型四 与截取或折叠有关的角度计算
14.如图 7-ZT-14,在△ABC 中,∠C=70°,若沿图中虚线截去 ∠C,则∠1+∠2 等于( B )
A.360° B.250° C.180° D.140°
图 7-ZT-14
第16页,共18页。
专题训练七与三角形中内外角有关的计算全方位求角度
第1页,共18页。
专题训练(七) 与三角形中内、外角有关的计算 ——全方位求角度
类型一 利用三角形内角和定理与外角定理求角度
1.一副分别含有 30°和 45°角的两个三角尺,拼成如图 7-ZT
-1 所示图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的
图 7-ZT-6
1
1
解:∠AEC=180°-(∠ECA+∠EAC)=180°-(2∠DAC+2∠ACF)
1
1
= 180 ° - 2 [(∠B + ∠BCA) + (∠B + ∠BAC)] = 180 ° - 2 (∠B + ∠BCA +
∠BБайду номын сангаасC+∠B)
=180°-12(180°+∠B)=70°.
第7页,共18页。
三角形内角和、外角定理(含详细解答)
三角形内角和、外角定理(含详细解答)-CAL-FENGHAI.-(YICAI)-Company One1三角形内角和、外角和定理一.选择题(共10小题)1.(2013?泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012?滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°4.(2012?云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°5.(2012?南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°6.(2012?梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°7.(2011?日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°8.(2011?台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°9.(2011?台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36B.72C.108D.14410.(2011?台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数()A .37B.57C.77D.97二.填空题(共4小题)11.(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________度.12.(2013?河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________.13.(2008?安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.14.(2003?金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________度.三.解答题(共16小题)15.(2014?六盘水)(1)三角形内角和等于_________.(2)请证明以上命题.16.(2001?海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000?内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011?青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系(只写结论,不需证明)结论:_________.19.(2010?玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013?响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013?泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012?滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012?云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012?南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012?梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE ﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011?日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011?台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011?台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36B.72C.108D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011?台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数()A .37B.57C.77D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013?河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008?安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003?金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014?六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001?海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000?内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011?青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010?玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013?响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。
【初中数学】人教版八年级上册专题训练(一) 三角形内角和与外角的应用(练习题)
