七年级数学上册 压轴解答题培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册 压轴解答题培优测试卷
一、压轴题
1.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.
利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.
()1点A 表示的数为______,点B 表示的数为______.
()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.
()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到
达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.
2.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .
(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.
(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.
3.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.
(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;
(3)在旋转过程中,是否存在t 的值,使得∠POQ =1
2
∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.
4.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;
(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.
(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?
5.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若
30COD ∠=,则MON ∠=_______;
(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;
(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.
6.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.
(1)若8cm AC ,则EF =______cm ;
(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出
EF 的长度,如果变化,请说明理由;
(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写
出结果不需证明.
7.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?
通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;
情况②当点C 在点B 的左侧时, 如图2此时,AC =5.
仿照上面的解题思路,完成下列问题:
问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.
问题(2): 若2x =,3y =求x y +的值.
问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,
OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).
8.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°
(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;
(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;
(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数 9.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)
(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;
(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且
3DOE AOE ∠∠=,3COF BOF ∠=∠,7
2
EOF COD ∠=∠,求EOF ∠的度数;
(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若
3MOI POI ∠=∠,则t = 秒.
10.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.
(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;
(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;
(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.
11.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=1
2
x ﹣5的解,在数轴上是否存在点P 使PA +PB =
1
2
BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,
当P 在B 的右侧运动时,有两个结论:①PM ﹣
34
BN 的值不变;②13
PM 24+ BN 的值不
变,其中只有一个结论正确,请判断正确的结论,并求出其值
12.观察下列各等式:
第1个:2
2
()()a b a b a b -+=-; 第2个:2
2
3
3
()()a b a ab b a b -++=-; 第3个:3
2
2
3
4
4
()()a b a a b ab b a b -+++=- ……
(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则1
2322321()( )n n n n n n a b a
a b a b a b ab b -------++++++=______;
(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整
数);
(3)拓展与应用:计算1233213333331n n n ---+++
++++(n 为大于1的正整数).
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)2412--;
;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【解析】 【分析】
()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P
从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数
242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数
24-,点C 表示数12,所以()PA 242t 242t =-+--=,
PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点
Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】
()1设A 表示的数为x ,设B 表示的数是y .
x 24=,x 0<
∴x 24=- 又
y x 12-=
y 241212.∴=-+=-
故答案为24-;12-.
()2由题意可知:
t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C
表示数12
()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.
故答案为2t ;362t -.
()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.
①当m 9≤,m 秒后点Q 表示的数是244m -+,则
()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,
当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;
②当m 9>时,m 秒后点Q 表示的数是()124m 9--,
则()()PQ 124m 9122m 2=----+=, 解得2931m 33
或=
,
当m=293时,-12+2m=223, 当m=
313时,-12+2m=263
, 此时点P 表示的数是
2226
33
或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226
,33
. 【点睛】
本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 2.(1)3.(2)存在.x 的值为3.(3)不变,为2. 【解析】 【分析】
(1)根据非负数的性质和数轴上两点间距离即可求解;
(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;
(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解. 【详解】
解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1 ∴A,B 两点之间的距离是1-(-2)=3. 故答案为3.
(2)存在.理由如下: ①若P 点在A 、B 之间, x+2+1-x=7,此方程不成立; ②若P 点在B 点右侧, x+2+x-1=7,解得x=3. 答:存在.x 的值为3.
(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t. 所以AB=1+2t-(-2-t)=3+3t. BC=6+5t-(1+2t)=5+3t. 所以BC-AB=5+3t-3-3t=2. 【点睛】
本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.
3.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或
180 11或
180
7
,使得∠POQ=
1
2
∠AOQ.
【解析】
【分析】
当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;
(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;
(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;
(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.
【详解】
解:当OQ,OP第一次相遇时,2t+6t=120,t=15;
当OQ刚到达OA时,6t=120,t=20;
当OQ,OP第二次相遇时,2t6t=120+2t,t=30;
(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,
∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.
(2)当0≤t≤15时,2t +40+6t=120, t=10;
当15<t≤20时,2t +6t=120+40, t=20;
当20<t≤30时,2t=6t-120+40, t=20(舍去);
答:当∠POQ=40°时,t的值为10或20.
(3)当0≤t≤15时,120-8t=1
2
(120-6t),120-8t=60-3t,t=12;
当15<t≤20时,2t–(120-6t)=1
2
(120 -6t),t=
180
11
.
当20<t≤30时,2t–(6t -120)=1
2
(6t -120),t=
180
7
.
答:存在t=12或180
11
或
180
7
,使得∠POQ=
1
2
∠AOQ.
【分析】
本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.
4.(1)2;(2)1cm;(3)
9
10
秒或
11
6
秒
【解析】
【分析】
(1)将x=﹣3代入原方程即可求解;
(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关
系即可求解;
(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解. 【详解】
(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k , 解得:k =2; 故k =2;
(2)当C 在线段AB 上时,如图,
当k =2时,BC =2AC ,AB =6cm , ∴AC =2cm ,BC =4cm , ∵D 为AC 的中点, ∴CD =
1
2
AC =1cm . 即线段CD 的长为1cm ;
(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6, ∴D 点表示的数为﹣1,B 点表示的数为4.
