高中数学必修一集合与函数的概念-复习资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1 第一章 集合与函数概念
〖1.1〗集合
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表
示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).
【1.1.2】集合间的基本关系
(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.
【1.1.3】集合的基本运算
名称
记号
意义
性质 示意图
交集
A B
{|,x x A ∈且
}x B ∈
(1)A A A =
(2)A ∅=∅ (3)A B A ⊆ A B B ⊆ B
A
并集
A B
{|,x x A ∈或
}x B ∈
(1)A A A = (2)A A ∅= (3)A B A ⊇ A
B B ⊇
B
A
补集
U A
{|,}
x x U x A ∈∉且
(1)()U A A =∅
(2)()U A A U =
(3)()()()U U U A B A B = (4)()()()U U U A B A B =
【补充知识】含绝对值的不等式与一元二次不等式的解法
不等式
解集
||(0)x a a <> {|}x a x a -<< ||(0)x a a >>
|x x a <-或}x a >
||,||(0)ax b c ax b c c +<+>>
把ax b +看成一个整体,化成||x a <,
||(0)x a a >>型不等式来求解
判别式
2
4b ac ∆=-
0∆> 0∆= 0∆<
二次函数
2(0)
y ax bx c a =++>的图象
O
一元二次方程
20(0)
ax bx c a ++=>的根
21,242b b ac x a
-±-=
(其中12)x x <
122b x x a
==-
无实根
20(0)
ax bx c a ++>>的解集
1{|x x x <或2}x x >
{|x }2b x a
≠-
R
20(0)
ax bx c a ++<>的解集
12{|}x x x x <<
∅ ∅
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及
A 到
B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.
②函数的三要素:定义域、值域和对应关系.
③只有定义域相同,且对应关系也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做
[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或
a x
b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足
,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.
注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须
a b <.
(3)求函数的定义域时,一般遵循以下原则:
(求函数的定义域之前,尽量不要对函数的解析式进行变形,以免引起定义域的变化)
①()f x 是整式型或奇次方根式型函数,定义域为全体实数。
②()f x 是分式函数时,定义域是使分母不为零的一切实数.
③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤tan y x =中,()2
x k k Z π
π≠+
∈.
⑥零(负)指数幂的底数不能为零.
⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程
2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.
④分离常数法.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最
值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
考点一、判断是否为函数 把握3个要点:(1)两集合是否为非空数集;(2)对集合A 中的每一个元素,在B 中是否都有元素与之对应;(3)A 中任一元素在B 中的对应元素是否唯一--- 例1、 由下列式子能否确定y 是x 的函数?
22(1)2(2)x y y x +== (3)
考点2 相等函数的判断
两个函数的定义域相同,并且对应关系完全一致,称两个函数相等或说是同一函数。
考点3 求函数值
例、已知f(x)=3x+6,求f(2),f(a),f(m+n),f(f(a)). 考点4 函数的定义域问题 考点5 函数值域问题
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表
示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念
①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.
②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.
〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的 性 质
定义
图象
判定方法
函数的
单调性
如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2
y=f(X)
x
y f(x )1
f(x )2
o
(1)利用定义
(2)利用已知函数
的单调性 (3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数...
. y=f(X)
y
x o
x x 2
f(x )
f(x )
2
11
(1)利用定义 (2)利用已知函数
的单调性 (3)利用函数图象(在某个区间图 象下降为减) (4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则
[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]
y f g x =为减.
(2)打“√”函数()(0)a
f x x a x
=+>的图象与性质
y
()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函
数.
(3)最大(小)值定义
①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的
x I ∈,都有()f x M ≤;
(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.
②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.
考点
题型一、函数的单调性的证明及判断方法 题型二、由函数的单调性求参数的取值范围 题型三、由函数的单调性解不等式 题型四、求函数的最大(小)值
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的
奇偶性
如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数...
.
(1)利用定义(要
先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶.函数..
.
(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)
②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.
③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位
右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位
②伸缩变换
01,1,()()y f x y f x ωωω<<>=−−−−→=伸
缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸
③对称变换
()()x y f x y f x =−−−→=-轴
()()y y f x y f x =−−
−→=-轴 ()()y f x y f x =−−−→=--原点
1()()y x y f x y f x -==−−−−→=直线
()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象
保留轴右边图象,并作其关于轴对称图象
()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象
将轴下方图象翻折上去
(2)识图
对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图
函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是
探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.
