2014年全国 初中数学联赛(含答案)

合集下载

2014年全国初中数学联合竞赛试题及答案

2014年全国初中数学联合竞赛试题及答案

2014年全国初中数学联合竞赛预赛试题参考答案(八年级组)第一试一、选择题1.C 2.D 3.A 4.B 5.B (5.由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2014=4×503+2,所以2014x =2) 二、填空题6.20°7.-48.919.5(小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块)10.23(对角四边形的面积之和相等)第二试一、(1)证明:∵2233x x y y =+=+,,∴22x y x y -=-∴ 1 ()x y x y +=≠……………………………………………………6分(2)解:∵2233x x y y =+=+,,∴323233x x x y y y =+=+,, 43243233x x x y y y =+=+,,54354333x x x y y y =+=+,,∴5543433223223339339x y x x y y x x x x y y y y +=+++=++++++3+ 22712712x x y y =+++223()2()1921192119()4261x y x y x y x y =+++=+++=++=.………15分 二、解:方程两边分解因式得 (2x +y )(x +y )=2×19×53.………………………………5分不妨先设x ≥y ≥1,则有2x +y ≥x +2y >x +y >1. 由此,只有三种情况: 253,2106,210238,219,2 2.x y x y x y x y x y x y+=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或…………………………10分当253,238,x y x y +=⎧⎨+=⎩时,解得15,23,x y =⎧⎨=⎩当2106,21007,219,2 2.x y x y x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩或时,不符合题意.故原方程的正整数解为15,23.x y =⎧⎨=⎩………………………………………………15分俯视图2 12三、解:设本次比赛钓到的鱼的总数是x 条.则钓到3条或3条以上的人共钓到鱼的条数为:()()14+26=16x x -⨯⨯-,钓到()16x -条的人数为165x -;…………………………………………………………5分 类似地,钓到10条或10条以下的人共钓到鱼的条数为:()()114+12213=81x x -⨯⨯+-,钓到这些鱼的人数为815x -;………………10分 根据题意,可知参加本次比赛的总人数得,()167465x -+++=()814215x -+++,解得x =541.因此,本次比赛共钓到541条鱼.……………………………………………………15分四、证明:∵AD 为△ABC 的角平分线,∴12∠=∠.(1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠.∴3E ∠=∠. ∴AC =AE .∵F 为EC 的中点,∴AF ⊥BC . ∴90AFE FAD ∠=∠=︒.∴AF ⊥AD .…………………………………………………………10分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F .∴3C ∠=∠,4F ∠=∠.∵M 为BC 的中点∴BM =CM . 在△BFM 和△CNM 中,4,3,,F C BM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ∴BF =CN . ∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =10-x ,BE =AB +AE =6+10-x . ∴6+10-x =x .解得 x =8.∴CN =5.5,AN =2. ………………………………………………25分2014年全国初中数学联合竞赛预赛试题参考答案(九年级组)第一试一、选择题A MDCBNE F35 41 21.B 2.D 3.A 4.D 5.C 6.B 二、填空题7.1792(两边同时乘以a +b +c )8.-8 9.25-=x (提示:[]x ≤x <[]x +1,原方程化为[]x ≤2[]x +27<[]x +1,解得[]x =-3,代入原方程求出x .)10.(1,21)(1011,51-)(提示:除直角三角形ABC 斜边的中点外,直线AB 上与该中点关于斜边上高的垂足对称的点也满足题意)第二试一、解:设甲仓库供应给A 校,B 校,C 校的电脑分别为x 台,y 台,()[]y x -12+台,则乙仓库供应给A 校,B 校,C 校的电脑分别为(9-x )台,(15-y )台,()[]y -15x -9-20+台, 设总运输费为S 元,则S=10x +5y +6()[]y x -12++4(9-x )+8(15-y )+15()[]y -15x -9-20+,得S=15x +6y +48=9x +6(x +y )+48,…………………………………………………………10分 又0≤x ≤9,0≤y ≤15,4≤x +y ≤12,S≥9×0+6×4+48=72,………………………………………………………………………15分 此时,x =0,y =4,又()[]y x -12+=8,故甲仓库供应给A 校,B 校,C 校的电脑分别为0台,4台,8台.……………………20分二、(1)证明:由AB =AD ,知∠ABD =∠ADB =α,由等弧对等圆周角知,∠ACD =∠ACB =α.令∠DFC =β则∠BAD =∠BFC =2β,故∠ABD +∠ADB +∠BAD =α+α+2β=180°,于是α+β=90°,∠CDF =90°.又∠FBC =180°-α-2β=α=∠FCB ,所以FB =FC …………………………10分 (2)解:设边BC 的中点为M ,连接FM . 易知△FCD ≌△FBM ,BC =2CD 又AC 是∠BCD 的角平分线,由角平分线定理,得2==CDBCDE BE …………………25分三、解:点A 的坐标为(-1,0),点B 的坐标为(3,0),点C 坐标为(0,﹣3).∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点D 的坐标为(1,﹣4);点E 的坐标为(1,0).………………………………5分 (1)当点M 在对称轴右侧时.①若点N 在射线CD 上,如图,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN . 设CN =a ,则MN =2a .∵∠CDE =∠DCF =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN +NF =3a ,∴MG =FG =223a , ∴CG =FG ﹣FC =22a ,∴M (223a ,﹣3+22a ).代入抛物线解得a =927,∴M (37,﹣920); ………………………………………………………………13分②若点N 在射线DC 上,如图,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN .设CN =a ,则MN =2a . ∵∠C DE =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN ﹣NF =a ,∴MG =FG =22a , ∴CG =FG +FC =223a ,∴M (22a ,﹣3+223a ).代入抛物线y =(x ﹣3)(x +1),解得a =5, ∴M (5,12);………………………………………………………………………………21分 (2)当点M 在对称轴左侧时. ∵∠CMN =∠BDE <45°, ∴∠MCN >45°,而抛物线左侧任意一点K ,都有∠KCN <45°,∴点M 不存在.…………………………24分综上可知,点M 坐标为(37,﹣920)或(5,12).……………………………………25分2014年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:第2题图DACB第4题图DACB考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。

