用待定系数法确定二次函数解析式专题复习

合集下载

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是( )A.-3B.-1C.2D.33.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______ 5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为 6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________. 7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为 12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可) 14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。

待定系数法求二次函数解析式(讲义)

待定系数法求二次函数解析式(讲义)

变式 1:已知二次函数的图象经过 A(-1,0)、B(3,0),函数有最小值-8,求它的解析式。 解法 1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8).
设解析式为 y=a(x-h)2+k, 即 y=a(x-1)2-8. 把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x2-4x-6. 解法 2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8代入上式得-8=a(1+1)(1-3).解得 a=2, ∴解析式为 y=2x2-4x-6. 解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax2-2ax-3a. ∵函数有最小值-8.
c 2.
∴解析式为 y=x2+2. 变式:已知一个二次函数,当 x=-1 时,y=3;当 x=1 时,y=3;当 x=2 时,y=6。求这个二次函数的 解析式。 解:设解析式为 y=ax2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得
3 a b c, 3 a b c, 6 4a 2b c.
设所求二次函数为 y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到 c=4,又由于其图 象过(8,0)、(-2,0)两点,可以得到
64a+8b=-4 4a-2b=-4
解这个方程组,得
a b
3 2
1 4
所以,所求二次函数的关系式是 y=-1x2+3x+4 42
练习: 一条抛物线 y=ax2+bx+c 经过点(0,0)与(12,0),最高点的纵坐标是 3,求这条抛物线的解析式。