第一章 集合与函数概念
第一讲 集合
★热点考点题型探析
考点一:集合的定义及其关系 题型1:集合元素的基本特征
[例1](2008年江西理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设
{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )
A .0;
B .2;
C .3;
D .6
[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是
A B *的元素
[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知
A B *={}4,2,0,故应选择D
【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
题型2:集合间的基本关系
[例2].数集{}Z n n X ∈+=,)12(π与{}Z k k Y ∈±=,)14(π之的关系是( ) A .X Y ;B .Y X ; C .Y X =;D .Y X ≠
[解题思路]可有两种思路:一是将X 和Y 的元素列举出来,然后进行判断;也可依选择支之间的关系进行判断。
[解析] 从题意看,数集X 与Y 之间必然有关系,如果A 成立,则D 就成立,这不可能; 同样,B 也不能成立;而如果D 成立,则A 、B 中必有一个成立,这也不可能,所以只能是C
【名师指引】新定义问题是高考的一个热点,解决这类问题的办法就是严格根据题中的定义,逐个进行检验,不方便进行检验的,就设法举反例。
考点二:集合的基本运算
[例3] 设集合{
}
0232
=+-=x x x A ,{
}
0)5()1(22
2=-+++=a x a x x B (1) 若{}2=B A ,求实数a 的值;
(2)若A B A = ,求实数a 的取值范围若{}2=B A ,
[解题思路]对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。
[解析]因为{}
{}2,10232
==+-=x x x A ,
(1)由{}2=B A 知,B ∈2,从而得0)5()1(422
2
=-+++a a ,即
0342=++a a ,解得1-=a 或3-=a
当1-=a 时,{
}
⎣⎦2,2042
-==-=x x B ,满足条件; 当3-=a 时,{}
{}20442
==+-=x x x B ,满足条件
所以1-=a 或3-=a
(2)对于集合B ,由)3(8)5(4)1(42
2
+=--+=∆a a a 因为A B A = ,所以A B ⊆
①当0<∆,即3-<a 时,φ=B ,满足条件; ②当0=∆,即3-=a 时,{}2=B ,满足条件;
③当0>∆,即3->a 时,{
}2,1==A B 才能满足条件, 由根与系数的关系得⎪⎩
⎪⎨⎧
=-
=⇒⎩⎨⎧-=⨯+-=+7
25521)1(22122
a a a a ,矛盾 故实数a 的取值范围是3-≤a
【名师指引】对于比较抽象的集合,在探究它们的关系时,要先对它们进行化简。
同时,要注意集合的子集要考虑空与不空,不要忘了集合本身和空集这两种特殊情况.
第2讲 函数与映射的概念
求值域的几种常用方法
(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数
4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决
(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数
)32(log 22
1++-=x x y 就是利用函数u y 2
1log =和322++-=x x u 的值域来求。
(3)判别式法:通过对二次方程的实根的判别求值域。
如求函数2
21
22
+-+=
x x x y 的值域 由2
2122+-+=x x x y 得012)1(22
=-++-y x y yx ,若0=y ,则得21-=x ,所以0
=y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2
≥--+-=∆y y y 得
021332133≠+≤≤-y y 且,故所求值域是]2
13
3,2133[+- (4)分离常数法:常用来求“分式型”函数的值域。
如求函数1
cos 3
cos 2+-=x x y 的值域,因为
1cos 521cos 3cos 2+-=+-=x x x y ,而]2,0(1cos ∈+x ,所以]2
5
,(1cos 5--∞∈+-x ,故
]2
1
,(--∞∈y
(5)利用基本不等式求值域:如求函数4
32+=x x
y 的值域
当0=x 时,0=y ;当0≠x 时,x
x y 43+
=
,若0>x ,则44
24=⋅≥+
x
x x x 若0<x ,则4)4()(2)4(4=-⋅-≤-+--=+
x x x x x x ,从而得所求值域是]4
3
,43[- (6)利用函数的单调性求求值域:如求函数])2,1[(222
4
-∈+-=x x x y 的值域
因)14(2282
3
-=-=x x x x y ,故函数])2,1[(222
4
-∈+-=x x x y 在)2
1
,1(--上递减、
在)0,21(-上递增、在)21,0(上递减、在)2,21(上递增,从而可得所求值域为]30,8
15
[
(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。
★热点考点题型探析
考点一:判断两函数是否为同一个函数
[例1] 试判断以下各组函数是否表示同一函数?