2014全国初中数学联合竞赛试题答案及评分标准

2014全国初中数学联合竞赛试题答案及评分标准

2014年全国初中数学联合竞赛试题参考答案及评分标准第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,错误!未找到引用源。

则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个 【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-? ,显然,x y 均不为0,所以x y +=0或32()xy x y =-. 若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y ì=-ïí=ïî,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则错误!未找到引用源。

=( )ABCD【答】 B .因为A D B C ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2B C B D =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅==. 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =,显然10{}1,0{}1x x <<<<,所以1{}{}x x +=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒错误!未找到引用源。

2014年全国初中数学竞赛预赛试题及答案

2014年全国初中数学竞赛预赛试题及答案

2014年全国初中数学竞赛预赛试题及参考答案(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则的值为【】(A)2013(B)2014(C)2015(D)0【答】D.解:最大的负整数是-1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它本身的自然数是1,∴=1.∴==0.2. 已知实数满足则代数式的值是【】(A)(B)3(C)(D)7【答】A.解:两式相减得3.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1 中的线段MN在图2中的对应线段是【】(A)(B)(C)(D)【答】C.解:将图1中的平面图折成正方体,MN和线段c重合.不妨设图1中完整的正方形为完整面,△AMN和△ABM所在的面为组合面,则△AMN和△ABM所在的面为两个相邻的组合面,比较图2,首先确定B点,所以线段d 与AM重合,MN与线段c重合.4. 已知二次函数的图象如图所示,则下列7个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4个以上【答】C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴.当=1时,,即.当=时,,即.从图象可得,抛物线对称轴在直线=1的左边,即,∴.因此7个代数式中,其值为正的式子的个数为4个.5. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的函数解析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)【答】B.解:如图,分别过点分别做轴的垂线,那么∽,则,故.6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF 的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF 为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为=2.二、填空题(共6小题,每小题6分,共36分)7.已知,化简得.【答】.解:∵,∴,,原式=.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以P(摸出一个红色玻璃球)=.9. 若,则= .【答】8.解:∵,∴.则,即.∴10.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为.【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴AO=CO=,BO=DO=4,∴阴影部分面积====.11.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,CA1= .【答】.解:过A1作A1M⊥BC,垂足为M,设CM=A1M=x,则BM=4-x,在Rt△A1BM中,,∴=,∴x =A1M=,∴在等腰Rt△A1CM中,C A1=.12.已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x的方程(x-a)(x-b)(x-c)(x-d)=2014中大于a、b、c、d的一个整数根,则m的值为.【答】20.解:∵(m-a)(m-b)(m-c)(m-d)=2014,且a、b、c、d是四个不同的整数,由于m是大于a、b、c、d的一个整数根,∴(m-a)、(m-b)、(m-c)、(m-d)是四个不同的正整数. ∵2014=1×2×19×53,∴(m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵a+b+c+d =5,∴m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有,.易知0<x≤69,0<y≤49,0<z≤34,……………………………………4分∴,,即.∵x,y,z均为正整数,≥0,即0<z≤14∴z只能取14,9和4 (8)分①当z为14时,=2,=28..②当z为9时,=26,=18..。

2014年全国初中数学联合竞赛试题参考答案

2014年全国初中数学联合竞赛试题参考答案

2014年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-. 若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )ABCD【答】 B .因为AD BC ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2BC BD =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅== 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32- D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2 C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB . 设EF x =,则2BE x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =.故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 .A【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠,而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = . 【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=. 注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试D一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, 联立解得(,)(2,6)x y =或(,)(6,2)x y =.若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根;若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠. 又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF , 所以ED CD ABDF AF AF==. 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故 DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FBD解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P . 取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P . 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P . 因此,1,5和2014都具有性质P .若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P .。