人教版八年级上册专题训练(一)三角形内角和与外角的应用(159)1.如图,在Rt△ABC中,∠ACB=90∘,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26∘,则∠CDE的度数为()A.71∘B.64∘C.80∘D.45∘2.如图,在△ABC中,∠C=70∘.若沿图中虚线截去∠C,则∠1+∠2等于()A.360∘B.250∘C.180∘D.140∘3.如图所示,∠1+∠2+∠3+∠4=.4.如图,在△ABC中,∠A=60∘,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70∘,那么∠A′DE的度数为.5.如图,CE是△ABC的外角∠ACD的平分线.若∠B=35∘,∠ACE=60∘,则∠A=()A.35∘B.95∘C.85∘D.75∘6.如图,a∥b,∠1+∠2=75∘,则∠3+∠4=.7.如图,AD∥BE,AC,BC分别平分∠DAB和∠EBA,试判断AC和BC的位置关系,并说明理由.8.如图,AB∥CD,∠ABE=60∘,∠D=50∘,求∠E的度数.9.将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.10.将直尺和三角尺按如图所示叠放在一起,则∠1+∠2的度数是()A.45∘B.60∘C.90∘D.180∘11.已知直线l1∥l2,一个含45∘角的直角三角尺按如图所示放置.若∠1=85∘,则∠2=∘.12.将一副直角三角尺按如图方式放置,则图中∠AOB的度数为.13.如图是一副三角尺叠放的示意图,则∠α=.14.一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.15.如图,AB∥CD,AD和BC相交于点O,∠A=20∘,∠COD=100∘,则∠C的度数是()A.80∘B.70∘C.60∘D.50∘16.如图,平面上直线a,b分别过线段OK的两端点(数据如图),则a,b相交所成的锐角是()A.20∘B.30∘C.70∘D.80∘17.如图,已知AB⊥BD,AC⊥CD,∠A=40∘,则∠D的度数为()A.40∘B.50∘C.60∘D.70∘18.如图,∠ACB=90∘,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A19.在△ABC中,∠A=80∘,∠B=3∠C,则∠B=∘.20.如图,在△ABC中,∠B=40∘,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.21.如图,在△ABC中,BD,CD分别是∠ABC和∠ACB的平分线.已知∠A=40∘,求∠BDC 的度数.22.如图,把一个含30∘角的直角三角尺的直角顶点放在直尺的一边上.如果∠1=20∘,那么∠2的度数为()A.20∘B.50∘C.60∘D.70∘参考答案1.【答案】:A【解析】:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE.∵∠ACB=90∘,∴∠ACD=45∘.∵∠A=26∘,∴∠BDC=∠A+∠ACD=26∘+45∘=71∘,∴∠CDE=71∘2.【答案】:B4.【答案】:65∘5.【答案】:C【解析】:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60∘,∴∠ACD=2∠ACE=120∘.∵∠ACD=∠B+∠A,∴∠A=∠ACD−∠B=120∘−35∘=85∘6.【答案】:105∘7.【答案】:AC⊥BC.理由如下:∵AD∥BE,∴∠DAB+∠EBA=180∘.又∵AC,BC分别平分∠DAB和∠EBA,∴∠CAB=12∠DAB,∠CBA=12∠EBA,∴∠CAB+∠CBA=12(∠DAB+∠EBA)=90∘,∴∠ACB=90∘,∴AC⊥BC【解析】:AC⊥BC.理由如下:∵AD∥BE,∴∠DAB+∠EBA=180∘. 又∵AC,BC分别平分∠DAB和∠EBA,∴∠CAB=12∠DAB,∠CBA=12∠EBA,∴∠CAB+∠CBA=12(∠DAB+∠EBA)=90∘,∴∠ACB=90∘,∴AC⊥BC8.【答案】:延长EB交DC于点F.∵AB∥CD,∠ABE=60∘,∴∠EFC=60∘.∵∠E+∠D=∠EFC,即∠E+50∘=60∘,∴∠E=10∘【解析】:延长EB交DC于点F.∵AB∥CD,∠ABE=60∘, ∴∠EFC=60∘. ∵∠E+∠D=∠EFC, 即∠E+50∘=60∘, ∴∠E=10∘9(1)【答案】∵CF平分∠DCE,∠DCE=90∘,∠DCE=45∘.∴∠DCF=∠ECF=12又∵∠BAC=45∘,∴∠BAC=∠DCF,∴CF∥AB(2)【答案】由三角形内角和定理可得∠DFC=180∘−∠DCF−∠D=180∘−45∘−30∘=105∘10.【答案】:C11.【答案】:4012.【答案】:105∘13.【答案】:75∘14.【答案】: 根据题意,得∠CAF=∠DCE=30∘.∵∠ACB=90∘,∴∠ACF=180∘−90∘−30∘=60∘,∴∠CAF+∠ACF=30∘+60∘=90∘.∴△ACF是直角三角形,即∠F=90∘【解析】: 根据题意,得∠CAF=∠DCE=30∘.∵∠ACB=90∘,∴∠ACF=180∘−90∘−30∘=60∘,∴∠CAF+∠ACF=30∘+60∘=90∘.∴△ACF是直角三角形,即∠F=90∘15.【答案】:C【解析】:∵AB∥CD,∠A=20∘,∴∠D=∠A=20∘.又∵∠COD=100∘,∴∠C=180∘−∠D−∠COD=60∘16.【答案】:B17.【答案】:A【解析】:∵AB⊥BD,∠A=40∘,∴∠AEB=90∘−40∘=50∘,∴∠DEC=50∘.∵AC⊥CD,∴∠D=90∘−50∘=40∘18.【答案】:B【解析】:∵∠ACB=90∘,∴△ABC是直角三角形.∵CD⊥AB,∴△ACD和△BCD都是直角三角形,故A选项正确;∵∠ACB=90∘,∴∠1+∠2=90∘,∠A+∠B=90∘.∵CD⊥AB,∴∠CDA=90∘,∴∠A+∠1=90∘,∴∠1和∠B都是∠A的余角,∠A=∠2,故选项C,D正确.无法得到∠1=∠2,故选项B不正确19.【答案】:75【解析】:∵∠A=80∘,∴∠B+∠C=180∘−80∘=100∘.∵∠B=3∠C,∴3∠C+∠C=100∘,∴∠C=25∘,∴∠B=75∘.故答案为75.20.【答案】:70∘【解析】:如图,∵△ABC的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF.又∵∠B=40∘,∠B+∠1+∠2=180∘,∴12∠DAC+12∠ACF=12(∠B+∠2)+12(∠B+∠1)=12(∠B+∠B+∠1+∠2)=110∘,∴∠AEC=180∘−(12∠DAC+12∠ACF)=70∘.故答案为70∘21.【答案】:∵BD,CD分别是∠ABC和∠ACB的平分线,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠BDC=180∘−(∠DBC+∠DCB)=180∘−(12∠ABC+12∠ACB)=180∘−12(180∘−∠A)=90∘+12×40∘=110∘【解析】:∵BD,CD分别是∠ABC和∠ACB的平分线,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠BDC=180∘−(∠DBC+∠DCB)=180∘−(12∠ABC+12∠ACB)=180∘−12(180∘−∠A)=90∘+12×40∘=110∘22.【答案】:B。
华师版七年级数学下册作业课件(HS) 第九章 多边形 专题训练(七) 三角形内角和与外角的应用
类型之三 结合三角板或直尺计算角度
10.将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如 图所示方式放置,则∠1=_____1_0_5_°__.