(1)2)(x x f =,33)(x x g =;
(2)x
x x f =
)(,⎩⎨
⎧<-≥=;
01
,01)(x x x g
(3)1212)(++=n n x x f ,1
212)()(--=n n x x g (n ∈N *);
(4)x
x f =
)(1+x ,x x x g +=
2)(;
(5)12)(2
--=x x x f ,12)(2
--=t t t g
[解题思路]要判断两个函数是否表示同一个函数,就要考查函数的三要素。
[解析] (1)由于x x x f ==
2)(,x x x g ==33)(,故它们的值域及对应法则都不相
同,所以它们不是同一函数.
(2)由于函数x
x x f =
)(的定义域为),0()0,(+∞-∞ ,而⎩⎨
⎧<-≥=;
01
,01)(x x x g 的定
义域为R ,所以它们不是同一函数.
(3)由于当n ∈N *时,2n ±1为奇数,∴x x x f n n ==++1212)(,x x x g n n ==--1
212)()(,
它们的定义域、值域及对应法则都相同,所以它们是同一函数.
(4)由于函数x
x f =
)(1+x 的定义域为{}
0≥x x ,而x x x g +=
2)(的定义域
为{}
10-≤≥x x x 或,它们的定义域不同,所以它们不是同一函数.
(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数. [答案](1)、(2)、(4)不是;(3)、(5)是同一函数
【名师指引】构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系确定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数为同一函数。
第(5)小题易错判断成它们是不同的函数。
原因是对函数的概念理解不透,在函数的定义域及对应法则f 不变的条件下,自变量变换字母对于函数本身并无影响,比如
1)(2+=x x f ,1)(2+=t t f ,1)1()1(2++=+u u f 都可视为同一函数.
考点二:求函数的定义域、值域 题型1:求有解析式的函数的定义域 [例2].(08年湖北)函数=
)(x f )4323ln(1
22+--++-x x x x x
的定义域为( ) A.),2[)4,(+∞--∞ ;B.)1,0()0,4( -;C. ]1,0()0,4[, -;D. )1,0()0,4[, - [解题思路]函数的定义域应是使得函数表达式的各个部分都有意义的自变量的取值范围。
[解析]欲使函数)(x f 有意义,必须并且只需
⎪⎪⎩
⎪⎪⎨⎧≠>+--++-≥+--≥+-0043230
430232
2
2
2x x x x x x x x x )1,0()0,4[ -∈⇒x ,故应选择D 【名师指引】如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:①分母不能为0;② 对数的真数必须为正;③偶次根式中被开方数应为非负数;④零指数幂中,底数不等于0;⑤负分数指数幂中,底数应大于0;⑥若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。
题型2:求抽象函数的定义域
[例3](2006·湖北)设()x x x f -+=22lg ,则⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为( ) A . ()()4,00,4 -;B . ()()4,11,4 --;C . ()()2,11,2 --;D . ()()4,22,4 --
[解题思路]要求复合函数⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域,应先求)(x f 的定义域。
[解析]由202x x +>-得,()f x 的定义域为22x -<<,故22,2
22 2.x
x
⎧
-<<⎪⎪
⎨
⎪-<
<⎪⎩
解得()
()4,11,4x ∈--。
故
⎪⎭
⎫
⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()4,11,4 --.选B. 【名师指引】求复合函数定义域,即已知函数()f x 的定义为[,]a b ,则函数[()]f g x 的定义域是满足不等式()a g x b ≤≤的x 的取值范围;一般地,若函数[()]f g x 的定义域是[,]a b ,指的是[,]x a b ∈,要求()f x 的定义域就是[,]x a b ∈时()g x 的值域。
题型3;求函数的值域
[例4]已知函数)(6242
R a a ax x y ∈++-=,若0≥y 恒成立,求32)(+-=a a a f 的值域
[解题思路]应先由已知条件确定a 取值范围,然后再将)(a f 中的绝对值化去之后求值域 [解析]依题意,0≥y 恒成立,则0)62(4162
≤+-=∆a a ,解得2
31≤≤-a , 所以4
17
)2
3
()3(2)(2+
+-=+-=a a a a f ,从而4)1()(max =-=f a f ,419)23()(min
-==f a f ,所以)(a f 的值域是]4,4
19[-
【名师指引】求函数的值域也是高考热点,往往都要依据函数的单调性求函数的最值。
考点三:映射的概念
[例5](06陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接
a b c d对应密文收方由密文→明文(解密),已知加密规则为:明文,,,
+++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文a b b c c d d
2,2,23,4.