【经典必考】待定系数法求二次函数表达式30题含详细答案

【经典必考】待定系数法求二次函数表达式30题含详细答案

…………○……………○…………线……学校:_______________…………○……………○…………线……待定系数法求二次函数表达式30题含详细答案1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.试卷第2页,总11页○…………装……○…………订………线…………○……※※请※※不※※要※※※※订※※线※※内※※答○…………装……○…………订………线…………○……4.如图,抛物线y =x 2 +bx +c 与x 轴交于A (﹣1,0),B (3,0)两点. (1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △P AB =8,并求出此时P 点的坐标.5.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.6.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形…外…………○…………装…………○…………线………学校:___________姓名:____________…内…………○…………装…………○…………线………ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.8.如图,已知抛物线y=2x +mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.试卷第4页,总11页○…………外………装…………○…………订……………○……※※要※※在※※装※※订※※线※※内※※答○…………内………装…………○…………订……………○……9.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC (1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.10.抛物线y=﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求该抛物线的解析式;(2)在抛物线上求一点P ,使S △PAB =S △ABC ,写出P 点的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得△QBC 的周长最小?若存在,求出点Q 的坐标,若不存在,请说明理由.11.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两…………○…………………线…………学校:_________…………○…………………线…………点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP'C .是否存在点P ,使四边形POP'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.12.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.13.如图,已知抛物线y=13x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (-9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点试卷第6页,总11页…………装…………○…………线…………○…※※请※※不※※要※※在※※装※※订…………装…………○…………线…………○…的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.14.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.15.抛物线y=﹣x 2+bx+c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BDC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF ⊥x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC=90°,请指出实数m 的变化范围,并说明理由.……○…………外……装…………○…线…………○……____姓名:___________班……○…………内……装…………○…线…………○……16.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.17.在平面直角坐标系中,二次函数y=ax 2+53x+c 的图象经过点C (0,2)和点D (4,﹣2).点E 是直线y=﹣13x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E 的坐标.(2)如图①,若点M 是二次函数图象上的点,且在直线CE 的上方,连接MC ,OE ,ME .求四边形COEM 面积的最大值及此时点M 的坐标.(3)如图②,经过A 、B 、C 三点的圆交y 轴于点F ,求点F 的坐标.18.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.试卷第8页,总11页………○………………订…………○※※请※※不※※※内※※答※※题※※………○………………订…………○19.若二次函数y=ax 2+bx+c 的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.20.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.21.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积. 22.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.23.在平面直角坐标系中,点()0,0O ,点1,0A .已知抛物线22y x mx m =+-(m 是常数),顶点为P .(Ⅰ)当抛物线经过点A 时,求顶点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.○…………装…………○…………○…………学校:___________姓名:___________班:___________○…………装…………○…………○…………24.如图,抛物线y=ax 2+bx(a <0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.25.在平面直角坐标系中,将二次函数()20y axa =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值. 26.如图,抛物线顶点P (1,4),与y 轴交于点C (0,3),与x 轴交于点A ,B . (1)求抛物线的解析式.(2)Q 是抛物线上除点P 外一点,△BCQ 与△BCP 的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,试卷第10页,总11页…装…………○…………………线…………不※※要※※在※※装※※订※※线※※…装…………○…………………线…………E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.27.已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.28.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 29.如图,已知抛物线2y x bx c =-++与x 轴交于A 、B 两点,4AB =,交y 轴于点C ,对称轴是直线1x =.…外…………○…………线…………○……学校:_____…内…………○…………线…………○…… (1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线1x =的对称点F 正好落在BC 上,求点F 的坐标; (3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为()0t t >秒. ①若AOC ∆与BMN ∆相似,请直接写出t 的值; ②BOQ ∆能否为等腰三角形?若能,求出t 的值;若不能,请说明理由. 30.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x 与抛物线交于A 、B 两点,直线l 为y=﹣1. (1)求抛物线的解析式; (2)在l 上是否存在一点P ,使PA+PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由. (3)知F (x 0,y 0)为平面内一定点,M (m ,n )为抛物线上一动点,且点M 到直线l 的距离与点M 到点F 的距离总是相等,求定点F 的坐标.参考答案1.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,)2-. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+, 得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =, ③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1t =2t =.综上所述P 的坐标为()1,2--或()1,4-或⎛- ⎝⎭或⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题. 2.(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 【解析】分析:(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM 的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M 的坐标为(0,3);(3)存在.过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为y=3x+3,∴直线PC 的解析式可设为y=﹣13x+b , 把C (0,3)代入得b=3,∴直线PC 的解析式为y=﹣13x+3, 解方程组223133y x x y x ⎧-++⎪⎨-+⎪⎩==,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=﹣x+b ,把A (﹣1,0)代入得13+b=0,解得b=﹣13, ∴直线PC 的解析式为y=﹣13x ﹣13, 解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.3.(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==, 这个二次函数的表达式是y=x 2-4x+3;(2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得300k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3,过点P 作PE ∥y 轴,交直线BC于点E(t,-t+3),PE=-t+3-(t2-4t+3)=-t2+3t,∴S△BCP=S△BPE+S CPE=12(-t2+3t)×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S△BCP最大=278.(3)M(m,-m+3),N(m,m2-4m+3)MN=m2-3m,|m-3|,当MN=BM时,①m2(m-3),解得②m2(m-3),解得当BN=MN时,∠NBM=∠BMN=45°,m2-4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,-(m2-4m+3)=-m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.4.(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(1+4)或(1-4)或(1,﹣4).【分析】(1)由于抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,那么可以得到方程x 2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b 、c 的值.(2)根据S △PAB =8,求得P 的纵坐标,把纵坐标代入抛物线的解析式即可求得P 点的坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b ,﹣1×3=c , ∴b=﹣2,c=﹣3,∴二次函数解析式是y=x 2﹣2x ﹣3.(2)∵y=﹣x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P 的纵坐标为|y P |,∵S △PAB =8, ∴12AB•|y P |=8, ∵AB=3+1=4,∴|y P |=4,∴y P =±4,把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1±, 把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(4)或(1﹣,4)或(1,﹣4)时,满足S △PAB =8.【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;3.二次函数图象上点的坐标特征.5.(1)21452=-+-y x x ;(2)()2,1M -,25y x =-;(3)点P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【分析】(1)函数表达式为:y=a (x-4)2+3,将点B 坐标代入上式,即可求解;(2)A (4,3)、B (0,-5),则点M (2,-1),设直线AB 的表达式为:y=kx-5,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)设函数表达式为:()243y a x =-+,将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1M -,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =,故直线AB 的表达式为:25y x =-;(3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,当点Q 在A 的下方时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点P (m ,-12m 2+4m-5)向左平移2个单位、向下平移4个单位得到Q (4,s ), 即:m-2=4,-12m 2+4m-5-4=s , 解得:m=6,s=-3,故点当点Q 在点A 上方时,AQ=MP=2,同理可得点Q 的坐标为(4,5),②当AM 是平行四边形的对角线时,由中点定理得:4+2=m+4,3-1=-12m 2+4m-5+s ,解得:m=2,s=1,故点P 、Q 的坐标分别为(2,1)、(4,1);综上,P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.6.(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值为1;(3)12(4,5),(8,45)P P --【分析】(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE ,即可求解. 【详解】(1)∵OB=OC ,∴点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x 2+2x+3…①;对称轴为:直线1x =(2)ACDE 的周长=AC+DE+CD+AE ,其中、DE=1是常数,故CD+AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD=C′D ,取点A′(-1,1),则A′D=AE ,故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE 的周长的最小值(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE , 则BE :AE ,=3:5或5:3,则AE=52或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.7.(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为4或2或2;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】 分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2),AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2×, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴×=4, 设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5),当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4,当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 1,m 2综上所述,P 点的横坐标为4; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.(1)m=2,顶点为(1,4);(2)(1,2).【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3,解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.9.(1);(2)y=3x ,抛物线解析式为y=3x 2﹣3;(3)点P 存在,坐标为(94,﹣8). 【分析】 (1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【详解】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,∴OC :OB=OA :OC ,∴OC 2=OA•OB=3,则(2)∵C 是BM 的中点,即OC 为斜边BM 的中线,∴OC=BC ,∴点C 的横坐标为32,又C 在x 轴下方,∴C (32设直线BM的解析式为y=kx+b,把点B(3,0),C(323032k bk b+=⎧⎪⎨+=⎪⎩,解得:b=∴x又∵点C(3 2解得:a=3,∴抛物线解析式为x2(3)点P存在,设点P坐标为(xx2,过点P作PQ⊥x轴交直线BM于点Q,则Q(x∴2)=x2x﹣当△BCP面积最大时,四边形ABPC的面积最大,S △BCP =12PQ (3﹣x )+12PQ (x ﹣32)=34PQ=2 当x=﹣9=24b a 时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,﹣). 【点睛】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键.10.(1)y=﹣x 2﹣2x +3;(2)所求P 点的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3);(3)点Q 的坐标是(﹣1,2).【分析】(1)将A (-3,0),B (1,0)两点代入y=-x 2+bx+c ,利用待定系数法求解即可求得答案; (2)首先求得点C 的坐标为(0,3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x 的值,即可求得P 点的坐标; (3)根据两点之间线段最短可得Q 点是AC 与对称轴的交点.利用待定系数法求出直线AC 的解析式,将抛物线的对称轴方程x=-1代入求出y 的值,即可得到点Q 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣3,0),B (1,0)两点,∴930{10b c b c -++=-++=,解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣2x+3;(2)∵y=﹣x 2﹣2x+3,∴x=0时,y=3,∴点C 的坐标为(0,3).设在抛物线上存在一点P (x ,y ),使S △PAB =S △ABC ,则|y|=3,即y=±3. 如果y=3,那么﹣x 2﹣2x+3=3,解得x=0或﹣2,x=0时与C 点重合,舍去,所以点P (﹣2,3);如果y=﹣3,那么﹣x 2﹣2x+3=﹣3,解得x=﹣,所以点P (﹣,﹣3);综上所述,所求P 点的坐标为(﹣2,3)或(﹣,﹣3)或(﹣1,﹣3); (3)连结AC 与抛物线的对称轴交于点Q ,此时△QBC 的周长最小.设直线AC 的解析式为:y=mx+n ,∵A (﹣3,0),C (0,3),∴30{3m n n -+==,解得:13m n ==⎧⎨⎩, ∴直线AC 的解析式为:y=x+3.∵y=﹣x 2﹣2x+3的对称轴是直线x=﹣1,∴当x=﹣1时,y=﹣1+3=2,∴点Q 的坐标是(﹣1,2).【点睛】此题考查了抛物线与x 轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.11.(1)223y x x =--;(2)存在这样的点,此时P ,32-);(3)P 点的坐标为(32,−154),四边形ABPC 的面积的最大值为758. 【分析】 (1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;.(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;. (3)由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.【详解】。