11.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等 腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°, 那么∠BMD为___8_5度.
15. 一副三角板按如图方式摆放,若∠1=33°,则∠2的度数 为____7_8_°_.
16 . 现 有 两 块 大 小 相 同 的 直 角 三 角 板 △ ABC , △ DEF , ∠ ACB = ∠DFE=90°,∠A=∠D=30°.将这两块三角板摆成如图所示的形式, 使点B,F,E,A在同一条直线上,点C在边DF上,DE与AC相交于点 G,求∠AGD的度数.
5.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°) 按如图所示方式放置.若∠1=55°,则∠2的度数为( C )
A.105° B.110° C.115° D.120°
6.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°, 则∠D=________.48°
7 . 如 图 , a∥b , ∠ 1 + ∠ 2 = 75° , 则 ∠ 3 + ∠ 4 = ____1_0_5_°__.
12.(永州中考)一副透明的三角板,如图叠放,直角三角板 的斜边AB,CE相交于点D,则∠BDC=__7_5_°___.
13.一副直角三角板如图放置,点C在DF的延长线上,点A在边EF上, AB∥CD,∠ACB=∠EDF=90°,则∠CAF=______1_5_°.
14.如图,一把直尺压在三角板上(忽略厚度),直尺的一边 MN与三角板的两边AB,AC分别交于E,F,已知∠A=30°, 则∠AEM+∠AFN的度数是___2_1_0_°____.
三角形的内角和与外角和关系(提高)巩固练习
三角形的内角和与外角和关系(提高)巩固练习【巩固练习】一、选择题1. (湖北荆州)如图所示,一根直尺EF压在三角板30°的角/ BAC上,与两边AC, AB交于M N.那么/ CME社BNF是()A . 150°B . 180 °C . 135 °D .不能确定2. 若一个三角形的三个内角互不相等,则它的最小角必小于()A . 30°B . 45°C . 60°D . 55°3. 下列语句中,正确的是()A .三角形的外角大于任何一个内角B .三角形的外角等于这个三角形的两个内角之和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角4. 如果一个三角形的两个外角之和为270 °,那么这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .无法确定5. 如图,已知AB// CD则()A . / 1 = 7 2+ / 3B . / 1 = 2 / 2+Z 3C. 7 1 = 27 2- 7 3 D . 7 1 = 180°- 7 2- 7 36. (福建漳州)如图所示,在折纸活动中,小明制作了一张△ ABC的纸片,点D、E分别是边AB AC上,将△ ABC沿着DE折叠压平,A与A'重合,若7 A= 70°,则7 1+7 2=()A. 140° B . 130 ° C . 110° D . 70°二、填空题7. _____________________________________________________________ 在厶ABC中,若7A-2 7 B= 70°, 27 C-7 B= 10°,则7 C= __________________________________ & 如图,在△ ABC中,7 ABC 7 ACB的平分线相交于点0.(1)若7 A= 76 °,则7 BOC= ________ ;(2)若/ BOC= 120°,则/ A= __________ ;(3) ____________________________________ /A与/ BOC之间具有的数量关系是9. 已知等腰三角形的一个外角等于100°,则它的底角等于_____________ .10. (河南)将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则/ 1的度数为11. (湖北鄂州)如图所示,△ ABC的外角/ ACD的平分线CP与内角/ ABC平分线BP交于点P,12. 如图,O是厶ABC外一点,OB OC分别平分厶ABC的外角/ CBE / BCF.若/ A= n °,则/ BOC= __________ (用含n的代数式表示)三、解答题13. 如图,求证:/ A+Z B+Z C+Z D+Z E=180°14. 如图所示,BE与CD交于A, CF为Z BCD的平分线,EF为Z BED的平分线.8 C(1) 试探求:/ F与/ B、/ D之间的关系;(2) 若/ B: / D: / F= 2:4:x,求x 的值.15. 如图,在△ ABC中, / ABC的平分线与外角/ ACE的平分线交于点D.试说明D - A .2/ 1 = Z 2,Z C>Z B, E 为AD上一点,且EF±BC于F./ C的大小关系;(2) 如图⑵ 所示,当点E在AD的延长线上时,其余条件都不变,你在⑴ 中探索到的结论是否还成立?【答案与解析】一、选择题1. 【答案】A【解析】⑴由/ A= 30 °,可得/ AMN/ANW 180° -30 ° = 150 °又•••/ CME=/ AMN / BNF=/ ANM故有/ CME/ BNF= 150 ° .2. 