概率论与数理统计(文科)吴传生7.2节
概率论与数理统计-第七章

但是参数 参数估计
, 未知。希望通过抽样估计之。
点估计 —— 给出参数的估计值。
区间估计 —— 给出参数的估计范围
3
§1 参数的点估计
用样本( X1, X2, …, Xn ),对每个未知参数 θi , ( i = 1, 2, …, k) 构造出一个统计量,
作为对参数 θi 的估计。该统计量称为 θi 的估计量。
抽出样本(X1, X2, …, Xn )。求证:对任何总体分布,
证明:X1, X2, …, Xn 独立,且与X同分布
28
例10:对服从均匀分布U(0, b)的总体X,讨论参数 b 的矩估计和极大似然估计的无偏性。 解: 由前面U(a, b)分布的a和b的估计量: (1) 矩估计
令 a=0
是
无偏估计!
xi , 故的取值范围最大不超过x min x1 , x2 ,
另一方面,L , 1n e
1
, xn
xi i 1
n
n
是的增函数,取到最大值时,L达到最大。
故 X 1 min X1 , X 2 ,
dlnL 令 n 12 d
29
(2) 极大似然估计
令 a=0
不是无偏估计
30
纠偏方法
如果 满足 ,则新的估计量 , 是无偏估计!
例9中:对服从均匀分布U(0, b)的总体X,参数 b 极大似然估计 不是无偏估计。
由于
是一个修正的极大似然估计,是无偏估计。
31
2.有效性 在没有系统误差的前题下,还希望估计量的 随机误差尽量小(对给定的样本容量n)!
推荐三本概率论和数理统计的参考书: (1)《数理统计学简史》, 陈希孺 (2)《概率论札记》, 梁昌洪
概率论与数理统计全套精品课件(PPT)

河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
概率论与数理统计第一章 刘建亚 吴臻主编

A B
A
B
(3) 事件的交 由事件 A 与事件 B 同时发生
而构成的事件称为事件 A 与事件 B 的交事件 (积事件),记为 A B或AB
A1 , A2 ,, An 的积事件
B
A∩B
Ai A
i 1
i 1
n
n
i
A
A1 , A2 ,, An , 的积事件
Ai A
• 定义1.2.2 (概率的统计定义) 在大量重复试 验中,若事件 A 发生的频率稳定地在某一常数 p 的附近摆动,则称该常数 p 为事件 A 发生的 概率,并记为 P(A),即P(A) = p; • 频率是变动的,而概率则为常数。 • 通常所说的产品的合格率,彩票的中奖率等均 为频率
优点:直观 易懂
A B A B 且 B A
A
B
B不发生,A必不发生
(1)包含的例子
投骰子,事件 A =“出现点数是1”,事件 B=“出现的点数小于4”. 那么,如果A发生,即出现的点数是1,那么B发 生了。 B不发生,A必不发生 A
B
(2) 事件的并 若事件 A 与事件 B 至少有一
个发生,这样构成的事件成为事件 A 与事件 B 的并事件(和事件),记为 A B 或 A B
缺点:粗糙 模糊
不便 使用
2. 古典概率模型
有限性
每次试验中,所有可能发生的结果只有有限个,即样本 空间Ω是个有限集:
1, 2 ,, n
等可能性
每次试验中,每一种可能结果的发生的可能性相同,即:
1 P ( A1 ) P ( A2 ) P ( An ) n
f n ( A1 A2 An ) f n ( A1 ) f n ( A2 ) f n ( An )
概率论与数理统计教程(茆诗松)第七章

t
28 July 2013
t1 2 ( n 1)
华东师范大学
第七章 假设检验
第29页
若取 =0.05,则 t0.975(4)= 2.776. 现由样本计算得到: x 239.5, s 0.4, 故
由此可得如下结论:
28 July 2013
华东师范大学
第七章 假设检验
第13页
当 减小时,c 也随之减小,必导致的增大; 当 减小时,c 会增大,必导致 的增大; 说明:在样本量一定的条件下不可能找到一 个使 和 都小的检验。 英国统计学家 Neyman 和 Pearson 提出水平 为 的显著性检验的概念。
x 0 u / n
三种假设的拒绝域形式分别见下图:
28 July 2013
华东师范大学
第七章 假设检验
第20页
W {u c}
W {u c} W {u c1 或 u c2 }
(a) H1 : 0
28 July 2013
(b) H1 : 0
(c) H1 : 0
的拒绝域为W,则样本观测值落在拒绝域内 的概率称为该检验的势函数,记为
g ( ) P ( x W ),
28 July 2013
0 1
(7.1.3)
华东师范大学
第七章 假设检验
第10页
势函数 g ( )是定义在参数空间 上的一个函数。 犯两类错误的概率都是参数 的函数,并可由势 函数算得,即:
28 July 2013
华东师范大学
第七章 假设检验
第11页
这个势函数是 的减函数
28 July 2013
华东师范大学
概率论与数理统计第七章-精品

