北票市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北票市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 把函数y=cos (2x+φ)(|φ|
<
)的图象向左平移
个单位,得到函数y=f (x )的图象关于直线
x=
对称,则φ的值为( )
A
.﹣
B
.﹣
C
.
D
.
2. 已知双曲线C :
﹣
=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C
的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )
A
. B
. C .2 D
.
3. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )
A
. B
. C
. D
.
4. 若函数()y f x =的定义域是[]
1,2016,则函数()()1g x f x =+的定义域是( )
A .(]
0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017 5. 复数i i -+3)1(2
的值是( )
A .i 4341+-
B .i 4341-
C .i 5351+-
D .i 5
351-
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 6. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )
A
. B .1 C
. D
.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
7. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3)
C .(,2)
D .(,0)
8. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )
A .
B .
C .
D .
9. 已知函数⎩
⎨
⎧≤>=)0(||)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
10.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1
B .2
C .3
D .4 11.已知函数f (x )=2x ,则f ′(x )=( )
A .2x
B .2x ln2
C .2x +ln2
D .
12.下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面
C .两两相交的三条直线一定在同一平面内
D .过同一点的三条直线不一定在同一平面内
二、填空题
13.已知(2x ﹣
)n
展开式的二项式系数之和为64,则其展开式中常数项是 .
14.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:
).
15.i 是虚数单位,化简: = .
16.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 . 17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与
CD 所成的角是 .
18.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
三、解答题
19.求下列函数的定义域,并用区间表示其结果.
(1)y=+
;
(2)y=.
20.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),
(1)求{a n }的通项公式;
(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .
21.设A=2
{x|2x
+ax+2=0},2A ∈,集合2{x |x 1}B ==
(1)求a 的值,并写出集合A 的所有子集;
(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。
22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y =的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
23.已知f(α)=,
(1)化简f(α);
(2)若f(α)=﹣2,求sinαcosα+cos2α的值.
24.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=1
22b
2+2c2-a2;
(2)若A=120°,AD=19
2,sin B
sin C
=3
5
,求△ABC的面积.
北票市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,
得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,
则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,
故选:B.
2.【答案】D
【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,
双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)
∵AB为直径的圆恰过点F2
∴F1是这个圆的圆心
∴AF1=F1F2=2c
∴c=2c,解得b=2a
∴离心率为==
故选D.
【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.
3.【答案】A
【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.
如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.
对照选项知,只有A符合此要求.
故选A.
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
4. 【答案】B
【解析】
5. 【答案】C
【解析】i i i i i i i i i i 5
3
511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.
6. 【答案】D
【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,
∴直角三角形的直角边长是,
∴直角三角形的面积是,
∴原平面图形的面积是1×2=2
故选D .
7. 【答案】 D
【解析】解:由题意作出其平面区域,
将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,
使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x 上但不在阴影区域内,
故不成立;
故选D .
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
8.【答案】C
【解析】解:设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,
由题意P(A)==,P(B)=,
∴甲冋学收到李老师或张老师所发活动通知信息的概率为:
p(A+B)=P(A)+P(B)﹣P(A)P(B)
==.
故选:C.
【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.9.【答案】D
第
Ⅱ卷(共100分)[.Com]
10.【答案】A
【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),
∴a n =5t 2
﹣4t=
﹣,
∴a n ∈
,
当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.
∴q ﹣p=2﹣1=1, 故选:A .
【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
11.【答案】B
【解析】解:f (x )=2x ,则f'(x )=2x
ln2, 故选:B .
【点评】本题考查了导数运算法则,属于基础题.
12.【答案】D
【解析】解:对A ,当三点共线时,平面不确定,故A 错误; 对B ,当两条直线是异面直线时,不能确定一个平面;故B 错误;
对C ,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C 错误; 对D ,由C 可知D 正确. 故选:D .
二、填空题
13.【答案】60.
