微机电系统及其相关技术

合集下载

微机电系统的原理和应用技术

微机电系统的原理和应用技术

微机电系统的原理和应用技术微机电系统又称MEMS,是利用微纳米加工技术制造的一类微小机电系统,通常尺寸为毫米或微米级别。

其独特之处在于将机电元件、传感器、电子器件、控制器等集成在一个芯片上,实现了微小化、集成化、低成本化等优势。

微机电系统广泛应用于传感器、执行器、生物医学等领域,成为当前智能化、微型化、网络化的重要组成部分。

MEMS的原理主要基于微纳米加工技术,包括微电子加工技术、光刻技术、湿法腐蚀技术、离子注入技术等多种工艺的综合应用。

其制造过程包括设计、光刻、薄膜沉积、湿法腐蚀、离子注入等多个步骤,需要高精度、高技术的设备和技术人员进行操作。

由于MEMS器件具有微小、轻量、低功耗、高灵敏度等特点,因此在传感、控制、通讯、医疗、能源等诸多领域有广泛应用。

在MEMS技术中,传感器是最典型的应用之一,其主要功能是将物理量转化为电信号,并提供测量、检测、控制等重要信息。

常见的MEMS传感器包括加速度计、压力传感器、温度传感器、光学传感器等。

加速度计可用于汽车安全气囊、电子游戏、运动监测等领域,压力传感器可用于空气压力测量、液位控制、工业自动化等领域,温度传感器可用于电子电路温度补偿、环境温度测量等领域。

MEMS传感器具有体积小、响应速度快、适用于多种环境等优点,因此在智能手机、照相机、汽车等产品中得到广泛应用。

除了传感器之外,MEMS技术还可用于制造执行器,即将电信号转化为物理动作。

常见的MEMS执行器包括微型电机、振动器、泵、阀门等。

微型电机可用于风扇、马达、机器人等领域,振动器可用于手机震动、游戏手柄、体感控制等领域,泵和阀门一般应用于微流体控制、药物输送、化学反应等领域。

MEMS执行器具有灵活性高、响应速度快、能量密度高的特点,具有广泛的应用前景。

在医疗和生物医学领域,MEMS技术也被广泛应用。

MEMS传感器可用于生物监测、疾病诊断等领域,如Biosensor可用于葡萄糖监测、尿素测定、心肌酵素测定等;MEMS执行器可用于微型机器人、控制药物输送等领域,如微型钢丝操作器可用于微创手术、组织粉碎、药物输送等。

微机电系统技术与应用

微机电系统技术与应用

微机电系统技术与应用随着科技的不断进步,微机电系统技术作为新兴技术在应用领域中迅速崛起,并取得了极大的进展。

本文将深入探讨微机电系统技术的基础知识、发展历程以及其在各种领域中的应用。

一、微机电系统技术的基础知识微机电系统,简称MEMS,是指微小机电系统,主要由微机电元器件组成。

其主要原理是“微小化、整合化、智能化、多功能化”。

微机电系统技术自20世纪60年代就开始出现,随着纳米技术、信息技术、生物技术等相关技术的发展,它的应用领域也越来越广泛。

微机电系统技术主要包括微机械、微传感、微制造、微流体、微生物等学科,涵盖了力学、电学、光学、生物学等多个学科的交叉研究。

它不仅能够实现微小化的设计和制造,而且在许多领域中应用非常广泛,例如,医疗、航空航天、通讯、汽车等领域。

二、微机电系统技术的发展历程微机电系统技术的发展历程可以概括为四个阶段:起源期、发展期、成熟期和全面应用期。

起源期是20世纪60年代到70年代初,当时主要以生物学、医学为主要应用领域,主要研究微机械和微生物学。

发展期是70年代中期到80年代末期。

随着信息技术和微电子技术的快速发展,微机电元器件的制造技术得到了飞速发展,微传感器、微流体系统、微光机电系统等得到了广泛的应用。

成熟期是90年代,微机电技术逐步成熟、产业化,已发展起了芯片级、封装级和系统级的MEMS制造技术路线。

全面应用期是21世纪,微机电技术逐渐从传统的行动终端领域,向智能家居、智慧物流、智能医疗等领域延伸,未来其应用领域将更加广泛。

三、微机电系统技术在各种领域中的应用1. 医疗领域微机电系统技术在医疗领域的应用非常广泛,例如微型心脏起搏器、微型“人工肝”、体内检测等。

除此之外,微流控芯片、微制造技术也在医疗设备的制造中扮演着重要的角色,为医疗诊断和治疗提供了更多的选择。

2. 航空航天领域在航空和航天领域,微机电系统技术主要应用于姿态控制、气动力学、失速预警等方面。

微型惯性器件也可以用于导航和制导。

微机电系统(mems)工程技术 半导体制造工艺技术

微机电系统(mems)工程技术 半导体制造工艺技术

微机电系统(mems)工程技术半导体制造工艺技术微机电系统(MEMS)是一种融合微电子技术、机械工艺和微纳米加工技术的新型技术,具有微小体积、高性能和低功耗等优点,被广泛应用于传感器、执行器、微机械系统等领域。