湖南商学院信息系 数学教研室
第七章 参数估计
第一节 第二节
第三节 第四节 第五节
矩估计 极大似然估计
估计量的优良性准则 正态总体的区间估计(一) 正态总体的区间估计(二)
总体是由总体分布来刻画的.
总体分布类型的判断──在实际问题中, 我们根据问题本身的专业知识或以往的经验 或适当的统计方法,有时可以判断总体分布 的类型.
即
uX
2 2
1 n n i1
Xl2
求解得
u ˆˆ2 Xn 1i n1Xl2X2n 1i n1( XiX)2
∴均值,方差2的矩估计是:
uˆˆ 2Xn1
n
(Xi
i1
,2)两个未知参
两点说明:
1、求似然函数L( ) 的最大值点,可以应
用微积分中的技巧。由于ln(x)是x的增函
数,lnL( )与L( )在 的同一值处达到 它的最大值,假定是一实数,且lnL( ) 是 的一个可微函数。通过求解所谓“似 然方程”: dlnL() 0
d
可以得到 的MLE .
(1) 由总体分布导出样本的联合概率函数 (或联合密度);
(2) 把样本联合概率函数(或联合密度)中自变
量看成已知常数,而把参数 看作自变量, 得到似然函数L( ); (3) 求似然函数L( ) 的最大值点(常常转化 为求ln L()的最大值点) ,即 的MLE;
(4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
Var(X-)= 2
即 E(X)=
Var(X)= 2
即 E(X)=
Var(X)= 2
令 X
2
概率论与数理统计ppt课件

18
二、几何定义:
定义若对于一随机试验, 每个样本点出现是等可能的,
样本空间所含的样本点个数为无穷多个, 且具有非 零的,有限的几何度量,即0 m() ,则称这一随机 试验是一几何概型的.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
(2) P() 1, P() 0;
(3) 对于两两互斥的可列多个事件A1, A2 ,, P( A1 A2 ) P( A1 ) P( A2 )
23
三. 统计定义:
(一) 频率
1. 在相同的条件下, 共进行了n次试验,事件A发生的次
数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为 fn(A).
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
性质4. 对任一事件A, P(A) 1.
性质5. 对任一事件A, P(A) 1 P(A).
概率论与数理统计PDF版课件7-2

. 的一个合理解释. 但注意,并不要求包含真实值的区
间正好%,只要是大约%就是合理地,比如也可以.
第七章参数估计 §7.2 区间估计
求置信区间的步骤
=
, ⋯ , ,
(1)找一个与未知参数有关的统计量
11 0.248
3.816
第七章参数估计 §7.2 区间估计
注1 上述求解或 的置信区间时,我们选取的点估计
都是矩估计量或者最大似然估计量. 事实上,我们也可以用
贝叶斯估计量来构造置信区间.详细内容参考本章“重要补
充及扩展问题”的第五节(见教材P220)
注2 上述利用枢轴量进行区间估计的时候都要求总体服
从正态分布. 但实际中,我们考虑的总体经常不服从正态分
布. 这种情况下的区间估计采用的是大样本区间估计. 详细
内容参考本章“重要补充及扩展问题”的第六节(见教材
P220)
第七章参数估计 §7.2 区间估计
三、两个正态总体的区间估计
设 , ⋯ , 为来自正态总体 ∼ , 的简单随机
1. 当 和 已知时,求 − 的置信区间
ഥ−
ഥ 作为总体均值差 − 的点估计;
(1)选取样本均值差
X − Y − ( 1 − 2 )
(2)构造枢轴量
~ N ( 0,1) ;
2
2
(
)
1
n1
(3)选取 = − = Τ ;
+
2
n2
(4) − 的 − 的置信区间
.
n
n
2
2
第七章参数估计 §7.2 区间估计
例3( 见教材P213) 假设 轮胎的寿 命服从正 态分布
高等数学概率论与数理统计课件PPT大全