【解析】解:由二项式系数的性质,可得2n=64,解可得,n=6;
(2x﹣)6的展开式为为T r+1=C66﹣r•(2x)6﹣r•(﹣)r=(﹣1)r•26﹣r•C66﹣r•,
令6﹣r=0,可得r=4,
则展开式中常数项为60.
故答案为:60.
【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.
14.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】该几何体是半个圆柱。
所以
故答案为:
15.【答案】﹣1+2i.
【解析】解:=
故答案为:﹣1+2i.
16.【答案】.
【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,
8个三棱锥的体积为:=.
剩下的凸多面体的体积是1﹣=.
故答案为:.
【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.
17.【答案】30°.
【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,
故∠GEF即为EF与CD所成的角.
又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
18.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
三、解答题
19.【答案】
【解析】解:(1)∵y=+
,
∴
,
解得x ≥﹣2且x ≠﹣2且x ≠3,
∴函数y 的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴
, 解得x ≤4且x ≠1且x ≠3,
∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].
20.【答案】
【解析】解:(1)a 1=S 1=1+c ,a 2=S 2﹣S 1=3,a 3=S 3﹣S 2=5﹣﹣﹣﹣﹣(2分)
因为等差数列{a n },所以2a 2=a 1+a 3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) ∴a 1=1,d=2,a n =2n ﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6
分)
(2)a 2=3,a 1+b 1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣(8分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12
分)
【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.
21.【答案】(1)5a =-,A 的子集为:φ,12⎧⎫
⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)0或1或1-。
【解析】
试题分析:(1)由2A ∈有:2
22220a ⨯++=,解得:5a =-,此时集合{}
212520,22A x x x ⎧⎫=-+==⎨⎬⎩⎭
,
所以集合A 的子集共有4个,分别为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)由题{}1,1B =-若C B ⊆,当C φ=时,0b =,当C φ≠时,{}1B =或{}1B =-,当{}1C =时,1b =,当{}1C =-时,1b =-,所以实数b
的值为1或1-。
本题考查子集的定义,求一个集合的子集时,注意不要漏掉空集。
当集合A B ⊆时,要分类讨论,分A φ=和A φ≠两类进行讨论。
考查学生分类讨论思想方法的应用。
试题解析:(1)由2A ∈有:222220a ⨯++=,解得:5a =-,
{}212520,22A x x x ⎧⎫
=-+==⎨⎬⎩⎭
所以集合A 的子集为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
(2){}1,1B =-,由C B ⊆:当C φ=时,0b =
当C φ≠时,1b =或1b =-, 所以实数b 的值为:0或1或1- 考点:1.子集的定义;2.集合间的关系。
22.【答案】 23.【答案】
【解析】解:(1)f (α)
=
=
=﹣tan α;…5(分) (2)∵f (α)=﹣2, ∴tan α=2,…6(分)
∴sin αcos α+cos 2
α=
=
=
=
.…10(分)
24.【答案】 【解析】解:
(1)证明:∵D 是BC 的中点,
∴BD =DC =a
2
.
法一:在△ABD 与△ACD 中分别由余弦定理得c 2
=AD 2
+a 2
4
-2AD ·
a
2
cos ∠ADB ,① b 2=AD 2
+a 24-2AD ·a 2
·cos ∠ADC ,②
①+②得c 2+b 2=2AD 2
+a 22
,
即4AD 2=2b 2+2c 2-a 2,
∴AD =1
2
2b 2+2c 2-a 2.
法二:在△ABD 中,由余弦定理得
AD 2=c 2
+a 24-2c ·a 2
cos B
=c 2+a
24-ac ·a 2+c 2-b 22ac
=2b 2+2c 2-a 2
4,
∴AD =1
2
2b 2+2c 2-a 2.
(2)∵A =120°,AD =1219,sin B sin C =3
5,
由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②
b c =3
5
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=153
4.
即△ABC 的面积为15
4
3.。