MEMS制造工艺技术作为其核心技术之一,在MEMS设备的设计、生产和测试过程中起着至关重要的作用。

一、MEMS制造工艺技术的基本原理MEMS制造工艺技术是利用微纳米加工技术对微电子元件进行加工,实现微小尺寸的器件。

其基本原理包括光刻、薄膜沉积、刻蚀、清洗和包装等步骤。

在制造过程中,需要考虑到器件的性能、成本和效率等因素,并采用不同的工艺流程进行处理。

二、MEMS制造工艺技术的工艺流程1.设计阶段:确定MEMS器件的功能和结构,并进行软件仿真和电路设计,制定完整的器件设计方案。

2.掩膜光刻:利用掩膜和紫外光曝光的技术,将器件的图形准确转移到光敏材料上,形成所需的图形。

3.薄膜沉积:采用物理气相沉积、化学气相沉积等技术,在衬底表面沉积一层或多层薄膜,用于制备MEMS器件的功能部件。

4.刻蚀工艺:采用干法或湿法刻蚀技术,将多余的材料去除,形成所需的器件结构。

5.清洗和检测:在制造过程中,需要对器件进行清洗和检测,确保器件的质量和性能。

6.包装封装:将制备好的器件封装在封装体中,保护器件免受外部环境的影响。

三、MEMS制造工艺技术的发展趋势1.纳米加工技术:随着纳米加工技术的发展,MEMS器件的尺寸将进一步减小,性能将得到显著提升。

2.多功能集成:未来的MEMS器件将具有多功能集成的特点,可以同时实现多种功能,提高器件的综合性能。

3.自组装技术:自组装技术的应用将使MEMS制造工艺更加灵活和高效,降低成本,提高生产效率。

4.高可靠性设计:随着MEMS器件在汽车、医疗等领域的广泛应用,高可靠性设计将成为MEMS制造工艺技术的重要发展方向。

四、结语MEMS制造工艺技术是一项复杂而重要的工艺技术,对MEMS器件的性能和质量起着决定性的作用。

微机电系统技术及应用

微机电系统技术及应用

微机电系统技术及应用微机电系统技术(Micro-Electro-Mechanical Systems,MEMS)是指一种集成微型机械、电子和计算机技术的系统,它利用微型加工技术将传感器、执行器和电子元器件等多种功能集成到一个芯片上,从而实现在微小空间内进行感测、信号处理和控制的复杂系统。

自20世纪80年代以来,MEMS技术在各个领域得到了广泛的应用,成为现代科技进步的重要方向之一。

一、MEMS技术的基本原理MEMS技术的实现基于微机械制造技术,即利用光刻、蚀刻、离子注入、薄膜沉积、微调工艺等多种微加工技术,在硅基底板上制造出微型机械和微型电子元器件,将它们集成在一起实现控制系统的复杂功能。

常见的MEMS元件包括传感器和执行器两类。

传感器一般是将物理量转换成电信号输出的元件,MEMS传感器主要有压力传感器、加速度传感器、角速度传感器、温度传感器、化学传感器等,它们的结构和工作原理各不相同。

以加速度传感器为例,它主要是通过微型悬臂等结构感受加速度的作用,在振动部件上加上感应电极,利用柔性连接器将机械运动转化成电信号输出。

执行器是将电信号转换成物理运动的设备,MEMS执行器主要有微型电机、微泵、微阀门和微喷头等。

以微型电机为例,它主要包括固定部件和旋转部件,其结构具有一定的复杂性。

电机的旋转部件通常采用转子-定子结构,采用MEMS技术可以制造出特殊形状的转子并将其悬挂在薄膜支撑结构上,转子与定子之间通过电容传感器实现控制,电容传感器输出的信号被用于控制电机的转速和方向。

二、MEMS技术的应用领域MEMS技术的应用范围非常广泛,包括空间、军事、医疗、汽车、电子信息等多个领域,在以下几个方面得到了广泛应用。

1.传感器MEMS传感器可以感测体积小、重量轻、功耗低、响应速度快、精度高等诸多优点,使之成为传感器领域的重要技术。

它广泛应用于汽车行业、工业自动化控制、医疗设备等领域,如安全气囊用于汽车碰撞检测、指纹识别传感器、手机加速度传感器等。

MEMS的原理及应用

MEMS的原理及应用

MEMS的原理及应用前言微机电系统(Micro Electro-Mechanical Systems,MEMS)是一种将微米尺度的机械元件和微电子元件集成在一起的技术。