【答案】C;【解析】假如三角形的最小角不小于60 ° ,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180° ,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°3. 【答案】C ;【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角•4. 【答案】B;【解析】因为三角形的外角和360 °,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90° .5. 【答案】A;6. 【答案】A;【解析】连接AA,则/ 1=/ EAA' +/ EA' A,/ 2=/ DAA +/ DA AED所以/ 1+Z 2=Z EAA +/EA A+Z DAA +/DA' A=Z EAD+Z EA D=70°+70°= 140°.A-2 B=70【解析】联立方程组: 2 C- B 10 ,解得C 20 .A B C 18018. 【答案】128 ° , 60 ° ,Z BOC= 90° +—Z A;29. 【答案】80°或50°;【解析】100°的补角为80°, (1)80 °为三角形的顶角;(2)80°为三角形底角时,则三角形顶角为50 ° .10. 【答案】75°;11. 【答案】50°;【解析】Z PCD=Z PBC+40 ,即Z PCD-Z PBC= 40°,又PA是厶ABC中Z A的外角的平分线,点P是旁心(旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点)所以180°- 2Z PCD+Z PBC+180 —2Z PAC= 180°,所以Z PAC= 50° .112•【答案】90 -n ;2【解析】•••/ COB=180 - (Z OBC-Z OCB ,三、解答题13. 【解析】解:延长BE交AC于点H,易得Z BFC=Z A+Z B+Z C 再由Z EFC=Z D+Z E, 上式两边分别相加,得:Z A+Z B+Z C+Z D+Z E=Z BFC+Z EFC= 180°。
三角形内角和、外角定理(含详细解答)
三角形内角和、外角和定理一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.14410.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________度.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________度.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于_________.(2)请证明以上命题.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。
[数学]-专项7.5三角形的内角和与外角和专项提升训练(重难点培优)-【】2022-2023学年七年
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】专题7.5三角形的内角和与外角和专项提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•楚雄州期末)在△ABC中,若∠A=40°,∠B=35°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形2.(2022•天津模拟)直角三角形的一锐角是50°,那么另一锐角是()A.40°B.50°C.60°D.70°3.(2021秋•绥德县期末)如图,∠BCD是△ABC的一个外角,E是边AB上一点,连接CE,下列结论不一定正确的是()A.∠BCD>∠A B.∠BCD>∠1 C.∠2>∠3 D.∠BCD=∠A+∠B4.(2022春•九龙坡区校级月考)如图,已知AD和AE分别是△ABC的高线和角平分线,若∠B=56°,∠EAD=10°,则∠C的度数为()A.80°B.76°C.74°D.66°5.(2022秋•江汉区期中)如图,△ABC的外角∠ACE和外角∠CAF的平分线交于点P,已知∠P=70°,则∠B的度数为()A.42°B.40°C.38°D.35°6.(2022秋•延平区校级月考)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2的度数等于()A.10°B.15°C.20°D.25°7.(2022秋•阜阳期中)如图,E,F是△ABC的边AB,AC上的点,D是点A上方的一点,若∠B+∠C =64°,∠D=70°,则∠1+∠2的度数为()A.44°B.46°C.48°D.50°8.(2022秋•新洲区期中)如图,在△ABC中,点D是BC边上一点,已知∠DAC=α,∠DAB=90°﹣,CE平分∠ACB交AB于点E,连接DE,则∠DEC的度数为()A.B.C.30°﹣D.45°﹣α二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2022秋•阜康市校级月考)在△ABC中,已知∠A=∠B+∠C,那么△ABC的形状.10.(2022秋•衢江区期中)一副三角板,按如图所示叠放在一起(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那么图中∠α=度.11.(2022•永丰县模拟)如图,△ABC中,∠B=40°,∠BAC=90°,CD平分∠ACB,AD∥BC,则∠D的度数为.12.(2022秋•西城区校级期中)如图,在△ABC中,AD是△ABC的角平分线,F在射线AD上,FE⊥BC于E,∠C=80°,∠B=36°,则∠F=度.13.