用待定系数法确定二次函数解析式

用待定系数法确定二次函数解析式
一、用待定系数法确定函数解析式的基本方法分四步 完成:一设、二代、三解、四还原。 一设:指先设出二次函数的解析式 二代:指根据题中所给条件,代入二次函数的 解析式,得到关于待定系数的方程或方程组。 三解:指解此方程或方程组 四还原:指将求出的待定系数的值还原回原解析式中
二、求二次函数的解析式 (1)关键是求出待定系数的值. (2)设解析式的形式:解(1)∵图象顶点为(1,-6),
∴设其解析式为 y=a(x-1)2-6.
∵图象经过点(2,-8),
∴-8=a(2-1)2-6.∴a=-2.
∴函数解析式为 y=-2(x-1)2-6.
例3拓展应用:抛物线 y=ax2+bx+c经过A(-2,-4),
O(0,0),B(2,0)三点 (1)求抛物线 y=ax2+bx+c的解析式。 (2)若点M是该抛物线对称轴上的一点,求AM+OM的 最小值。 y
-2
O。 B 。 x
。 M 。
A。
-4
x=1
。 A1 (4,-4)
【变式训练】
1.二次函数y x 2 bx c的图象的最低点为( - 1,3),
此函数解析式 _____________ 2.抛物线 y=-x2+bx+c 的图象如图 所示, 求此抛物线的解析式。 3.已知二次函数 y=ax2+bx+c 中的 x,y 满足下表:
当已知抛物线上三个点时,设一般式
例1 二次函数的图象经过点A(1,3) ,B(0,3) ,C(-1,1)三点 求此函数的解析式;
解:设所求函数关系式为 y=ax2+bx+c,
∵图象经过点 A(1,3), B(0,3), C(-1,1),
c=3, ∴a+b+c=3, a-b+c=1. a=-1, 解得b=1, c=3.