(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
概率论与数理统计第六章第七章

二、常用的统计量
设 X1, X 2 ,, X n 是来自总体X的一个样本, X1, X 2 ,, X n 是
这一样本的观察值。定义:
样本平均值(Sample mean) 样本方差(Sample variance)
X
1 n
n i 1
Xi
S 2
1 n -1
n i 1
(Xi
X )2
Sn2
1 n
n i 1
y2 e 2,
y
0
0,
其它
二、 2 分布
2. 2 分布的性质 (1) 2 分布的可加性
设 12 ~ 2 (n1 ), 2 2~(2 n 2 )
并且 12 , 2 2 相互独立,则有
12 2 2~(2 n1 n 2 )
二、 2 分布
(2) 2 分布的数学期望和方差
若 2 ~ 2 (n)
n i1
Xi
1 n
n i1
E( X i )
D 1 n
n i1
Xi
1 n2
n i1
D(Xi )
1 n2
nC C n
1
P
1 n
n i 1
Xi
1 n
n i 1
E( Xi )
1
1
2
D 1 n
n i 1
Xi 1
C
n 2
1
四、辛钦(Khinchin)大数定律 (独立同分布随机变量序列的大数定律)
P 16 Xi 1920 1 P 16 Xi 1920
i1
i1
1 (0.8) 0.2119
因此,这16只元件的寿命的总和大于1920小时的概率近 似为0.2119。
第七章 数理统计的基本概念
概率论与数理统计教程(茆诗松)第7章厦大版

(p £ 0.01)
检验的水平
显然,两类错误的概率可作为衡量一个检验好坏的标准。对于一
用数学语言来讲,一个检验就是样本空间X (所有样本点的集合)
的一个划分:{W , W },其中 W U W = X , W I W = f 。
当样本点落入W中时就拒绝H0(接受H1) ;当样本点落入 W 中时 就接受H0(拒绝H1) 。我们称W为“拒绝域”, W 为“接受域”。 检验的这个定义过于一般,我们不能从这个定义中得到任何构造 合理检验的指导原则。实际中一般使用能够衡量样本点与零假设 之间偏离程度的统计量来构造检验。称用来构造检验的统计量为 检验统计量。 对例7.1.1的假设检验问题
假设检验问题的表示
由此可见,在假设检验中不仅要明确什么是零假设,而且还要 明确备择假设是什么。因此一个假设检验问题通常表示为
H0 : q Î Q0 vs H1 : q Î Q1
(7.1.2)
其中 Q0 È Q1 Ì Q,Q0 Ç Q1 = f 。当备择假设是逻辑对立假
设时也可以不写出来。
比如,例7.1.1中的假设检验问题可表示为
当零假设被拒绝时,从逻辑上讲就意味着接受一个与之对立的 假设。我们称与零假设对立的假设为“备择假设”或“对立假设” (alternative hypothesis),并记为 “H1:θ∈ Θ\Θ0 ”。这样的 假设可称为“逻辑对立假设”
在某些应用中,拒绝零假设不一定意味着接受逻辑对立假设, 而可能是意味着接受一个特定的假设“H1:θ∈ Θ1 ”,其中Θ1 为Θ\Θ0的真子集。
例7.1.2
随机抽测了50 名 2000 年 1 月出生的男婴的体重,希望确 定男婴的体重 X 是否服从正态分布。
F (x):X 的分布函数
概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)