它结合了机械学、电子学和计算机科学等领域的知识,广泛应用于各个领域。

本文将介绍MEMS的原理及其在不同领域的应用。

MEMS的原理MEMS的核心原理是利用微米尺度的机械结构来感知和操控物理量。

这些微米尺度的结构通常由硅或其他材料制成,并且与电子元件集成在一起。

MEMS器件利用微机械结构的运动或变形来实现各种功能。

下面是一些常见的MEMS原理:1.微加工技术:MEMS器件通常是通过光刻和微加工技术制作的。

这些技术允许制造出微米级别的机械结构和电子元件。

2.机械传感器:MEMS器件中最常见的一类是机械传感器,用于感知物理量如压力、加速度、温度等。

典型的机械传感器包括压力传感器、加速度传感器和陀螺仪等。

3.微操控器件:除了传感器,MEMS还包括微操控器件,用于操控物理量如运动、振动等。

例如,微镜头用于手机的自动对焦功能就是一种微操控器件。

4.集成电子元件:最重要的一点是,MEMS器件通常与集成电子元件一起工作。

传感器通过电子元件将感知到的物理量转化为电信号,而操控器件则接收电信号并操控相应的物理量。

这种集成使得MEMS器件具有高度的智能化和自动化能力。

MEMS的应用MEMS技术在各个领域都有广泛的应用。

下面列举了几个典型的应用领域:1. 电子设备•手机:MEMS技术使得手机具备了更多的功能,如自动对焦摄像头、陀螺仪和加速度传感器等。

•智能手表:智能手表中的MEMS技术可以实现计步器、心率监测和气压计等功能。

•耳机:MEMS技术可以用于制作微型麦克风和降噪器,提高音质和通话质量。

2. 医疗领域•生物传感器:MEMS技术可以用于制作微型生物传感器,实现疾病的早期诊断和监测。

•药物传递系统:利用MEMS技术,可以制作微型药物传递系统,实现精确的药物控制和释放。

微机电系统(MEMS)技术介绍

微机电系统(MEMS)技术介绍

微机电系统(MEMS)技术介绍微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。

MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。

MEMS 器件的特征长度从1毫米到1微米--1微米可是要比人们头发的直径小很多。

MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。

然而,MEMS器件加工技术并非机械式。

相反,它们采用类似于集成电路批处理式的微制造技术。

今天很多产品都利用了MEMS技术,如微换热器、喷墨打印头、高清投影仪的微镜阵列、压力传感器以及红外探测器等。

MEMS技术可以用于制造压力传感器、惯性传感器、磁力传感器、温度传感器等微型传感器,这些传感器以及它们的部分信号处理电路都可以在只有几毫米或更小的芯片上实现。

与传统的传感器相比,MEMS传感器不仅体积更小、功耗更低,而且它们往往会比传统传感器更加准确、更加灵敏。

随着人们对海洋观测的需求不断增加和海洋观测技术的不断发展,MEMS技术也在逐渐进入海洋观测技术研究领域。

一、MEMS概念“他们告诉我一种小手指指甲大小的电动机。

他们告诉我,目前市场上有一种装置,通过它你可以在大头针头上写祷文。

但这也没什么;这是最原始的,只是我打算讨论方向上的暂停的一小步。

在其下是一个惊人的小世界。

公元2000年,当他们回顾当前阶段时,他们会想知道为何直到1960年,才有人开始认真地朝这个方向努力。

”——理查德·费曼,《底部仍然存在充足的空间》发表于1959年12月29日于加州理工大学(Caltech)举办的美国物理学会年会。

但我们可能会问:为什么要在这样一个微小尺上生成这些对象?MEMS器件可以完成许多宏观器件同样的任务,同时还有很多独特的优势。

这其中第一个以及最明显的一个优势就是小型化。

微型机电系统技术及应用研究

微型机电系统技术及应用研究

微型机电系统技术及应用研究一、微型机电系统技术的概述微型机电系统(MEMS)是一种结合微电子技术和机械工程学的新型领域,其通过微型化的设计和制造技术,将传统机械结构和微电子器件相结合,形成了微小的机电一体化系统。

微型机电系统技术是一门综合性技术,涵盖了微电子、纳米技术、微流体技术、光学技术、机电一体化技术等多个学科的知识。

它主要应用于机械传感器、微型电子器件、模拟信号处理器、微型加速度计等领域。

二、微型机电系统技术的工艺流程(一)MEMS芯片的设计MEMS芯片的设计过程是从需求分析、系统设计、器件设计、工艺设计、布图设计等方面入手进行的。

需要建立实体模型、分析模型,进行仿真和测试,并不断优化和改进设计。

(二)MEMS芯片的制造MEMS芯片的制造过程一般包括深度反相模法、LIGA工艺、光刻、涂覆、光阻显影、等离子刻蚀、熔合碳化硅、薄膜沉积、蚀刻等多个步骤。

(三)MEMS芯片的封装MEMS芯片的封装是保护器件、连接器件与外部电路的必要措施。

封装过程可以分为晶圆封装和单晶封装两种方式,包括封装底座、焊接、固定器件等多个步骤。

三、微型机电系统技术的应用研究(一)机械传感器微型机械传感器是MEMS技术应用最为广泛的领域,目前已广泛用于医疗、环境、军事、交通等领域。

例如,在医疗领域中,MEMS传感器可用于实时监测病人的脉搏、血压和呼吸等生命体征,为医护人员提供即时的信息。

(二)微型电子器件微型电子器件是MEMS技术的另一个重要应用方向,包括MEMS振荡器、MEMS电容器等。

这些器件的微型化和集成化将会使一些电子设备大幅度缩小,例如手机和手表等。

(三)模拟信号处理器模拟信号处理器是利用MEMS技术构建的一种新型信号处理器,可以将模拟信号进行转换、增强和分析等处理,广泛应用于工业自动化、环境监测、生命科学等领域。

(四)微型加速度计微型加速度计是MEMS技术在工业领域中的应用之一,可以实现对工业设备振动、冲击等数据的监测和控制,对于提高设备的精度和可靠性有非常重要的作用。

微机电系统的应用及其未来发展

微机电系统的应用及其未来发展

微机电系统的应用及其未来发展微机电系统(MEMS)是用微电子技术来制造微米级器件的技术,其特点在于具有微小体积、低成本和高性能等特点,可以广泛应用于人工智能、生物医学、石油勘探、机器人和环境监测等领域。

目前,随着技术的不断发展和应用的不断推广,MEMS已经成为未来技术的发展趋势。

一、MEMS的应用1.人工智能领域MEMS在人工智能领域的应用主要体现在机器人技术中,通过MEMS技术,可以制造出小型化、高精度的感知器件,从而将机器人的实时环境感知和时空定位能力进一步提高。

此外,MEMS还可以制造出高灵敏度的惯性感测器件,如加速度计和陀螺仪等,这些感测器件对于机器人的行动控制和路径规划有着重要的意义。

2.生物医学领域MEMS在生物医学领域的应用十分广泛,例如可以利用MEMS 技术制造出微型传感器,监测人体内的生理参数,如体温、心率、血压等。

同时还可以制造出微型输送器,实现药物的定向输送和递送,有效提高了药物的疗效和减轻了不良反应。

此外,利用MEMS技术还可以制造出微型探针,检测人体内的病变组织和癌细胞,有着广阔的应用前景。

3.石油勘探领域MEMS在石油勘探领域的应用主要体现在测井和地震勘探技术中,通过制造出微小型的传感器和振动器件,可以实现高精度的地层特征探测和分析。

与此同时,MEMS传感器还可以实现地震勘探过程中的震源定位和大气噪声分析等,提高了勘探效率和减少了勘探成本。

4.环境监测领域MEMS在环境监测领域的应用主要集中在大气和水质的监测中,通过利用MEMS技术制造出高灵敏度的传感器,可以实现细颗粒物和有害气体的检测和分析。

同时MEMS技术还可以制造出微型的水质传感器,监测水中的污染物,实现满足环保标准对水质要求。

二、MEMS的未来发展趋势1.高度集成化随着集成电路技术的不断发展,MEMS将趋向于实现高度集成化,通过多层次、多功能集成,可以将MEMS的应用推向更高的层次。

同时,基于微纳加工技术,根据不同的应用需求,可以实现不同功能的MEMS器件的大规模制造和快速生产,促进其在更多领域的应用。

微系统技术介绍

微系统技术介绍

2
1 What Is MICROSYSTEMS
微系统是以微电子技术、射频与无线电技术、光学(或光电子学) 技术、微机电系统(MEMS)等技术为核心,从系统工程的高度出 发,通过封封、互连等精细加工技术,在框架、基板等载体上制 造、装配、集成微小型化功能装置。
我们所讨论的微系统大量应用于信息工程领域,因此微系统也可 以称为信息工程微系统。
4、什么是微电子封装(Microelectronic Packaging)
5、微电子封装发展进程(Development)
6、微系统封装技术的地位和作用(Role)
7、微系统封装中的技术挑战(The Challenge)
4/13/2020
13
2 微系统相关技术基础
Microsystems Products And Related Technologies Relations
4/13/2020
7
1 What Is MICROSYSTEMS
微系统与集成电路制造的关系(Cont.)
• 因此,微系统的整个制造过程,即芯片加工、集成组装、封装测试等要 比集成电路制造过程复杂得多。
• 微系统技术的发展已经使许多高速信息处理、大容量存储、超低功耗的 电子产品成为现实,未来的微系统产品将覆盖人类生活的方方面面。
4/13/2020
8
1 What Is MICROSYSTEMS
Typical 微系统产品
Smart Watches
4/13/2020
9
1 What Is MICROSYSTEMS
Typical 微系统产品
Multimedia Personal
Communication Terminal