2014年全国初中数学竞赛试题参考答案及评分标准

2014年全国初中数学竞赛试题参考答案及评分标准

2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。

所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、41n -2、43、14、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x 故此时243<<x ;(10分) (2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x 故此时2≥x . (15分) 综上所述,不等式的解为:34x >.(20分)四、(本大题满分25分) 如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==, 求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分)过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=; 所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。

2014年全国初中数学联合竞赛试题参考答案和评分标准

2014年全国初中数学联合竞赛试题参考答案和评分标准

初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。

2014年全国初中数学联赛试题

2014年全国初中数学联赛试题
外接圆上一点,过点 A 作直线 OD 的垂线,垂足为 H .若 BD 7 , DC 3 ,求 AH .
A
H OD
F B
M
N E C
三.(本题满分 25 分)
设 n 是整数,如果存在整数 x, y, z 满足 n x3 y3 z3 3xyz ,则称 n 具有性质 P .
(1)试判断 1,2,3 是否具有性质 P ; (2)在 1,2,3,…,2013,2014 这 2014 个连续整数中,不具有性质 P 的数有多少
2014 年全国初中数学联合竞赛试题
第一试得分
(3 月 23 日上午 8:30—11:00)
第二试得分
总分
计分人
考生注意:1.用圆珠笔或钢笔作答. 2.解题书写不要超过装订线.
第一试
得分 评卷人 一、选择题(本题满分 42 分,每小题 7 分) 本题共有 6 个小题,每题均给出了代号为 A,B,C,D 的四个答案,其中有且 仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选
abc ____.
2.使得不等式 9 n 8 错误!未找到引用源。对唯一的整数 k 成立的最大正整 17 n k 15
数n为

3.已知 P 为等腰△ ABC 内一点,AB BC ,BPC 108 ,D 为 AC 的中点,BD
与 PC 交于点 E ,如果点 P 为△ ABE 的内心,则 PAC
上所写的数字可以作为三角形的三边长的概率是( )
A. 1 2
B. 2 5
C. 2 3
D. 3 4
5.设[t]表示不超过实数 t 的最大整数,令{t} t
[t] .已知实数 x 满足
x3
1 x3
18 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国初中数学联赛(初三组)初赛试卷班级:: 姓名:成绩:题号一二三四五合计得分评卷人复核人考生注意:1、本试卷共五道大题,全卷满分140分;2、不能使用计算器。

一、选择题(本题满分42分,每小题7分)1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是()A、9504元B、9600元C、9900元D、10000元2、如图,在凸四边形ABCD中,BDABC,则ADCBC∠80∠等于()=AB==,︒A、︒160140D、︒80B、︒100C、︒12第2题图DACB第4题图DACB3、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、245、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( )A 、2014B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( )A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)D FEOACB31、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。

4四、(本大题满分25分)在ABC Rt ∆中,︒=∠90ACB ,AE 垂直于AB 边上的中线CD ,交BC 于点E .(1)求证:CE BC AC ⋅=2(2)若3=CD ,4=AE ,求边AC 与BC 的长。

五、(本大题满分25分)已知二次函数2y x ax b =++的图像经过点A (1x ,0)、B (2x ,0)、C (2,m ),且1202x x <<<.DEACB(1)求证:0m>;(2)若1≥b,求证:1m<2014年全国初中数学联赛(初三组)初赛评分细则一、选择题(本题满分42分,每小题7分)1、B.2、C.3、D.4、C.5、A.6、D.二、填空题(本大题满分28分,每小题7分)1102、93 .3、 4 .E FAOD C564、512. 三、(本大题满分20分)解:由已知得2b a =-,所以121a b ++2123122aa a a a =+=+---. ························································· (10分) 显然0a ≠,由2240a a +-=得222aa -=-. ·················································· (15分)所以233222a aa a a a==-----,所以121a b++2=-.······························································································· (20分) 四、(本大题满分25分)解:(1)因为CD 是AB 边上的中线,所以CD =DB ,∠ABC =∠DCB =∠CAE ,∠ACB =∠ECA =90︒,所以△ACB ∽△ECA , ································································································ (5分)所以AC CBEC CA=, 所以2AC BC CE =⋅. ····························································································· (10分)DB7(2)因为CD 是Rt △ABC 的中线,所以CD=AD=BD 。

所以AB=6。

所以22236AC BC AB +==. ················································································ (15分)取BC 中点F ,连结DF ,则DFAC ,∠DFC =∠ECA =90︒,所以△DFC ∽△ECA ,所以DC FCEA CA=. 所以232BC CD CA AE ==, ····························································································(20分) 故可解得121313AC 181313BC .······························································ (25分) 法2:因为CD 是Rt △ABC 的中线,所以CD=AD=BD 。

相关文档
最新文档