二次函数-用待定系数法求解二次函数解析式专题讲义

二次函数-用待定系数法求解二次函数解析式专题讲义

待定系数法求解析式一、知识要点近年高频考点中考频率所占分值1、用待定系数法求解二次函数解析式 5~10分1、设一般式y=ax2+bx+c_用待定系数法求二次函数解析式2、设顶点式y=a(x-h)2+k _用待定系数法求二次函数解析式3、设交点式y=a(x-x1)(x-x2)_用待定系数法求二次函数解析式知识点回顾:二次函数的表达形式有那些?二、知识要点详解1、知识点一:设一般式y=ax2+bx+c_用待定系数法求二次函数的解析式什么叫做待定系数法?一种求未知数的方法。

将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。

然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

根据定义待定系数法求二次函数的解析式步骤如下:(1)、找出符合方程的点;(2)、根据相应的点设不同形式的函数方程;(3)、将相应点的坐标带入(2)步骤所设的函数方程得到关于系数关系的方程或方程组;(4)、解出方程或方程组得到相应的系数(5)、将系数带入所设方程得到二次函数的解析式如题:二次函数的顶点为(2,1),函数图像经过点(1,0),求此二次函数的解析式。

解:∵二次函数的定点为(2,1)找点(1)∴设二次函数的解析式为:y=a(x-2)2+1 根据相应的点设立方程(2)∵点(1,0)在函数图像上,即(1,0)满足方程y=a(x-2)2+1∴0=a(1-2)2+1 将点带入得方程(3)解之得:a=-1 解方程(4)∴二次函数解析式为:y=-(x-2)2+1 将所求系数代入得方程解析式(5)一般式y=ax2+bx+c的求解方法:若是已知条件是图像上的三个点,则设所求二次函数y=ax2+bx+c,将已知条件代入解析式,得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,代入方程求得解析式例题一1.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为____________.2.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.3.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A.y=2x2+x+2B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+24.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,求出抛物线的解析式.5.已知抛物线C1:y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,-3).(1)求抛物线C1的解析式;(2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并写出C2的解析式.顶点式y=a(x-h)2+k的求解方法:若是已知条件是图像上的顶点(h,k)与另外一点(x,y),则设所求二次函数y=a(x-h)2+k,将已知条件(x,y)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式例题二1.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8B.y=18(x+1)2-8C.y=29(x-1)2+8D.y=2(x-1)2-82.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是( ) A.b=2,c=4B.b=2,c=-4C.b=-2,c=4 D.b=-2,c=-43.在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.4.已知抛物线经过两点A(1,0),B(0,3),且对称轴是直线x=2,求其解析式.5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线的解析式为交点式y=a(x-x1)(x-x2)的求解方法:若是已知条件是图像上抛物线与x轴的交点(x1,0)、(x2,0)与另外任意一点(x3,y3),则设所求二次函数y=a(x-x1)(x-x2),将已知条件(x3,y3)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式例题三1.如图,抛物线的函数表达式是( )A.y=12x2-x+4B.y=-12x2-x+4C.y=12x2+x+4D.y=-12x2+x+42.已知一个二次函数的图象与x轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.3.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A.y=x2-x-2B.y=-12x2-12x+2C.y=-12x2-12x+1D.y=-x2+x+24.已知抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8),该抛物线的解析式为5.如图,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0),求这条抛物线的解析式.3.把二次函数253212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的解析式。

用待定系数法求二次函数解析式(专题复习)

用待定系数法求二次函数解析式(专题复习)
y= -1(x+1)(x-3) = -x2+2x+3
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
3.交点式 y=a(x-x1)(x-x2) 知道抛物线与x轴的两个交点的坐
标,或一个交点的坐标及对称轴方程或顶 点的横坐标时选用两根式比较简便. (1)当△=b2- 4ac≥0 ,抛物线与x轴相交
y=ax2+bx+c=a(x-x1)(x-x2) △=b2- 4ac>0 ,交点有两个, 分别是: (x1, 0)和(x2, 0) △=b2- 4ac =0,交点只有一个 即顶点[-b/2a,(4ac-b2)/4a] △=b2- 4ac <0 ,无交点
解:设二次函数解析式为y=ax2+bx+c ∵ 图象过B(0,2) ∴ c=2 ∴ y=ax2+bx+2 ∵ 图象过A(2,-4),C(-1,2)两点 ∴ -4=4a+2b+2
2=a-b+2 解得 a=-1,b=-1 ∴ 函数的解析式为:
y=-x2-x+2
2. 顶点式 y=a(x-h)2+k (a≠0)已知对称轴
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4= -x2+2x+3
解法3:(交点式) 由题意可知两根为x1=-1、x2=3 设二次函数解析式为y=a(x-x1)(x-x2) 则有: y=a(x+1)(x-3) ∵ 函数图象过点(1,4) ∴ 4 =a(1+1)(1-3) 得 a= -1 ∴ 函数的解析式为:

二次函数待定系数法求函数解析式

二次函数待定系数法求函数解析式

二次函数待定系数法求函数解析式精心整理专题训练:求二次函数的解析式一、已知三点求解析式1.经过三点(-1,-22),(1,-8),(2,8)的二次函数为抛物线,其开口方向向上,对称轴为x=1,顶点坐标为(1,-14)。

解析式为y = 2x^2 - 4x - 16.2.经过三点(0,0),(-1,-1),(1,9)的二次函数为抛物线,解析式为y = 4x^2 - 4x。

3.经过三点(-1,-6),(1,-2),(2,3)的二次函数为抛物线,其开口方向向上,对称轴为x=0,顶点坐标为(0,-1)。

解析式为y = x^2 - x - 5.4.经过三点(1,a),(2,b),(3,4)的二次函数为抛物线,解析式为y = -3x^2 + 18x - 15.5.经过两点(-1,10),(2,7)且3a+2b=16的二次函数为抛物线,解析式为y = -x^2 + 4x +6.6.经过两点(a,b)和(12,b)且顶点纵坐标为3的二次函数为抛物线,解析式为y = -1/36(x-a)^2 + b + 3.7.经过两点(-3,c)和(0,3)的二次函数为抛物线,其顶点为M(-3,c+1),对称轴为x=-3,解析式为y = -x^2 + 6x + c。

8.经过三点A(-1,0),B(0,-1),C(1,2)的二次函数为抛物线,解析式为y = x^2 - x - 1.9.经过三点(-1,-2),(0,-1),(1,0)的二次函数为抛物线,解析式为y = x^2 - x - 2.10.抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3,解析式为y = -1/2x^2 + 3.11.经过点A(-1,4),(1,4)的二次函数为抛物线,解析式为y = x^2 - 4.12.经过三点(1,0),(-1,0),(0,-3)的二次函数为抛物线,其顶点为(0,-3)且对称轴为y=-3,解析式为y = -x^2 - 3.13.经过三点(-1,3),(3,-1),(4,3)的二次函数为抛物线,其开口方向向下,对称轴为x=3,顶点坐标为(3,2)。

14待定系数法求二次函数解析式(讲+练)【7种题型】

14待定系数法求二次函数解析式(讲+练)【7种题型】

22.1.5待定系数法求二次函数解析式 二次函数解析式常见有以下几种形式 : (1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).题型1:一般式求二次函数解析式-一个或两个参数未知1.若抛物线y =x 2+bx +c 的对称轴为y 轴,且点P (2,6)在该抛物线上,则c 的值为( ) A .﹣2B .0C .2D .4题型2:一般式求二次函数解析式-a 、b 、c 未知2.二次函数y =ax 2+bx+c (a≠0)的图象过点A (﹣1,8)、B (2,﹣1),与y 轴交于点C (0,3),求二次函数的表达式.题型3:顶点式求二次函数解析式3.已知抛物线的顶点是A(2,﹣3),且交y 轴于点B(0,5),求此抛物线的解析式.【变式3-2】已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,-3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.题型4:交点式求二次函数解析式4.已知二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.题型5:综合-待定系数法与二次函数的性质5.已知:二次函数的图象经过点A(−1,0),B(0,−3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.题型6:综合-待定系数法求最短距离6.如图,已知抛物线y=1a(x−2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【变式6-1】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.题型7:综合-三角形面积7.如图,在平面直角坐标系xOy中,抛线y=ax2+bx+2过B(-2,6),C(2,2)两点。

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解〔提高〕【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,复原:将求出的待定系数复原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线y ax bx c =++2经过A ,B ,C 三点,当x ≥0时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为y ax bx c =++2〔a ≠0〕. 由图象可知A ,B ,C 的坐标分别为〔0,2〕,〔4,0〕,〔5,-3〕.∴=++=++=-⎧⎨⎪⎩⎪c a b c a b c 216402553,,,解之,得a b c =-==⎧⎨⎪⎪⎪⎩⎪⎪⎪12322,,∴抛物线的解析式为y x x =-++123222 y x x x =--+=--+1232123225822()()∴该抛物线的顶点坐标为()32258,.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围x ≥0.2. 一条抛物线y x mx n =++142经过点()032,与()432,.求这条抛物线的解析式. 【答案与解析】抛物线y x mx n =++142经过点〔032,〕和(,)432, ∴这条抛物线的对称轴是直线x =2.设所求抛物线的解析式为y x h =-+1422().将点(,)032代入,得1402322()-+=h ,解得h =12. ∴这条抛物线的解析式为y x =-+142122(),即y x x =-+14322. 【总结升华】解析式中的a 值已经知道,只需求出m n ,的值。