微机电系统MEMS简介

微机电系统MEMS简介

陀螺仪
总结词
用于测量或维持方向的传感器
详细描述
陀螺仪是一种基于角动量守恒原理的传感器,用于测量或维持方向。它通过测量物体旋转轴的方向变 化来工作,通常由高速旋转的陀螺仪转子组成。陀螺仪广泛应用于导航、姿态控制、游戏控制等领域 ,如智能手机、无人机和导弹制导系统等。
压力传感器
总结词
用于测量流体或气体压力的传感器
MEMS市场应用领域
消费电子
汽车电子
医疗健康
工业自动化
MEMS传感器在消费电子产品 中的应用广泛,如智能手机、 平板电脑、可穿戴设备等。这 些设备中的传感器用于运动检 测、加速度计、陀螺仪、气压 计等。
随着汽车智能化的发展, MEMS传感器在汽车领域的应 用也越来越广泛,如车辆稳定 性控制、安全气囊、发动机控 制等。
MEMS材料
单晶硅
单晶硅是MEMS制造中最常用的材料 之一,具有高强度、高刚度和良好的 化学稳定性。
多晶硅
多晶硅在MEMS制造中常用于制造柔 性结构,具有较好的塑性和韧性。
玻璃
玻璃在MEMS制造中常用于制造光学 器件,具有较高的透光性和稳定性。
聚合物
聚合物在MEMS制造中常用于制造生 物传感器和柔性器件,具有较好的生 物相容性和可塑性。
集成化
未来的MEMS系统将更加集 成化,能够将多个MEMS器 件集成在一个芯片上,实现 更高效、更低成本的应用。
03
CATALOGUE
MEMS传感器与器件
加速度传感器
总结词
用于测量 物体运动状态的传感器
详细描述
加速度传感器是一种常用的MEMS传感器,主要用于测量物体运动状态的加速度。它通常由质量块和弹性支撑结 构组成,通过测量质量块因加速度产生的惯性力来计算加速度值。加速度传感器广泛应用于汽车安全气囊系统、 手机和平板电脑的姿态控制、运动检测等领域。

什么是微机电系统 主要种类及相关技术介绍

什么是微机电系统 主要种类及相关技术介绍

什么是微机电系统主要种类及相关技术介绍为了说明什么是微机电系统MEMS (Micro Electro Mechanical Systems),首先来解释一下什么是机电系统。

20多年以前,汽车还是一个单纯的机械系统,后来随着电子技术的发展,汽车的很多零部件(例如电子点火器、燃油电子喷射装置、电控自动变速箱等)都依靠电子系统进行控制,因此现在的汽车实际上就是一个大的机械电子系统。

而微机电系统则是指微小的机械电子系统,例如比一粒花生米还要小的飞机或汽车,是由很多只有几百微米大小的零件组成的,而这些零件是用微电子等微细加工技术制备出来的,既包含机械部件又包含电子部件,因此我们称这类微小的机械电子系统为微机电系统。

微机械电子系统是微电子技术的拓宽和延伸,它是将微电子技术和精密机械加工技术相互融合,并将微电子与机械融为一体的系统。

MEMS将电子系统和外部世界有机地联系起来,它不仅能感受运动、光、声、热、磁等自然界的外部信号,使之转换成电子系统可以识别的电信号,而且还能通过电子系统控制这些信号,进而发出指令,控制执行部件完成所需的操作。

MEMS主要包含微型传感器、执行器和相应的处理电路三部分。

作为输入信号的自然界各种信息首先通过传感器转换成电信号,经过信号处理以后(模拟/数字)再通过微执行器对外部世界发生作用。

传感器可以把能量从一种形式转化为另一种形式,从而将现实世界的信号(如热、运动等信号)转化为系统可以处理的信号(如电信号)。

执行器根据信号处理电路发出的指令完成人们所需要的操作。

信号处理器则可以对信号进行转换、放大和计算等处理。

美国AnalogDevice公司已经研制出很多种将集成电路与MEMS集成在一起的集成微加速度计、微陀螺等产品。

MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等。

MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。

微机电系统及微细加工技术

微机电系统及微细加工技术

微机电系统及微细加工技术微机电系统(Micro-Electro-Mechanical Systems,MEMS)是一种将微米尺度的机械结构、电子元器件和微处理器集成在一起的技术。