设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:
①当点D 在PQ 之间时, ∵PD =2QD ,
∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =9
10
②当点Q 在PD 之间时, ∵PD =2QD ,
∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116
. 答:当时间为910或11
6
秒时,有PD =2QD . 【点睛】
本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.
5.(1)90︒;(2)COD=10∠︒;(3)1
752
MON COD ∠=∠+︒,证明见解析 【解析】 【分析】
(1)利用角平分线定义得出1
2
AOM MOC AOC x ∠=∠=
∠=,
1
2
BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解;
(2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解;
(3)画出图形后利用角的和差关系进行计算求解即可. 【详解】
解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. ∴OM 平分∠AOC, ON 平分∠BOD
∴设11
,22
AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠=
∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+
∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒ ∴60x y +=︒
∴3090MON x y ∠=+︒+=︒ 故答案为: 90︒
(2)∵8MON COD ∠=∠ ∴设=,8COD a MON a ∠∠= ∵射线OD 恰好平方MON ∠
∴1
4,2
DOM DON MON a ∠=∠=
∠= ∴43,COM DOM COD a a a ∠=∠-∠=-=
∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. ∴OM 平分∠AOC, ON 平分∠BOD
∴11
3,422
AOM MOC AOC a BON DON BOD a ∠=∠=
∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠=
∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒ ∴=10a ︒ ∴COD=10∠︒
(3) 1
752
MON AOC ∠=
∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-
∵ON 平分∠BOD
∴117522
DON BOD x ∠=
∠=︒- ∴MON COD DON ∠=∠+∠ 1752
x x =+︒- 1752
x =︒+ ∴1752
MON COD ∠=︒+∠
当OC 在OA 的左侧时
设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD
∴117522
DON BOD a ∠=
∠=︒- ∵OM 平分∠AOC
∴1122
AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON
117522b a a =++︒-
117522
b a =++︒ 1752
COD =∠+︒
当OD 与OA 重合时
∵ON 平分∠AOB
∴1752
AON AOB ∠=
∠=︒ ∵OM 平分∠AOC
∴12
MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752
AOC =∠+︒ 综上所述 1752
MON AOC ∠=
∠+︒ 【点睛】
本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键.
6.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)()12
EOF AOB COD ∠=
∠+∠. 【解析】
【分析】 (1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点,
分别求出AE 、BF 的长度,即可得到EF ;
(2)根据中点得到12
EC AC =,12DF DB =,由EF EC CD DF =++推导得出
EF=()12
AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=
∠, 12
DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=
∠+∠. 【详解】
(1)∵30cm AB =,4cm CD =,8cm AC ,
∴308418BD AB AC CD =--=--=cm ,
∵E 、F 分别是AC 、BD 的中点, ∴142AE AC ==cm , 192
BF BD ==cm , ∴304917EF AB AE BF =--=--=cm ,
故17cm EF =;
(2)EF 的长度不变. 17cm EF =
∵E 、F 分别是AC 、BD 的中点, ∴12
EC AC =,12DF DB = ∴EF EC CD DF =++
1122
AC CD BD =++ 1()2
AC BD CD =++ ()12
AB CD CD =-+ ()117cm 2
AB CD =+= (3)∵OE 、OF 分别平分AOC ∠和BOD ∠, ∴12COE AOC ∠=∠, 12
DOF BOD ∠=∠, ∴EOF COE COD DOF ∠=∠+∠+∠,
1122
AOC COD BOD =∠+∠+∠, 1()2
AOC BOD COD =∠+∠+∠, 1()2AOB COD COD =∠-∠+∠,
()12AOB COD =∠+∠, ∴()12
EOF AOB COD ∠=
∠+∠. 【点睛】 此题考查线段的和差、角的和差计算,解题中会看图形,根据图中线段或角的大小关系得到和差关系,由此即可正确解题.
7.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.
【解析】
【分析】
问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.
问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.
【详解】
解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.
问题(2)∵2x =,3y =∴2, 3.x y =±=±
情况① 当x=2,y=3时,x y +=5,
情况② 当x=2,y=-3时,x y +=-1,
情况③ 当x=-2,y=3时,x y +=1,
情况④ 当x=-2,y=-3时,x y +=-5,
所以,x y +的值为1,-1,5,-5.
问题⑶
【点睛】
本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.
8.(1)135°;(2)∠BOD=2∠COE ;(3)67.5°.
【解析】
【分析】
(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE 平分∠AOC ,OF 平分∠BOD ,得∠COE+∠DOF=45°,即可求出∠EOF 的度数;
(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°-∠AOD,再由角平分线的定义进行计算,即可得出结果;
(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.
【详解】
解:(1)如图:
∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠COE+∠DOF=11
()9045
22
AOC BOD
∠+∠=⨯︒=︒,
∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;故答案为:135°;
(2)∠BOD=2∠COE;
理由如下:如图,
∵∠COD=90°.