(2022秋•武昌区校级期中)在△ABC中,∠B,∠C的平分线相交于点O,∠BOC=150°,则∠A 的度数为.14.(2022秋•新田县期中)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,∠A2021BC的平分线与∠A2021CD的平分线交于点A2022,得∠A2022,则∠A2022=.15.(2022•寻乌县二模)如图,在△ABC中,∠C=90°,∠B=30°,点P是边AB上一点,点D是边AC上一点,将△ABC沿PD折叠,使点A落在边BC上的A′处,若A′P∥AC,则∠PDA′的度数为.16.(2021秋•昭阳区校级期末)如图,在△ABC中,∠ABC,∠ACB的平分线BO,CO交于点O,CE为△ABC的外角∠ACD的平分线,BO的延长线交CE于点E,∠1=α,则∠2=,∠BOC=.(用含α的式子表示)三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•渝中区校级月考)如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=42°,∠C=58°.求∠ADE的度数.18.(2022秋•中江县校级月考)已知△ABC中,∠B=5∠A,∠C﹣∠B=15°,求∠A,∠B,∠C的度数.19.(2022秋•江汉区期中)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C =70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.(2022秋•阜阳期中)如图,在△ABC中,∠BAD=∠EBC,AD交BE于点F,交BC于点D.(1)求证:∠ABC=∠AFE;(2)若∠ABC=35°,EG∥AD交BC于点G,EH⊥BE交BC于点H,求∠HEG的度数.21.(2021秋•长乐区期末)如图,在△ABC中,DE∥AC交AB,BC于点D,E,EF平分∠DEB交AB于点F,且∠B=42°,∠DFE=73°,求∠A的度数.22.(2021秋•兴庆区校级期末)(1)如图1,已知任意△ABC,过点C作DE∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图2,求证:∠AGF=∠AEF+∠F;(3)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线于点F,∠AGF=150°,求∠F的度数.23.(2022秋•阜阳期中)如图,△AOB与△COD中的∠AOB与∠COD是对顶角.(1)如图1,证明:∠A+∠B=∠C+∠D;(2)如图2,AP,DP分别是∠BAO,∠CDO的平分线,探索∠P,∠B和∠C之间的数量关系并加以证明;(3)如图3,∠BAO与∠CDO的相邻补角平分线交于点P,探索∠P,∠B和∠C之间的数量关系并加以证明.24.(2022春•泰州月考)如果三角形的两个内角a与β满足2a+β=90°,那么我们称这样的三角形为“奇妙互余三角形”.(1)如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,求证:△ABD是“奇妙互余三角形”.(2)关于“奇妙互余三角形”,有下列结论:①在△ABC中,若∠A=130°,∠B=40°,∠C=10°,则△ABC是“奇妙互余三角形”;②若△ABC是“奇妙互余三角形”,∠C>90°,∠A=60°,则∠B=20°;③“奇妙互余三角形”一定是钝角三角形.其中,结论正确的有.(填写序号)(3)在△ABC中,∠C=90°,∠ABC=52°,点P是射线CB上的一点,且△ABP是“奇妙互余三角形”,请直接写出∠APB的度数.。
三角形内角和、外角练习题
三角形内角和、外角练习题1.三角形有内角和定理和外角性质。
内角和为180°,外角和为360°,这些是做题时常用的已知条件。
已知其中两个角的大小可以求出第三个角的大小。
2.一个三角形最多只有一个钝角或一个直角,最少有两个锐角。
3.内角和定理和外角性质是求角度和推理的基础。
外角性质可用于证明一个角等于另外两个角的和,作为中间关系式证明两个角相等,或证明角的不等关系。
4.作辅助线可以使问题更简单。
经典例题解析:1.已知三角形三个内角度数的比为1:5:6,求最大的内角度数。
根据内角和定理,三个内角的和为180°,设它们分别为x、5x、6x,则有x+5x+6x=180°,解得x=20°,最大的内角为6x=120°。
举一反三:在△ABC中,已知∠A=55°,∠XXX∠C大25°,求∠B的度数。
设∠B=x,∠C=y,则∠A+∠B+∠C=180°,代入已知条件得x+y=125°,又因为∠B比∠C大25°,所以x=y+25°,代入前面的式子得2y+25°=125°,解得y=50°,x=75°,即∠B的度数为75°。
又如:三角形中至少有一个角不小于60度。
2.已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E。
证明∠BAC>∠B。
根据外角性质,∠BAC=∠ACD+∠ACB,而CE是∠ACD的平分线,所以∠ACE=∠ECD=1/2∠ACD,又因为CE交BA延长线于点E,所以∠ACB=∠ACE+∠ECB,代入前面的式子得∠BAC=∠ACD+∠ACE+∠XXX∠ACD+1/2∠ACD+∠ECB=3/2∠ACD+∠ECB。
又因为∠XXX和∠ECB是同旁内角,所以∠XXX<∠B,代入前面的式子得∠BAC>∠B。
举一反三:如图所示,用“<”把∠1、∠2、∠A联系起来,根据外角性质,∠1=∠A+∠B,∠2=∠A+∠C,代入前面的式子得∠B<∠1-∠A,∠C<∠2-∠A,即可得到所求的关系。
三角形的内角和练习