它利用微细加工技术来制造微小的机械设备和传感器,以实现对物理量、化学量和生物量的检测、测量和控制。

微机电系统的核心是微细加工技术,它是一种将传统的集成电路制造技术与微机械加工技术相结合的新技术。

通过微细加工技术,可以在硅基材料上制造出微小的机械结构和电子元器件,从而实现微机电系统的功能。

微机电系统的制造过程包括多个步骤,其中最关键的是光刻、薄膜沉积和蚀刻。

光刻是将光敏树脂涂覆在硅基材料上,并利用光刻机将图形投射到光敏树脂上,然后利用化学蚀刻将暴露在光下的部分去除,形成所需的结构。

薄膜沉积是将金属或者绝缘材料沉积在硅基材料上,用于制作电极、传感器等部件。

蚀刻是通过化学反应将硅基材料腐蚀,从而形成微小的结构。

微机电系统具有多种应用领域。

在生物医学领域,微机电系统可以用于制造微型传感器,实现对生物体内生理参数的监测。

在环境监测领域,微机电系统可以用于制造微型气体传感器,实现对空气中有害气体的检测。

在信息技术领域,微机电系统可以用于制造微型显示器和微摄像头,实现信息显示和图像采集。

此外,微机电系统还可以应用于汽车行业、航空航天领域和工业控制领域等。

微机电系统在实际应用中面临着一些挑战。

首先,微机电系统的制造过程非常复杂,需要高度精确的设备和工艺控制,制造成本较高。

其次,微机电系统的性能和可靠性受到环境和温度的影响,需要进行合理的封装和温度补偿。

最后,微机电系统的集成度和功耗也是一个挑战,需要在保证性能的同时尽量减小尺寸和功耗。

微机电系统是一种基于微细加工技术的新型集成技术,具有广泛的应用前景。

随着微细加工技术的不断发展和改进,微机电系统将在多个领域发挥重要作用,为人们的生活和工作带来更多便利和创新。

微系统技术介绍

微系统技术介绍
集成电路以集成度每三年增加四倍、特征尺寸每三年缩小1. 414倍的摩尔定律发展。 技术密集、信息含量大。
微电子技术包括相关的设计、制造和封装技术,融合了材料 、器件物理、计算机、光学、化学、真空、精密机械、理化分析 等科学技术的最新成就。
12/17/2023
16
2 微系统相关技术基础
射频与无线电技术
12/17/2023
7
1 What Is MICROSYSTEMS
微系统与集成电路制造的关系(Cont.)
• 因此,微系统的整个制造过程,即芯片加工、集成组装、封装测试等要 比集成电路制造过程复杂得多。
• 微系统技术的发展已经使许多高速信息处理、大容量存储、超低功耗的 电子产品成为现实,未来的微系统产品将覆盖人类生活的方方面面。
12/17/2023
Actuator
Sensor
Parameters to be
Controlled
4
1 What Is MICROSYSTEMS
微系统构成
微系统的构成:一个完整的微系统由传感器模块、执行元件模块、信号处理模 块、 外部环境接口模块以及定位机构、支撑机构、工具等机械结构等部分构成。
12/17/2023
21
2 微系统相关技术基础
微机电系统技术(MicroElectroMechanical Systems)
• MEMS is a class of systems that are physically small. These systems have both electrical and mechanical components. MEMS originally used modified integrated circuit (computer chip) fabrication techniques and materials to create these very small mechanical devices. Today there are many more fabrication techniques and materials available.

微机电系统制造技术的研究与应用

微机电系统制造技术的研究与应用

微机电系统制造技术的研究与应用微机电系统,简称MEMS,是一种综合了微电子技术、光学技术、力学技术等多种技术的先进制造技术。

MEMS在科学研究、工业制造、医疗保健、环境监测等方面的应用越来越广泛。

本文将从MEMS技术的方面入手,探讨MEMS在制造技术方面的研究和应用。

一、MEMS技术的特点MEMS技术具有体积小、高精度、低成本、高可靠性等特点。

MEMS器件的尺寸通常在1微米到数毫米之间,占据空间小,适应于一些微小的应用环境。

MEMS器件在制造过程中,利用微流控技术和微加工技术进行制造,具有高精度和高精密度。

MEMS 制造过程比传统制造技术更加简单,因此成本较低。

同时,MEMS制造的器件具有高可靠性,长寿命等特点,这些特点使得MEMS技术在实际应用中更加受欢迎。

二、MEMS制造技术的研究1.光刻技术光刻技术是MEMS制造中最基本的技术之一,其作用是将芯片上的图形模式通过投影显微镜刻写到光阻材料上。

这种制造方式具有工艺简单、制造速度快、精度高的优点,已成为MEMS制造的主要技术之一。

2.电镀技术电镀技术是一种能够在薄膜上制造金属结构和几何图形的技术。

通过在芯片表面涂覆适当的种子层,并将其中的金属离子用电镀方法沉积在种子层上完成制造。

这种技术在MEMS中的应用十分广泛,可以制备出线宽很细,形状很特殊的结构。

3.微流控技术微流控技术是一种能够调控极小流体颗粒自由流动状况的技术。

它利用芯片上的微通道和微结构将流体控制精细化,使流体能够实现不同实验环境之下的精细流动。

该技术可用于微体积化分析、细胞捕捉和分选等方面。

在微机电系统的应用中,微流控技术极大地增强了生物芯片的分析和研究效率。

4.纳米印刷技术纳米印刷技术是一种利用微纳米结构和纳米印刷头将材料转移至芯片表面的加工技术。

这种技术具有非常高的加工精度和制造速度。

纳米印刷技术在MEMS制造方面起到了十分重要的作用,可以制造出细致的图案尺寸、结构和形态,是MEMS制造技术中的重要组成部分。

机械设计中的微机电系统与纳米技术

机械设计中的微机电系统与纳米技术

机械设计中的微机电系统与纳米技术随着科学技术的不断进步,机械设计领域也得到了前所未有的发展。

其中,微机电系统(MEMS)和纳米技术成为了许多创新设计的关键。

本文将探讨机械设计中的微机电系统与纳米技术的应用和前景。

一、微机电系统(MEMS)概述微机电系统(Micro-Electro-Mechanical Systems,简称MEMS)是一种结合微电子技术、微机械技术和信息处理技术的综合性新技术领域。