14,9,23,28时,则解密得到的明文为()
A.7,6,1,4;B.6,4,1,7;C.4,6,1,7;D.1,6,4,7
[解题思路]密文与明文之间是有对应规则的,只要按照对应规则进行对应即可。
[解析]当接收方收到密文14,9,23,28时,
,解得
(2)对应法则有“方向性”,即强调从集合A到集合B的对应,它与从集合B到集合A 的对应关系一般是不同的;
(3)集合A中每一个元素,在集合B中都有象,并且象是唯一
..的,这是映射区别于一般对应的本质特征;
(4)集合A中不同元素,在集合B中对应的象可以是同一个;
(5)不要求集合B中的每一个元素在集合A中都有原象.
第3讲函数的表示方法
★热点考点题型探析
考点1:用图像法表示函数
[例1](09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量出水量蓄水量
甲乙丙
(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.
则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。
[解析]由图甲知,每个进水口进水速度为每小时1个单位,两个进水口1个小时共进水2个单位,3个小时共进水6个单位,由图丙知①正确;而由图丙知,3点到4点应该是有一个进水口进水,出水口出水,故②错误;由图丙知,4点到6点可能是不进水不出水,也可能是两个进水口都进水,同时出水口也出水,故③不一定正确。
从而一定不正确...的论断是(2) 【名师指引】象这类给出函数图象让考生从图象获取信息的问题是目前高考的一个热点,它要求考生熟悉基本的函数图象特征,善于从图象中发现其性质。
高考中的热点题型是“知式选图”和“知图选式”。
考点2:用列表法表示函数
[例2] (07年北京)已知函数()f x ,()g x 分别由下表给出
则[(1)]f g 的值为
;满足[()][()]f g x g f x >的x 的值是
[解题思路]这是用列表的方法给出函数,就依照表中的对应关系解决问题。
[解析]由表中对应值知[(1)]f g =(3)1f =;
当1=x 时,[(1)]1,[(1)](1)3f g g f g ===,不满足条件
当2=x 时,[(2)](2)3,[(2)](3)1f g f g f g ====,满足条件, 当3=x 时,[(3)](1)1,[(3)](1)3f g f g f g ====,不满足条件, ∴满足[()][()]f g x g f x >的x 的值是2=x
【名师指引】用列表法表示函数具有明显的对应关系,解决问题的关键是从表格发现对应关系,用好对应关系即可。
考点3:用解析法表示函数
题型1:由复合函数的解析式求原来函数的解析式
[例3] (04湖北改编)已知)11(x x f -+=
2
2
11x x +-,则)(x f 的解析式可取为
[解题思路]这是复合函数的解析式求原来函数的解析式,应该首选换元法 [解析] 令t x x =-+11,则11+-=
t t x ,∴ 12)(2+=t t t f .∴1
2)(2+=x x
x f . 故应填
2
12x
x + 【名师指引】求函数解析式的常用方法有:① 换元法( 注意新元的取值范围);② 待定系数法(已知函数类型如:一次、二次函数、反比例函数等);③整体代换(配凑法);
④构造方程组(如自变量互为倒数、已知)(x f 为奇函数且)(x g 为偶函数等)。
题型2:求二次函数的解析式
[例4] (普宁市城东中学09届高三第二次月考)二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f 。
⑴求)(x f 的解析式;
⑵在区间]1,1[-上,)(x f y =的图象恒在m x y +=2的图象上方,试确定实数m 的范围。
[解题思路](1)由于已知)(x f 是二次函数,故可应用待定系数法求解;(2)用数表示形,可得求)(2x f m x <+对于]1,1[-∈x 恒成立,从而通过分离参数,求函数的最值即可。
[解析]⑴设2
()(0)f x ax bx c a =++≠,则
22(1)()[(1)(1)]()
2f x f x a x b x c ax bx c ax a b
+-=+++-++=++
与已知条件比较得:22,0a a b =⎧⎨+=⎩解之得,1,
1a b =⎧⎨=-⎩
又(0)1f c ==,
2()1f x x x ∴=-+
⑵由题意得:212x x x m -+>+即231m x x ≤-+对[]1,1x ∈-恒成立,