bCa aAB7031D 三角形的内角和与外角和练习一、填空题1、在△ABC 中, ∠A =40°,∠B =∠C ,则∠C = .2、已知一个三角形三个内角度数的比是1:5:6,则其最大内角为 度.3、在△ABC 中,∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = .4、在△ABC 中,∠A =40°,∠B -∠C =60°,则∠C = , 这是 三角形.5、直角三角形中,有一个锐角是另一个锐角的2倍,则这两个锐角的度数分别是 .6、如图,DE ∥BC ,∠ADE =60°,∠C =50°,则∠A = .7、如图,已知1100∠=,2140∠=,那么3∠= .8、如图,AB CD ∥,40A ∠=,45D ∠=,则1∠=.二、选择题9、如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形 10、下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 11、已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 12、已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形 13、在一个三角形ABC 中,∠A =∠B =45°,则△ABC 是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上都不对14、如图,直线a ∥b ,则∠A 的度数是( )A.28° B .31° C .39° D .42°B CA15、如图,在中,平分且与BC 相交于点,∠B = 40°,∠BAD = 30°,则的度数是( )A .70°B .80°C .100°D .110°16、如图,AB ∥CD ,∠1=110°,∠ECD =70°,∠E 的大小是( )A .30°B .40°C .50°D .60°17、如图,ABC △中,50A =∠,点D E ,分别在AB AC ,上,则12+∠∠的大小为( )A .130B .230C .180D .31018、如图,AD 平分∠BAC ,其中∠B =50°,∠ADC =80°,求∠BAC 、∠C 的度数。
《三角形内角和定理》习题
《三角形内角和定理》习题
1、在一个三角形中,下列说法错误的是( ).
A .可以有一个锐角和一个钝角
B .可以有两个锐角
C .可以有一个锐角和一个直角
D .可以有两个钝角
2、已知一个三角形三个内角度数的比是1∶5∶6,则其最大内角的度数为( ).
3、若一个三角形三个内角度数的比为2∶3∶4,那么这个三角形是( ). A .直角三角形 B .锐角三角形
C .钝角三角形
D .等边三角形
4、等腰三角形有一个角是30°,则它的另两个角分别是 .
5、正三角形的每个内角都等于 度.
6、三角形的一个外角等于和它相邻的内角,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰直角三角形
7、下列命题正确的是( )
A 、三角形的一个外角等于该三角形的两个内角的和
B 、三角形的一个外角大于任何一个内角
C 、三角形的一个外角等于和它不相邻的两个内角的和
D 、三角形的任何两个外角都不可能相等
8、在△ABC 中,∠A 、∠B 的外角分别是120°、150°,则∠C =( ) A .120° B .150° C .60° D .90°
9、如图,∠1=________.
10、已知:如图,在△ABC 中,∠A =45°,外角∠DCA =100°, 求∠B 和∠ACB 的度数.
第5题 80︒
30︒
1(第4题)。
三角形的内角和与外角和练习题
三角形的内角和与外角和练习题一、知识要点1、三角形内角和定理:三角形三个内角的和等于______,即:在△ABC中,∠A+∠B+∠C=_____ 理解与延伸:①一个三角形中最多只有一个钝角或直角②一个三角形中最少有一个角不小于60° ③等边三角形每个角都是60°、直角三角形的性质与判定性质:直角三角形的两个锐角__________;判定:有两个角互余的三角形是_______________、三角形的外角:三角形的一边与另一边的______________组成的角特点:①三角形的一个外角和与它同顶点的内角互为_______________②三角形有____个外角,每个顶点处有____个外角,但算三角形外角和时,每个顶点处只算____个外角,外角和是指三个外角的和,三角形的外角和为________ 性质:三角形的外角等于与它______________的两个内角的和二、知识应用1、三角形内角和定理应用已知两角求第三角已知三角的比例关系求各角已知三角之间相互关系求未知角、三角形外角性质的应用已知外角和它不相邻两个内角中的一个可求“另一个” 可证一个角等于另两个角的_______经常利用它作为中间关系式证明两个角相等.三、例题分析1、如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A = 150°,∠B = ∠D =0°则∠C=_______2、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______3、△ABC中,∠B = ∠A + 10°,∠C = ∠B + 10°.求△ABC的各内角的度数4. 