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是() A.-3 B.-1 C.2 D.3 3.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(-3,-6) B .(-3,0) C .(-3,-5) D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________.7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可)14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)责编:常春芳【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】 类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c ,把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ;∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0).举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a , 所得函数为5422-+-=x x y对称轴方程:1=x ,顶点()31-,. 2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2),设此二次函数的解析式为y=a (x ﹣1)2﹣2,把点(2,3)代入解析式,得:a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2.【总结升华】本题已知顶点,可设顶点式.举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3). 则有930,3,1,2a b c c b a⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0).由图象知,抛物线与x 轴两交点为(-1,0),(3,0).则有(1)(3)y a x x =+-,即223y ax ax a =--.又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0).则有2(1)y a x k =-+,将点(3,0),(0,3)代入得 40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩ ∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,。

待定系数法求二次函数的解析式—知识讲解

待定系数法求二次函数的解析式—知识讲解

待定系数法求二次函数的解析式—知识讲解设定二次函数的解析式为$f(x)=ax^2+bx+c$,其中$a$、$b$和$c$为待定系数。

一、已知函数的根情况一:已知函数的两个根$x_1$和$x_2$,则有以下条件:$$f(x_1)=0$$$$f(x_2)=0$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_2}^2+b{x_2}+c=0$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_2}^2+b{x_2}=-c$$注意到$x_1$和$x_2$为已知值,$a$、$b$和$c$为待定系数,上述方程可以看作是一个关于$a$、$b$和$c$的线性方程组。

通过解这个方程组,即可求出$a$、$b$和$c$。

情况二:已知函数的一个根$x_1$和函数经过的一个点$(x_3,y_3)$,则有以下条件:$$f(x_1)=0$$$$f(x_3)=y_3$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_3}^2+b{x_3}+c=y_3$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_3}^2+b{x_3}=y_3-c$$同样地,将上述方程看作是一个关于$a$、$b$和$c$的线性方程组,求解即可得到$a$、$b$和$c$的值。

二、已知函数的值当已知二次函数经过的两个点$(x_1,y_1)$和$(x_2,y_2)$时,同样可以通过设定$a$、$b$和$c$为待定系数,列出方程组来求解。

将已知点代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=y_1$$$$a{x_2}^2+b{x_2}+c=y_2$$进一步化简,得:$$a{x_1}^2+b{x_1}=y_1-c$$$$a{x_2}^2+b{x_2}=y_2-c$$同样地,上述方程可看作是一个关于$a$、$b$和$c$的线性方程组,通过求解该方程组,即可求出$a$、$b$和$c$的值。

用待定系数法求二次函数的解析式

用待定系数法求二次函数的解析式

用待定系数法求二次函数的解析式一、一般式: .已知图像上三点或三对 x 、y 的值,通常选择一般式.1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数y= ax2+bx+c,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。

3.二次函数图像过(-1,3)、(1,3)、(2,6),求解析式。

4.二次函数图像过(-1,-1)、(0,-2)、(1,1),求解析式。

5.二次函数图象过(0,0),(1,-2),(2,3),求解析式。

二、顶点式:. .已知图像的顶点或对称轴或最值,通常选择顶点式.1.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。

2.二次函数y= ax2+bx+c的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。

3.已知抛物线顶点坐标是(-2,1),且过点(1,-2),求抛物线的解析式。

4.已知抛物线顶点坐标为(4,—8),且经点(6,—4),求其解析式。

5.抛物线的最大值为3,且过(0,2)和(3,-1);三、交点式:已知图像与轴的交点横坐标、,通常选交点式1.已知二次函数的图象与x轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。

2.已知抛物线y=a x2+b x+c经过A(-1,0)、B(3,0)、C(0,3)三点,求解析式。

3.二次函数图像过(-2,0)、(1,0)、(2,8),求解析式。

4.已知抛物线y=ax2+bx+c经过(1,0)(5,0),(4,3),求解析式。

5.抛物线y=-2x2+bx+c与x轴相交于(-1,0)、(3,0);四、用适当方法求解解析式1.抛物线与x轴交于A(2,0)、B(6,0),且顶点到y轴的距离为2,求其解析式。

2.求形状与抛物线y=-x2相同,对称轴是x=-2,且过(0,3)的抛物线解析式。

3.二次函数y=ax2+bx+c图象顶点纵坐标为-2,且x≤-1时,y随x 的增大而减少;x≥-1时,y随x的增大而增大,且经过(1,0),求这个二次函数的解析式。