易得2
min (31)1m x x <-+=-
【名师指引】如果已知函数的类型,则可利用待定系数法求解;通过分离参数求函数的最值来获得参数的取值范围是一种常用方法。
考点4:分段函数
题型1:根据分段函数的图象写解析式
[例5] (07年湖北)为了预防流感,某学校对教室用药 物消毒法进行消毒。
已知药物释放过程中,室内每立方米空气中含药量y (毫克)与时间t (小时)成正比;
药物释放完毕后,y 与t 的函数关系式为a
y -⎪
⎭
⎫
⎝⎛=1161(a 为常数),如图所示,根据图中提
供的信息,回答下列问题:
(Ⅰ)从药物释放开妈,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室。
[思路点拨]根据题意,药物释放过程的含药量y (毫克)与时间t 是一次函数,药物释放完毕后,y 与t 的函数关系是已知的,由特殊点的坐标确定其中的参数,然后再由所得的表达式解决(Ⅱ)
[解析] (Ⅰ)观察图象,当1.00≤≤t 时是直线,故t y 10=;当1.0≥t 时,图象过)1,1.0(
所以a
-⎪
⎭
⎫
⎝⎛=1.01611,即1.0=a ,所以⎪⎩⎪
⎨⎧>≤≤=-1.0,)16
1(1.00,101.0t t t y t
(Ⅰ)6.016116125.01615
.01.01.0≥⇔⎪⎭
⎫ ⎝⎛≤⎪
⎭⎫
⎝⎛⇔≤⎪
⎭
⎫
⎝⎛--t a
a
,所以至少需要经过6.0小时
【名师指引】分段函数的每一段一般都是由基本初等函数组成的,解决办法是分段处理。
题型2:由分段函数的解析式画出它的图象
例6] (2006·上海)设函数54)(2--=x x x f ,在区间]6,2[-上画出函数)(x f 的图像。
[思路点拨]需将
来绝对值符号打开,即先解0542≥--x x ,然后依分界点将函数分段表示,再画出图象。
[解析] 2
2
2
45
2156()45(45)
15
x x x x f x x x x x x ⎧---≤≤-≤≤⎪=--=⎨----≤≤⎪⎩或,如右上图.
【名师指引】分段函数的解决办法是分段处理,要注意分段函数的表示方法,它是用联立符号将函数在定义域的各个部分的表达式依次表示出来,同时附上自变量的各取值范围。
第4讲 函数的单调性与最值
★热点考点题型探析
考点1 函数的单调性
题型1:讨论函数的单调性
[例1] (2008广东)设R k ∈,函数⎪⎩
⎪
⎨⎧≥--<-=1,1,1,11
)(x x x x x f R x kx x f x F ∈-=,)()(.
试讨论函数)(x F 的单调性.
[解题思路]分段函数要分段处理,由于每一段都是基本初等函数的复合函数,所以应该用导数来研究。
[解析]: 因为⎪⎩⎪⎨⎧≥--<-=1,1,1,11)(x x x x x f ,所以R x kx x kx x kx x f x F ∈⎪⎩
⎪
⎨⎧-----=-=,111
)()(.
(1)当x<1时,1-x>0,)1(,)
1(1
)(2
<--='x k x x F ①当0≤k 时,0)(>'x F 在)1,(-∞上恒成立,故F(x)在区间)1,(-∞上单调递增;
②当0>k 时,令)1(,0)
1(1
)(2
<=--='x k x x F ,解得k k x -=1, 且当k k x -
<1时,0)(<'x F ;当11<<-
x k
k
时,0)(>'x F 故F(x)在区间)1,(k k --∞上单调递减,在区间)1,1(k
k -上单调递增; (2)当x>1时, x-1>0,)1(,1
21
)(>---
='x k x x F ①当0≥k 时,0)(<'x F 在),1(+∞上恒成立,故F(x)在区间),1(+∞上单调递减;
②当0<k 时,令)1(,01
21)(>=---
='x k x x F ,解得241
1k x +=, 且当24111k x +<<时,0)(<'x F ;当2
41
1k
x +>时,0)(>'x F 故F(x)在区间)411,1(2k +上单调递减,在区间),41
1(2
+∞+k
上单调递增; 综上得,①当k=0时,F(x)在区间)1,(-∞上单调递增,F(x)在区间),1(+∞上单调递减;
②当k<0时,F(x)在区间)1,(-∞上单调递增,在区间)41
1,1(2
k
+上单调递减,在区间 ),41
1(2+∞+k
上单调递增;③当0>k 时,F(x)在区间)1,(k k --∞上单调递减,在区间 )1,1(k
k -上单调递增,在区间),1(+∞上单调递减.