它的特点是器件结构和功能被集成在微米或毫米尺寸的硅基片上,具有体积小、重量轻、低功耗和低成本等优势。

MEMS技术广泛应用于传感器、执行器和微电子机械系统等领域。

例如,加速度计、陀螺仪、压力传感器等都是MEMS技术在机械设计中的重要应用。

通过MEMS技术,可以实现对物理量的高精度测量和控制,为机械设计带来了巨大的便利。

二、纳米技术在机械设计中的应用纳米技术是指对原子、分子和超分子尺度的物质进行控制和制造的技术。

它利用纳米尺度的特性,可以对影响机械设计性能的各个因素进行精确调控,从而实现更高的性能和更小的体积。

1. 纳米涂层技术纳米涂层技术是利用纳米级材料对表面进行涂层处理的一种技术。

通过在机械零件表面形成纳米级的保护层,可以提高零件的硬度、耐磨性和耐腐蚀性,延长使用寿命,并减小摩擦系数,提高机械传动效率。

2. 纳米材料应用纳米材料可以用于制造更小、更轻的机械零部件。

例如,纳米碳管可以用来制造超轻、超强的机械结构,提高整体性能。

此外,纳米材料还可以用于制造高效的热导材料,提高机械零件的散热能力。

3. 纳米加工技术纳米加工技术是一种利用纳米级精度进行加工的技术。

通过纳米级的刀具和加工工艺,可以实现对微小尺寸结构的制造与加工。

这种技术可以应用于微机电系统的制造、纳米机械元件的加工等领域,为机械设计带来了更高的精度和可靠性。

三、微机电系统与纳米技术的前景微机电系统与纳米技术的结合在机械设计领域具有广阔的前景。

通过微机电系统,可以实现对机械运动和物理量的高精度控制与检测;通过纳米技术,可以实现对机械零件的精确制造与加工。

MEMS微机电系统总结

MEMS微机电系统总结

一,简答题1,微机电制造工艺及每种工艺的用途、技术特征或者步骤微电子集成工艺是基础。

此外,它们主要是体微加工技术、微表面加工技术、高深度比微加工技术、组装与键合技术、超微精密加工技术。

(1),体微加工技术是为制造三维结构而发展起来的,即按照设计图形在硅片上有选择的去除一部分硅材料,形成微机械结构。

体微加工技术的关键技术是刻蚀,它包括干法和湿法刻蚀。

(2),表面微加工技术是以硅为基片,通过淀积与光刻形成多层薄膜图形,再把下层的牺牲层经刻蚀去除,保留上面的结构图形的加工方法。

表面微加工不同于体加工,它不对基片本身进行加工。

在基片上有淀积的薄膜,它们被有选择的保留或者去除以形成所需的图形。

表面微加工的主要工艺是湿法刻蚀、干法刻蚀和薄膜淀积。

牺牲层的刻蚀是表面微加工的基础。

表面微加工技术的步骤:首先在基片上淀积绝缘层和牺牲层,然后淀积结构层,经光刻得到微结构图形。

对此进行湿法刻蚀,把牺牲层sio2去除,便可得到无支撑的微结构。

(3),高深度比微加工技术LIGA技术被认为是最佳高深度比的微加工技术,加工宽度为几微米,深度高达1000um.且可实现微器件的批量生产。

该技术的优点是能制造三维微结构器件,获得的微结构具有较大的深度比和精细的结构,侧壁陡峭,表面平整,它是X光深层光刻、微电铸和微塑铸三种工艺的有机结合。

LIGA技术的主要工艺:X光掩膜制造、X光深度光刻技术和微铸电技术。

(4).键合技术上述工艺制造的微构件都是通过键合技术来制成微机械的器件,键合技术组要分为硅熔融键合和静电键合两种2.微机电制造过程中常用的材料及其优缺点。

陶瓷、金属、硅材料。

常用的是硅。

硅的优点?回答出主要特征。

根据应用场所,微机电系统的制作材料分为微结构材料、微制动材料和微传感器材料。

根据材料性能,微机电系统的制作材料分为结构材料功能材料智能材料MEMS 常用材料半导体材料:硅及其化合物等。

硅:特殊的晶体结构使其具有各项异性,通过掺杂获得的p型硅和n型硅具有不同的导电性能和机械性能。

机械工程中的纳米技术与微机电系统研究

机械工程中的纳米技术与微机电系统研究

机械工程中的纳米技术与微机电系统研究引言:随着科技的迅猛发展,纳米技术和微机电系统(MEMS)已经成为机械工程领域的前沿研究方向。

纳米技术利用材料的纳米级尺寸效应,通过控制和操作单个分子和原子,实现对材料性质和功能的改变。

而微机电系统是将微芯片制造技术应用于机械工程领域,以实现微米级尺寸下的机械部件和系统。

这两者的结合,将为机械工程带来巨大的创新和发展潜力。

一、纳米技术在机械工程中的应用1. 材料改性纳米技术可以通过控制材料的纳米级结构,改变其物理、化学和力学性质。

例如,通过纳米材料的表面修饰,可以改善材料的耐磨性和耐腐蚀性,提高机械零件的寿命和性能。

此外,纳米级表面可以提高润滑效果,降低机械部件的摩擦和磨损。

2. 传感器技术纳米技术在机械工程中的一个重要应用领域是传感器技术。

利用纳米材料的特殊性质,可以制造高灵敏、高稳定性的传感器。

例如,通过在纳米材料表面修饰特定功能基团,可以实现对环境气体浓度、温度和湿度等参数的高精度检测。

这些传感器广泛应用于制造业、汽车工业和航空航天领域。

3. 纳米润滑技术纳米技术为机械工程带来了新一代的润滑技术。

传统的润滑油通常有粒子的平均尺寸,无法完全覆盖机械部件表面的微小凹凸。

而使用纳米润滑技术可以制造出粒子尺寸与表面凹凸相匹配的纳米润滑油,提供更高的润滑性能。

此外,纳米润滑油具有较低的摩擦系数,能够减少机械部件的能耗和损耗。

二、微机电系统在机械工程中的应用1. 能源工程微机电系统在能源工程中具有广泛的应用前景。

通过利用微机电系统制造技术,可以制造出微型传感器和能量转换器件,用于能源采集、转换和存储。

例如,微型燃料电池利用MEMS技术制造,可以实现小型化、高效率的能量转换,为微型电子设备提供持续的电源供应。

2. 生物医学工程微机电系统在生物医学工程中的应用日益增多。

微型传感器和细胞芯片可以用于生物体内的监测和治疗。

例如,通过在微流控芯片中引入细胞和药物,可以实现精确的细胞分析和治疗,为个体化医疗提供技术支持。

微机电系统分析报告

微机电系统分析报告

微机电系统分析报告微机电系统(Micro-electro-mechanical systems, MEMS)是一种以微米尺度的微观机械设备、电路和系统为基础的技术体系。

该系统结合了电子、机械和材料科学,具有体积小、重量轻、功耗低和集成度高等特点,广泛应用于无线通信、医疗诊断、汽车控制、环境检测等领域。

本报告将从微机电系统的概念和分类、工作原理和应用等方面进行分析。

一、概念和分类微机电系统是一种利用微纳技术和集成电路技术制造微米级尺度的机械设备的系统。

它通常由微感知器件、微执行器件和微电子器件等组成,通过微机电传感器、微机电执行器实现对信号的检测和控制。

根据应用领域的不同,微机电系统可以分为加速度传感器、气压传感器、陀螺仪、压力传感器、光学器件等多个类别。

二、工作原理微机电系统通过微机电传感器将物理量转化为电信号,再经过微处理器的处理实现信号的放大和转换。

以加速度传感器为例,它采用压阻式或电容式传感方式,将物体的加速度通过微电子器件转化为电信号,再通过微处理器进行分析和处理。

三、应用领域微机电系统在无线通信、医疗诊断、汽车控制、环境检测等领域均有广泛应用。

在无线通信领域,微机电系统可以实现手机的运动感应和摄像头的自动对焦等功能;在医疗诊断领域,微机电系统可以用于心脏病监测和药物释放等应用;在汽车控制领域,微机电系统可以实现车辆稳定控制和平衡感应等功能;在环境检测领域,微机电系统可以用于气体浓度传感和水质检测等应用。