九年级待定系数法求二次函数解析式专项练习

九年级待定系数法求二次函数解析式专项练习
待定系数法求二次函数的解析式专项练习
【基础知识】
3.抛物线 y=ax2+bx+c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.
4. 若一抛物线与 x 轴两个交点间的距离为 8,且顶点坐标为(1, 5),则它们的
解析式为 。
【练习题】 1.已知抛物线 y=ax2 经过点 A(1,1).求这个函数的解析式;
12.已知二次函数 y = x 2 − 6x + m 的最小值为 1,求 m 的值.
9.已知二次函数 y=ax2+bx+c,当 x=0 时,y=0;x=1 时,y=2;x=-1 时,y=1.求 a、b、c,并写出函数解析式.
5 13.已知抛物线经过 A(0,3),B(4,6)两点,对称轴为x=3 ,
求这条抛物线的解析式;
10.把抛物线 y=(x-1)2 沿 y 轴向上或向下平移后所得抛物线经过点 Q(3,0), 求平移后的抛物线的解析式.
-2-Biblioteka 学习的目的在于使自己变的聪明、和谐!
5.已知二次函数 y=ax2+bx+c,当 x=-1 时有最小值-4,且图象在 x 轴上截 得线段长为 4,求函数解析式.
2.已知二次函数 y=ax2+bx+c 的图象顶点坐标为(-2,3),且过点(1,0),求 此二次函数的解析式.
6.抛物线 y=ax2+bx+c 经过(0,0),(12,0)两点,其顶点的纵坐标是 3,求这 个抛物线的解析式.
-1-
学习的目的在于使自己变的聪明、和谐!
7.已知二次函数为 x=4 时有最小值 -3 且它的图象与 x 轴交点的横坐标为 1,求 此二次函数解析式.
11.二次函数 y=x2-mx+m-2 的图象的顶点到 x 轴的距离为 25 , 求二次函数 16

专题用待定系数法求二次函数的解析式

专题用待定系数法求二次函数的解析式

专题用待定系数法求二次函数的解析式Company number【1089WT-1898YT-1W8CB-9UUT-92108】专题1-用待定系数法求二次函数的解析式二次函数的解析式常见的三种表达形式:一般式:y=ax2+bx+c (a≠0)顶点式:y=a(x-h)2+k (a≠0,(h,k)是抛物线的顶点坐标)交点式:y= a(x-x1) (x-x2) (a≠0,x1、x2是抛物线与x轴交点的横坐标)例1.如果二次函数y=ax2+bx+c的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式.变式一:如果二次函数y=ax2+bx+c的图象经过原点,当x=-2时,函数的最大值为 4,求二次函数解析式.变式二:如果二次函数y=ax2+bx+c的图象经过原点,对称轴是直线x=-2,最高点的纵坐标为4,求二次函数解析式.例2.如果二次函数y=ax2+bx+c的图象过(-3,0)、(1,0)、(0,-3),求二次函数解析式.变式一:如果二次函数y=ax2+bx+c的图象与x轴交点的横坐标是-3、1,与y轴交点的纵坐标是-3,求二次函数解析式.变式二:如果二次函数y=ax2+bx+c的图象过(-3,0)、(0,-3),且对称轴是x=-1,求二次函数解析式.变式三:如果二次函数y=ax2+bx+c的图象过(-4,5)、(0,-3),且对称轴是x=-1,求二次函数解析式.变式四:如果二次函数y=ax2+bx+c的图象过(-4,5)、(2,5)、(1,0),求二次函数解析式.二次函数专题练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数y= ax 2+bx+c ,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。

3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。

4.二次函数y= ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。

《用待定系数法求二次函数的解析式》同步练习(含精品解析)

《用待定系数法求二次函数的解析式》同步练习(含精品解析)

用待定系数法求二次函数的解析式 同步练习题基础题知识点1 利用“三点式”求二次函数解析式1.已知二次函数y =-x 2+bx +c 的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为12______________________.2.若二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x -7-6-5-4-3-2y-27-13-3353则此二次函数的解析式为____________________.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.4.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =(x -1)2+829D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式7.如图所示,抛物线的函数表达式是( )A .y =x 2-x +412B .y =-x 2-x +412C .y =x 2+x +412D .y =-x 2+x +4128.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-x 2-x +21212C .y =-x 2-x +11212D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3的图象,求函数y 3的最小值.参考答案基础题1.y =-x 2+4x -62.y =-2x 2-12x -13123.由题意,得解得∴二次函数的解析式为y =2x 2-3x +1. {a +b +c =0,a -b +c =6,c =1,){a =2,b =-3,c =1.)4.(1)∵抛物线y =x 2+bx +c 与x 轴交于A(-1,0),B(3,0)两点,∴解得∴二次函{1-b +c =0,9+3b +c =0.){b =-2,c =-3.)数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D 6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =.∴这14条抛物线的解析式为y =(x -4)2-1. 147.D 8.y =x 2-x -2 9.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =.所以y =(x +1)4343(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =(x +1)(x +3).∴函数的解析式为415y =(x +1)(x -1)或y =(x +1)(x +3).43415中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =x 2-x +2或y =-x 2+x +2 1814183415.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x轴于点P.设AE 解析式为y =kx +b ,则解得∴y AE =7x -3.∵当y =0时,x =,∴点P 的{k +b =4,b =-3,){k =7,b =-3.)37坐标为(,0). 3716.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上.综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x 轴于点(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称;④函数y =(x -1)[(k -1)x +(x -3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行) (3)将函数y 2=(x -1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3=(x +3)2-2,∴当x =-3时,函数y 3取最小值,等于-2.。