【名师指引】求函数的单调区间或研究函数的单调性是高考的一个热点,分段落函数用注意分段处理.
题型2:研究抽象函数的单调性
[例2] 定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b ).
(1)求证:f (0)=1;
(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)求证:f (x )是R 上的增函数; (4)若f (x )·f (2x -x 2)>1,求x 的取值范围.
[解题思路]抽象函数问题要充分利用“恒成立”进行“赋值”,从关键等式和不等式的特点入手。
[解析](1)证明:令a =b =0,则f (0)=f 2(0).
又f (0)≠0,∴f (0)=1.
(2)证明:当x <0时,-x >0, ∴f (0)=f (x )·f (-x )=1.
∴f (-x )=
)
(1
x f >0.又x ≥0时f (x )≥1>0, ∴x ∈R 时,恒有f (x )>0.
(3)证明:设x 1<x 2,则x 2-x 1>0. ∴f (x 2)=f (x 2-x 1+x 1)=f (x 2-x 1)·f (x 1). ∵x 2-x 1>0,∴f (x 2-x 1)>1. 又f (x 1)>0,∴f (x 2-x 1)·f (x 1)>f (x 1). ∴f (x 2)>f (x 1).∴f (x )是R 上的增函数. (4)解:由f (x )·f (2x -x 2)>1,f (0)=1得f (3x -x 2)>f (0).又f (x )是R 上的增函数,
∴3x -x 2>0.∴0<x <3.
【名师指引】解本题的关键是灵活应用题目条件,尤其是(3)中“f (x 2)=f [(x 2-x 1)+x 1]”是证明单调性的关键,这里体现了向条件化归的策略. 考点2 函数的值域(最值)的求法 题型1:求分式函数的最值
[例3] (2000年上海)已知函数x
a
x x x f ++=2)(2).,1[,+∞∈x
当2
1
=
a 时,求函数)(x f 的最小值; [解题思路]当21=a 时,221
)(++=x
x x f ,这是典型的“对钩函数”,欲求其最小值,
可以考虑均值不等式或导数; [解析]当21=
a 时,2211)(',221)(x
x f x x x f -=++= 1≥x ,∴0)(>'x f 。
∴)(x f 在区间),1[+∞上为增函数。
∴)(x f 在区间),1[+∞上的最小值为2
7
)1(=
f 。
【名师指引】对于函数,221
)(++
=x
x x f 若0>x ,则优先考虑用均值不等式求最小值,
但要注意等号是否成立,否则会得到2222122)21()(+=+⋅≥++
=x
x x x x f 而认为其最小值为22+,但实际上,要取得等号,必须使得x x 21=
,这时),2
1
[+∞∉x 所以,用均值不等式来求最值时,必须注意:一正、二定、三相等,缺一不可。
其次,不等
式恒成立问题常转化为求函数的最值。
本题考查求函数的最小值的三种通法:利用均值不等式,利用函数单调性,二次函数的配方法,考查不等式恒成立问题以及转化化归思想; 题型2:利用函数的最值求参数的取值范围
[例4] (2000年上海)已知函数x
a
x x x f ++=2)(2).,1[,+∞∈x
若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围。
[解题思路] 欲求参数a 的取值范围,应从[1,),()0x f x ∈+∞>恒成立的具体情况开始。
[解析] 02)(2>++=
x a
x x x f 在区间),1[+∞上恒成立; ∴022>++a x x 在区间),1[+∞上恒成立; ∴a x x ->+22在区间),1[+∞上恒成立;
函数x x y 22+=在区间),1[+∞上的最小值为3,∴3<-a
即3->a
【名师指引】这里利用了分离参数的方法,将问题转化为求函数的最值。
题型3:求三次多项式函数的最值
[例5](09年高州中学)已知a 为实数,函数))(1()(2
a x x x f ++=,若0)1('=-f ,求函数)(x f y =在3
[,1]2
-
上的最大值和最小值。
[解题思路]求三次多项式函数在闭区间上的最值,应该用导数作为工具来研究其单调性。
[解析]∵123)(,)(0)1(2
2
3
++='+++==-ax x x f a x ax x x f f ,由,
, ,2,0123==+-∴a a ……………………3分
143)(2++='∴x x x f ……………………4分
)1)(3
1
(3)(++='x x x f 由 得:
当3
1
10)(->-<>'x x x f 或时, ……………………5分。