四、优势和挑战微机电系统具有体积小、重量轻、功耗低和集成度高等优势,可以实现高精度和多功能集成。

然而,微机电系统的制造和集成技术较为复杂,对设备和材料的要求较高,生产成本也相对较高。

五、发展趋势随着尺寸更小、功能更强的微机电系统的不断开发,微机电系统将逐渐应用到更多领域。

未来,微机电系统有望在智能家居、医疗治疗、军事安防等领域实现更广泛的应用。

综上所述,微机电系统是一种以微米级尺度的微观机械设备、电路和系统为基础的技术体系。

微机电系统及工程应用总结

微机电系统及工程应用总结

微机电系统及工程应用总结微机电系统是指利用微型计算机技术和微机电集成技术相结合,实现对电力系统、工业系统、交通运输系统等工程系统进行监测、控制和管理的技术系统。

随着电子技术和信息技术的不断发展,微机电系统在工程领域的应用日益广泛,已成为工程控制与管理的重要手段。

在工程中的应用主要有以下几个方面。

首先,微机电系统在电力系统中的应用。

随着电力系统的规模不断扩大和电力需求的不断增加,为了实时监测电网的运行状态和实时控制电网的运行,微机电系统在电力系统中得到了广泛的应用。

通过微机电系统可以实现对电网各个节点的监测和控制,实现电网的安全、稳定和高效运行。

其次,微机电系统在工业系统中的应用。

在工业生产中,微机电系统可以实现对生产设备的在线监测和控制,实现对生产过程的智能化管理。

微机电系统可以对工业系统中的机械设备、仪表设备、传感器等各种设备进行监测和控制,实现对生产过程的实时监控和管理。

再次,微机电系统在交通运输系统中的应用。

随着交通运输系统的不断发展和交通流量的不断增加,为了实现对交通运输系统的高效管理和控制,微机电系统在交通运输系统中得到了广泛的应用。

通过微机电系统可以实现对交通信号灯、道路监测设备、车辆识别系统等设备的智能化管理,实现对交通运输系统的智能化控制。

最后,微机电系统在环境监测与控制中的应用。

随着环境污染和资源紧缺问题的日益严重,为了实现对环境的实时监测和控制,微机电系统在环境监测与控制中也得到了广泛的应用。

通过微机电系统可以实现对环境中各种污染因子的在线监测和控制,实现对环境的智能化管理。

总之,微机电系统在工程领域的应用已经成为一种不可或缺的技术手段。

通过微机电系统可以实现对工程系统的智能化监测和控制,提高工程系统的安全性、稳定性和高效性,为工程的发展提供了强大的技术支持。

随着信息技术和通信技术的不断发展,微机电系统在工程领域的应用将会更加广泛和深入。

微机电系统及纳米技术大作业--MEMS motor

微机电系统及纳米技术大作业--MEMS motor

微机电系统及纳米技术大作业题目:MEMS motor摘要:本文以微电机驱动方式为线索介绍静电型微电机、电磁型微电机、压电式微电机、形状记忆合金微电机和磁致伸缩型微电机的工作原理,结构组成以及应用前景。

关键字:微电机微机电系统微机械WORD中静电型微电机0 引言现代微电机的发展与新材料技术、微电子技术、微加工技术都息息相关,也正是由于这些包括MEMS等高科技的迅速发展,为微电机的开发和拓展注入了活力。

本文介绍了包括静电微电机、电磁型微电机、压电式微电机、形状记忆合金微电机和磁致伸缩型微电机的工作原理,结构组成以及应用前景。

1 微电机种类1.1 静电型微电机微电子技术的巨大成功在许多领域引发了一场微小型化革命,以加工为纳米结构和系统为目的微米/纳米技术在此背景下应运而生。

自1987年加州大学伯克利分校科学家研制首台静电微电机以来,微电机随着加工工艺、方法的突破取得长足发展。

静电微电机因其与IC(integrate circuit)兼容、转速高、易于控制等诸多优点成为研究重点。

静电微电机技术主体有五个方面,设计建模和仿真、加工制造、应用,如图1。

图1静电微电机包括顶驱动电机、测驱动电机、摆动电机、中心电机、法兰盘电机、线性步进电机、超声电机、双定子轴向驱动可变电容电机、外转子电机、电感应电机、快门电机等。

图2为纳米电机。

图21.1.1 设计MEMS中静电微电机的设计不同于传统电机系统的设计,主要区别是MEMS 的设计需要集成相关的制造和加工工艺新型静电感应微电机的设计,其转子上所加载的负荷主要来自于电机气隙与轴承间产生的粘滞曳力,这些驱动器的加工过程还不能与IC完全兼容。

1.1.2 建模和仿真为了加快和提高MEMS设计,研究者开发出多种建模和仿真工具用于多能域、多学科交叉系统的建模和仿真,如VHDL-AMS可用于微电机的系统建模,Spice 和Saber可用于静电学仿真,ANSYS可用于多能域(机械、热和静电等)系统仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 MEMS的微加工技术
硅和在硅基片上制造的各种显微机 械零件是IC技术的扩展技术。
一、集成电路工艺
掩膜板