将一个直角三角板和一把直尺如图放置,如果∠α=43°,求∠β的度数5、如图,求∠A+∠B+∠C+∠D+∠E的度数变式:如图①,五角形的顶点分别为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E=_____如图②,∠A+∠DBE+∠C+∠D+∠E=_____ 如图③,∠A+∠B+∠C+∠D+∠E=_____6、如图1,BO、CO分别是△ABC中∠ABC和∠ACB的平分线,则∠BOC与∠A的关系是____________________________如图2,BO、CO分别是△ABC两个外角∠CBD和∠BCE 的平分线,则∠BOC与∠A的关系是____________________________ 如图3,BO、CO分别是△ABC 一个内角和一个外角的平分线,则∠BOC与∠A的关系是____________________________ 请就图2及图2中的结论进行证明A组题1、如图,已知点B、C、D、E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,则∠E=______2、如图,∠1+∠2+∠3+∠4+∠5+∠6=______3、把一副三角板按如图方式放置,则两条斜边所形成的钝角??_______度.、如图,∠1、∠2、∠3的大小关系为A.∠2>∠1>∠B.∠1>∠3>∠ C.∠3>∠2>∠1 D.∠1>∠2>∠35、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为A、30°B、60°C、90°D、120°、如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=A、360°B、540°C、240°D、280°7、如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,求∠2的度数.8、一个零件的形状如图,按规定∠A=0°,∠B和∠C,应分别是32°,和21°,检验工人量得∠BDC = 148°,就断定这两个零件不合格,运用三角形的有关知识说明零件不合格的理由。
三角形的内角和外角和
9.2.1三角形的内角和(1)——课内练习1.在△ABC 中,∠A-∠B=36°,∠C=2∠B ,求∠A 、∠B 、∠C 的度数.2.根据图形计算x 和y 的值. D85°A C43° x ° y °(x+24)° x °B C D A B『随堂练习』 1.(1)三角形的3个内角和等于 ; (2)直角三角形的两个锐角和等于 ;(3)三角形的一个外角等于 .2.在△ABC 中,若∠A+∠B=88°,则∠C=_______,这个三角形是________三角形. 3.如图,∠______是△ABD 的外角,∠____是△BCE 的外角, 若∠DEC=60°,∠ECB=20°,则∠DBC=_______.4.在一个三角形,若︒=∠=∠40B A ,则ABC ∆是( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上都不对『课堂检测』1.如图,AD 是∠CAE 的平分线,∠B=35°,∠DAE=60°,则∠ACD=( ). A 25° B 85° C 60° D 95°2.如图,AB//CD ,∠ABD 与∠BDC 的平分线相交于点E ,则∠BED 的度数是( ). A 45° B 85° C 90° D 95°3.如图,在△ABC 中,BE 、CD 相交于点E .(1)∠1和∠2分别是哪一个三角形的外角? (2)如果∠A =2∠ACD =76º,∠2=143º.试求∠1和∠DBE 的度数.4.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O , (1)若∠ABC =60°,∠ACB =80°,求∠BOC 的度数; (2) 若∠A =70°, 求∠BOC 的度数. (3)若∠BOC =120°, 求∠A 的度数.9.2.2三角形的内角和(2)——课内练习1.一个多边形的每个内角是1440,求它的边数. .2.如图,求∠1+∠2+∠3+∠4的度数.A D CBE AB C D EACD E BC第3题图第4题图OCBA第2题图3.已知九边形中,除了一个内角外,其余各内角之和是1205°,求该内角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)若∠D=45°,则∠B=________;若∠D=80°,则∠B=__________;
若∠D与∠B互余,则∠B是否存在?
(三)若∠B=120°,试按要求在备用图上完成图形,写出∠D的度数。
4.如图6,AF,BF分别是△ABC的外角平分线交于F,AH,BG分别是△ABC的内角平分线,交于I点。①试写出∠F,∠AIG分别与∠C的关系式。
(二)方法二:如图4,分别∠ABC,∠ACB的平分线BG,CM,相较于点G,
因为BG,BH分别是∠ABC,∠FBC的角平分线,所以∠GBH=∠GBC+∠HBC= (∠ABC+∠FBC)= ×180°=90°。同理,∠GCH=90°。在四边形GBHC中,∠H+∠BGC+∠GBC+∠GCH=360°,所以,∠H+∠BGC=180°,而又上述结论可知,
(一)接写出∠E与∠ABC-∠C的关系式;
(二)若∠ABC=∠C+45°,则∠E=____;若∠E=15°,则∠ABC-∠C=_________;
(三)指出∠ABC与∠C的大小关系。
(二)两条外角平分线
2.如图3,BH,CH分别是△ABC的外角平分线,相较于H点,说明∠A与∠E的关系。
(一)方法一:在△ABC中,∠ABC+∠ACB=180°-∠A,又外角∠FBC,∠GCB分别是
2试写出∠F与∠BIH的关系式;
4写出∠FAI与∠FBI的关系式;
5写出∠F与∠AIB的关系式;
三.外角平分线与内角平分线。
1.如图1BE,CE分别是△ABC的内角,外角平分线,相交于点E。
,因为∠ACD是△ABC的外角,所以∠A=∠ACD-∠ABC;
2∠BFG=30°,则∠ACB=_________.