2024年初中升学考试九年级数学专题复习待定系数法求二次函数解析式

2024年初中升学考试九年级数学专题复习待定系数法求二次函数解析式

待定系数法求二次函数解析式19.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.【答案】(1)(2,7);(2)﹣2≤y≤7;(3)y=﹣x2+2x+2.【分析】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解答】解:(1)①∵b=4,c=3 时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2 时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1 时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴x=b2在y轴的右侧,∴b>0,∵抛物线开口向下,x ≤0时,y 的最大值为2,∴c =2,又∵4×(−1)×c−b 24×(−1)=3,∴b =±2,∵b >0,∴b =2.∴二次函数的表达式为 y =﹣x 2+2x +2.【点评】本题考查了二次函数的性质,掌握数形结合思想是解题的关键.待定系数法求二次函数解析式33.(2023•宁波)如图,已知二次函数y =x 2+bx +c 图象经过点A (1,﹣2)和B (0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y ≤﹣2时,请根据图象直接写出x 的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A 关于对称轴的对称点坐标,由图象直接可得答案.【解答】解:(1)把A (1,﹣2)和B (0,﹣5)代入y =x 2+bx +c 得:{1+b +c =−2c =−5, 解得{b =2c =−5,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.【点评】本题考查二次函数图象及性质,解题的关键是掌握待定系数法,求出函数表达式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21课时用待定系数法确定二次函数解析式专题复习
转步中学九年级数学备课组
复习目标:
1、理解求二次函数解析式的方法及步骤;掌握二次函数解析式的三种形式。

2、会运用待定系数法,根据题目实际条件灵活选择恰当的形式求二次函数解析式,达到简便运算。

复习过程:
一、课前热身:
1、知识回顾:二次函数解析式常见的三种形式:
(1)一般式 (2)顶点式 (3)交点式
2、抛物线的图象如图所示:
(1)直接写出点A、B、C的坐标:
A ;
B ;
C 。

(2)根据(1)求出这个二次函数的解析式. (3)若只知道抛物线的顶点坐标为(2,-1),且经过点C,求此抛物线的解析式。

二、合作交流:根据课前热身第2题,小组交流讨论,完成下面各题。

1、根据课前热身第2题所求结果,小组合作交流,完成下面各题。

(1)数形结合,观察题目所给已知点的坐标有何特点?
①二次函数解析式中待定系数有三个,通常需要找()个点;
二次函数解析式中待定系数有二个,通常需要找()个点。

②第二小题已知点坐标有何特点?(),我会设解析式为()。

③第三小题已知点坐标有何特点?(),我会设解析式为()。

④除了你选择的方法,还有其他方法吗?有的话,对比一下哪种更简单?
(2)求二次函数解析式的一般步骤?()。

(3)规律总结:。

2、当堂训练。

(1)已知抛物线过点(1,3)、(-1,0)、(3,2):可设二次函数的解析式为。

(2)已知抛物线过点(1,0)、(0,4)、(4,0):可设二次函数的解析式为。

(3)已知抛物线顶点坐标为(3,1),且过点(-2,6):可设二次函数的解析式为。

(4)已知抛物线的对称轴为直线x=1,且过点(3,4)、(-2,1):可设二次函数的解析式
为。

三、典例精析:
如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A,B两点,
与y轴交于C点,点A,C的坐标分别是(8,0),(0,4),求这个抛物线的
解析式.
四、面向中考:
(2016·百色)如图,在平面直角坐标系中,正方形OABC的边
长为4,对角线相交于点P,抛物线L经过点O、P、A三点,点E是正方
形内的抛物线上的动点.
(1)直接写出O、P、A三点坐标;
(2)求抛物线L的解析式;
※(3)求△OAE与△OCE面积之和的最大值.
五、当堂检测:
如图,抛物线的图象与x轴交于点A,C,与y轴交于点B(0,3),其顶点坐标为(1,4).(1)求该抛物线的解析式;
(2)求△ABC的面积.
六、学习反思:
1、本节课你学会了什么?。

2、你还有什么疑惑?。

相关文档
最新文档