∴∠BOD+∠AOC=90°,
∵OE平分∠AOD,
∴∠AOE=∠DOE=1
2
∠AOD,
又∵∠BOD=180°-∠AOD,∴∠COE=∠AOE-∠AOC
=1
2
∠AOD-(90°-∠BOD)
=1
2
(180°-∠BOD)-90°+∠BOD
=12
∠BOD , ∴∠BOD=2∠COE ;
(3)如图,
∵OC 为∠AOE 的角平分线,OF 平分∠COD ,
∴∠AOC=∠COE ,∠COF=∠DOF=45°,
∵∠EOC=3∠EOF ,
设∠EOF=x ,则∠EOC=3x ,
∴∠COF=4x ,
∴∠AOE=2∠COE=6x ,∠DOF=4x ,
∵∠COD=90°,
∴4x+4x=90°,
解得:x=11.25°,
∴∠AOE=6×11.25°=67.5°.
【点睛】
本题考查了角平分线定义、角的互余关系、邻补角定义以及角的计算;熟练掌握角平分线定义,得出角之间的关系是解决问题的关键.
9.(1)40º;(2)84º;(3)7.5或15或45
【解析】
【分析】
(1)利用角的和差进行计算便可;
(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;
(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.
【详解】
解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴COD AOD BOC AOB ∠=∠+∠-∠
160120=︒-︒
40=︒
(2)3DOE AOE ∠=∠,3COF BOF ∠=∠
∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒
则3COF y ∠=︒,
44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒
EOF EOD FOC COD ∠=∠+∠-∠
()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒
72
EOF COD ∠=∠ 7120()(44120)2
x y x y ∴-+=+- 36x y ∴+=
120()84EOF x y ∴︒+︒︒∠=-=
(3)当OI 在直线OA 的上方时,
有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12
×120°=60°, ∠PON=
12
×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),
解得t=152
或15; 当OI 在直线AO 的下方时,
∠MON═1
2
(360°-∠AOB)═
1
2
×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°-6120
2
t-
)或180°-3t=3(
6120
2
t-
-60°),
解得t=30或45,
综上所述,满足条件的t的值为15
2
s或15s或30s或45s.
【点睛】
此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.
10.(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.
【解析】
【分析】
(1)求出∠COE的度数,即可求出答案;
(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;
(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.
【详解】
(1)∵OC⊥AB,
∴∠AOC=90°,
∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,
∴∠COE=60°-20°=40°,
∴∠AOE=90°+40°=130°,
故答案为130°;
(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,
有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,
∴∠AOD-∠COE=90°-60°=30°,
②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,
∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,
即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;
(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,
∴90°+60°-∠COD=7∠COD,
解得:∠COD=18.75°,
∴∠AOE=7×18.75°=131.25°;
如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,
∴90°+60°+∠COD=7∠COD,
∴∠COD=25°,
∴∠AOE=7×25°=175°,
即∠AOE=131.25°或175°.
【点睛】
本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.
11.(1)存在满足条件的点P,对应的数为﹣9
2
和
7
2
;(2)正确的结论是:PM﹣
3
4
BN的值不
变,且值为2.5.【解析】
【分析】
(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的
点,由此求得1
2
BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a
<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根
据已知条件表示出PM、BN的长,再分别代入①PM﹣3
4
BN和②
1
2
PM+
3
4
BN求出其值即
可解答.
【详解】
(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.
解方程2x+1=1
2
x﹣5得x=﹣4.
所以BC=2﹣(﹣4)=6.
所以.
设存在点P满足条件,且点P在数轴上对应的数为a,
①当点P在点a的左侧时,a<﹣3,
PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,
解得a=﹣,﹣<﹣3满足条件;
②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;
③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,
所以,存在满足条件的点P,对应的数为﹣和.
(2)设P点所表示的数为n,
∴PA=n+3,PB=n﹣2.
∵PA的中点为M,
∴PM=1
2
PA=.
N为PB的三等分点且靠近于P点,
∴BN=PB=×(n﹣2).
∴PM﹣3
4
BN=﹣
3
4
××(n﹣2),
=(不变).
②12PM +34BN =+34××(n ﹣2)=34
n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.
【点睛】
本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.
12.(1)n n a b -;(2)21n
-;(3)312
n -. 【解析】
【分析】 (1)利用题中已知等式的规律得出该等式的结果为a 、b 两数n 次幂的差; (2)将原式变形为123321(21)(2222221)----+++++++n n n ,再利用所得规律计算可得;
(3)将原式变形为1233211(31)(3333331)2n n n ---=
⨯-+++++++,再利用所得规律
计算可得.
【详解】
解:(1)若n 为大于1的正整数,则根据这些等式的运算规律可得:12322321()( )n n n n n n a b a a b a b a b ab b -------+++
+++=n n a b -, 故答案为:n n a b -;
(2)1233212222221n n n ---+++++++
123321(21)(2222221)n n n ---=-+++
++++ 21n n =-
21n =-
(3)1233213333331n n n ---+++++++
1233211(31)(3333331)2
n n n ---=⨯-+++++++ 1(31)2
n n =⨯- 312
n -=. 【点睛】
本题考查规律型:数字的变化类,观察等式发现规律是解题关键.。