晶体 切

生长 片
制 备
光刻 刻蚀
切封 割装
掺杂
晶体生长是一种特殊技术,常用的 硅单晶锭制备工艺为悬浮区熔工艺。
硅的表面氧化是硅加工的基础工艺。 氧化层生长工艺有三种:热氧化、CVD 和溅射。生长的氧化层有如下作用:硅 的表面保护;作为离子注入和扩散的掩 膜;电解介薄膜;衬底和其他材料之间 的界面层。
2、体硅微机械的基本结构
利用硅在KOH溶液中的各向异性腐 蚀功能,可以做成各种微机械基本结构。
三、体硅腐蚀的自停止技术
硅腐蚀的自停止技术是利用了不同 晶格取向的硅和掺杂浓度的不同,使硅 在不同的腐蚀液中表现出不同的腐蚀性 能。它也是硅微机械加工技术的关键技 术之一。
主要有:重掺杂自停止腐蚀技术;PN结自停止腐蚀技术;(111)面自停止 腐蚀技术;电化学自停止腐蚀技术。
硅是MEMS用的主要结构材料。它 不仅是良好的半导体,而且也是一种很 好的结构材料。硅片大量用于微构件, 它可用化学刻蚀和离子刻蚀进行各向同 性和各向异性刻蚀成所需的结构。
另外,硅化物、金属、合金以及一 些聚合物也可应用于MEMS。
五、智能 传感器、执行器、大量的微处理器集成 在一个系统里,即把传感、判定和运动 组建在一起高质量地执行任务。目前, 多维传感器系统、多层信息处理系统等 的发展使传感器、执行器和界面电子学 有机结合为新型的MEMS器件。
离子注入不需高温,它通过高能束流 将杂质离子直接注入到硅表面。
金属化是指在硅片表面均匀地生长一 层金属薄膜,以形成内部连线、欧姆接触 和金属半导体接触,有时还起保护作用。
金属薄膜生长的方法有:真空蒸发、 溅射、CVD和电镀等。
真空淀积是一种使用最广泛的淀积工 艺,常用电子束轰击和电阻加热。蒸发较 为困难的金属用溅射工艺比较方便。
三、微机电系统的主要技术
MEMS的飞速发展是与其相关的制 造加工技术的发展分不开的。微电子集 成工艺是其基础。要构成MEMS的各种 特殊结构,还必须一系列的特殊工艺技 术。它们主要是:体微加工技术;微表 面加工技术;高深宽比微加工技术;组 装与键合技术以及超微精密加工技术等。
四、MEMS的主要材料
常用的有HF-HNO3腐蚀系统(各向 同性腐蚀)和KOH腐蚀系统(各向异性 腐蚀)。
除了腐蚀液,决定单晶半导体腐 蚀的因素还有很多:晶体取向、导电 类型、掺杂原子浓度、晶格损伤以及 表面结构等。
在一定的条件下腐蚀具有一定的 方向性是硅单晶片腐蚀过程中的重要 特征之一。利用这种特性,可在硅基 片上加工出各种各样的微结构。
《微机电系统及其相关技术》
第一章 微机电系统概论 一、微机电系统的概念
微机电系统(MEMS)指微型化的 器件或器件组合,把电子功能与机械的、 光学的或其他的功能相结合的综合集成 系统,采用微型结构(包括集成微电子、 微传感器和微执行器),使之能在极小 的空间内达到智能化的功效。
微机电系统是一门多学科交叉的新兴 学科,它涉及精密微机械、微电子、材料 科学、微细加工、系统与控制等技术科学 和物理、化学、力学和生物学等若干基础 学科。
微机电系统的主要特点在于:能在极 小的空间里实现多种功能;可靠性好、重 量小且能耗低;可以实现低成本大批量生 产。
微机电系统将在21世纪的信息、生物 医学等多方面导致人类认识和改造世界能 力的重大突破,给国民经济以及国防建设 带来深远的影响。
二、MEMS技术的发展
MEMS的加工工艺已发展了40年。随 着传感器和执行器的微加工技术的发展, 人们已经研制出一系列微传感器可用于测 量位置、速度、加速度、压力、力、扭矩、 温度、气体成分、离子浓度、分子浓度以 及pH值等和各种微机电构件及系统。
CVD可在常压下进行(APCVD),也 可在低压下反应(LPCVD)。
低温下可使用等离子增强化学气相 淀积(PECVD)。
装配和封装是IC的最后一道 工序。其过程包括芯片检查、芯 片固定、导线固定和封装。
二、MEMS的硅微机械加工
微机械加工是固态传感器、执行器、 MEMS以及微光机电系统(MOEMS)的 关键加工技术。微机械加工可分为体微 机械加工和表面微机械加工。
溅射是利用氩的等离子中的正离子轰 击阴极,使靶材料以原子、分子为主的粒 子状态淀积在基片的表面形成薄膜。
化学气相淀积也是薄膜生长技术的重
要手段。其原理是:选定的化学反应物质 以气态通入CVD设备,在高温下反应剂 气体发生化学反应,在加热的硅片表面形 成所需的薄膜。这种方法可生长各种薄膜, 如金属、电介质、多晶硅和其他化合物。 这种工艺薄膜的生长速率快台阶覆盖性好, 生产批量大。
微机械系统的发展方向是微型化、多
功能及与微电子的密切结合,其工艺发展 的趋势是智能化、降低尺寸、重复性好、 采用仿生学和高级信息技术并减少环境污 染。
MEMS在我国也得到了广泛的重 视。目前,一批MEMS的研制产品如 微泵、静电型微马达、电磁型微马达 已获成功;MEMS的新型技术包括高 深宽比微加工技术等正迅速发展。展 望21世纪,我国的MEMS不仅在科研 水平上,而且在产品的批量生产上也 将与发达国家并驾齐驱。
硅的块体微机械器件主要是通过光 刻掩膜技术、硅刻蚀自终止技术、硅的 湿法和干法技术来制作的。其中硅的各 向异性刻蚀和刻蚀自终止技术是微机械 加工的两大支柱技术。
1、硅湿法腐蚀的基本原理
硅的湿法腐蚀首先是将被腐蚀材料 氧化,然后通过化学反应使其生成一种 或多种氧化物再溶解。在同一腐蚀液中, 由于混有各种试剂,故两个过程是同时 进行的。
光刻是一种图形转移技术。其过程 如下图所示。
光刻工艺过程
掺杂的主要工艺手段是扩散和离子注 入。在带有掩膜的硅片表面某些区域内, 刻通过此工艺来控制掺杂原子的数量,从 而形成N型和P型区。通过掺杂可制备成有 源器件、刻蚀终止层、导电多晶硅和微机 械器件。
在高温扩散炉内,带有掺杂剂的气体 通过硅片表面的现象为扩散。扩散主要有 两步:预淀积和再分布。
相关文档
最新文档