4.如图4,①若EH⊥EF,垂足为点E,交BD于H,∠EHF=45°,则∠BAC=_________;
3若FM⊥BC,垂足为点M,试说明∠CFM与∠BFG的大小关系。
二.有关外角平分线。
(一)一条外角平分线
1.如图1,CE是△ABC的外角平分线,交BA于点E。
∠BGC=90°+ ∠A。所以∠H=180°-∠BGC=180°-(90+- ∠A)=90°- ∠A。
即∠H=90°- ∠A.
另外可得∠H=∠BGM.
3.如图5,AD,CD分别是△ABC的外角平分线,相交于点D。
(一)若∠B=30°,则∠D=________;若∠B=80°,则∠D=_____________;
4由三角形的外角性质可知,∠DCE=∠B+∠BEC,∠ACE=∠BAC-∠AEC,
又∠DCE=∠ACE;所以,∠B+∠BEC=∠BAC-∠AEC,
变形得:∠AEC= (∠BAC-∠B).
5若∠BAC=80°,∠B=30°,则∠AEC=_________.
6试说明∠BAC>∠B.
2.如图2,AE是△ABC的外角平分线,交CB于点E.
∠ABC,∠ACB的邻补角,所以∠FBC+∠GCB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A。又∠HBC= ∠FBC,∠HCB= ∠GCB.所以∠HBC+∠GCB= (∠FBC+∠GCB)= (180°+∠A)=90°+ ∠A。在△HBC中∠H=180°-(∠HBC+∠HCB)=180°-(90°+ ∠A)=90°- ∠A。即∠H=90°- ∠A.
3.在备用图1上,画出一个与∠ACF相等的角∠FDH.
4.在备用图2上,画出一个与∠CBF相等的角∠FHG
小练习:
1.如图1,BD是△ABC的角平分线.
1若∠A=100°,∠C=30°,则∠ADB=______;∠CDB=__________;
ﻩ
3.如图3,①若∠ABC=30°,则∠AFE=__________.
可见大角∠ADC比∠B与∠C的差的一半大90°;小角∠ADB是∠B与∠C的差的一半的余角。
2.直接写出图2中∠BEC、∠BEA分别与∠A-∠C的关系式。
3.直接写出图3中∠BFC、∠AFC分别与∠A-∠B的关系式。ቤተ መጻሕፍቲ ባይዱ
引伸题:AD是△ABC的角平分线。
1.如图4,点E在AD上,EF⊥BC于F,试写出∠DEF与∠C-∠B的关系式:
2.如图2,△ABC的三条角平分线AG,BD,CE相交于点F,试写出∠AFB,∠BFG分别与∠ACB的关系式;
试写出∠AFC,∠CFG分别与∠ABC的关系式。
引伸题:BD,CE是△ABC的角平分线。
1.如图3,EG⊥BD,垂足为G,试说明∠GEF与∠A的关系式。
2.如图4,DH⊥BD,垂足为D,试说明∠DHF与∠A的关系式。
1根据“三角形的内角和等于180°”,得到∠B+∠ADB=∠ADC+∠C。
2由上式变形得∠ADC-∠ADB=∠B-∠C。
3因为∠ADC+∠ADB=180°,所以2∠ADC=180°+(∠B-∠C)
即∠ADC=90°+ (∠B-∠C)
或2∠ADB=180°-(∠B-∠C)即∠ADB=90°- (∠B-∠C)
(1)根据“三角形的内角和等于180°”,得到∠ABC+∠ACB=180°-∠A,
所以 (∠ABC+∠ACB)=90°- ∠A,又∠BFC=180°- (∠ABC+∠ACB),
所以∠BFC=180°-(90°- ∠A)
即∠BFC=90°+ ∠A或∠BFE=90°- ∠A
可见三角形的两条角平分线的夹角比第三个角的一半大90°,或是第三个角一半的余角。
2.如图5,点E在AD上,EF⊥AD于E,交BC于点F,试写出∠DFE与∠ACB-∠B的关系式:
3.试画图,当点E在直线AD上,EF⊥BC于F,试写出∠DEF与∠C-∠B的关系式:
4.试画图,当点E在直线AD上,EF⊥AD于F,交BC于点F,试写出∠DFE与∠C-∠B的关系式:
(二)多条角平分线
1.如图1,BD,CE分别是△ABC的角平分线,相交于点F。
三角形内角和与外角和的专题训练
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
三角形内角和与外角和的专题训练
一.有关角平分线
(一)一条角平分线
1.如图1,AD是△ABC的角平分线,则∠B+∠AD B与∠ADC+∠C的大小关系如何?为什么?