四、事件的关系与运算
在一个样本空间中显然可以定义不止一个事件。概率论的重要研究课 题之一是希望从简单事件的概率推算出复杂事件的概率。为此,需要研究 事件间的关系与运算。
事件是一个集合,因此事件间的关系和运算自然按照集合之间的关系 和运算来处理。
1 事件的包含与相等
若 A B ,则称事件 B 包含事件 A ,这里指的是事件 A 发生必然导致事件 B 发生, 即属于 A 的样本点都属于 B ,如图1-2所示。显然,对任何事件A,必有 A 。
若 A B 且 B A ,则称事件 A 与 B 相等,记为 A B。
图1-2 A B
事件 A B {x | x A或x B},称为事件A与事件B的和事件,即当且仅当事件 A 或 事件 B 至少有一个发生时,和事件 A B 发生。它由属于 A 或 B 的所有公共样本点构 成,如图 1-4 所示。
图 1-4 A B
4 事件的差
事件 A B {x | x A且x B}称为事件 A 与事件 B 的差事件,即当且仅当事件 A 发 生但事件 B 不发生时,积事件A B发生。它是由属于 A 但不属于 B 的样本点构成的集 合,如图1-5所示。差事件 A B 也可写作 AB 。
定义1 在相同的条件下重复进行了 n 次试验,如果事件 A 在这 n 次试验中出现
了 nA
次,则称比值
nA n
为事件 A
发生的频率,记为fn ( 源自) ,即fn( A)
nA n
显然,频率 fn ( A) 的大小表示了在 n 次试验中事件 A 发生的频繁程度。频率 大,事件 A 发生就频繁,在一次试验中 A 发生的可能性就大,也就是事件 A 发
概率论与数理统计7-数理统计2 [兼容模式]
![概率论与数理统计7-数理统计2 [兼容模式]](https://img.taocdn.com/s3/m/5bf7718d02d276a200292ed5.png)
箱线图
例2 设有一组容量为18的样本如下(已经排过序) 122 126 133 140 145 145 149 150 157 162 166 175 177 177 183 188 199 212
箱线图
即有 x0.5 个数的平均值,
1 (157 162) 159.5. 2
数据集的箱线图是由箱子和直线组成的图形, 它是基于以下五个数的图形概括: 最小值 Min,
141 147 126 140 141 150 142
148 148 140 146 149 132 137
132 144 144 142 148 142 134
138 150 142 137 135 142 144
154 149 141 148 148 143 146
142 145 140 154 152 153 147
简单随机样本
若总体的分布函数为F(x)、概率密度函数为 f(x), ) 则其简单随机样本的联合分布函数为
F * ( x , x2 ,, xn ) =F F(x1) F(x2) … F(xn)
其简单随机样本的联合概率密度函数为
f * ( x , x2 ,, xn ) =f f ( x 1) f ( x 2) … f ( x n)
求样本分位数: x0.2,x0.25,x0.5 .
解
第一四分位数 Q1, 第三四分位数 Q3和 最大值 Max. 中位数 M,
(1) 因为 np 18 0.2 3.6, ( 2) 因为 np 18 0.25 4.5,
它的作法如下:
LOGO LOGO
直方图
例1 下面给出了84个伊特拉斯坎(Etruscan)人男子的头颅的最大宽度
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整版精编版

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλa. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为故(1)在Y=1条件下,X的条件分布律为fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z} =1-P{X>z,Y>z}=1-P{X>z}P{Y>z} =1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的。
概率论与数理统计文科吴传生大

❖ 19世纪末,俄国数学家切比雪夫、马尔可夫、李亚 普诺夫等人用分析方法建立了大数定律及中心极限 定理的一般形式,科学地解释了为什么实际中遇到 的许多随机变量近似服从正态分布.
❖ 20世纪初受物理学的刺激,人们又开始研究随机过 程.这方面柯尔莫哥洛夫、维纳(N.Wiener)、马尔可 夫、辛钦、莱维及费勒(W.Feller)等人做了杰出的 贡献.
§1.1 随机事件
基本术语 对某事物特征进行观察, 统称试验. 若它有如下特点,则称为随机试验,用E表示
可在相同的条件下重复进行 试验结果不止一个,但能明确所有的结果
试验前不能预知出现哪种结果
样本空间—— 随机试验E 所有可能的结果 组成的集合称为样本空间 记为
样本空间的元素, 即E 的直接结果, 称为 样本点(or基本事件) 常记为 , = { }
随机事件 —— 的子集, 记为 A ,B ,… 它是满足某些条件的样本点所组成的集合.
例1 给出一组随机试验及相应的样本空间
E 1 : 投一枚硬币3次,观察正面出现的次数
1{0,1,2,3}
有限样本空间
E 2 : 观察总机每天9:00~10:00接到的电话次数 2 { 0 ,1 ,2 ,3 , ,N }
❖ 随后棣莫弗(A.de Moivre)和拉普拉斯(place) 又导出了第二个基本极限定理(中心极限定理)的原 始形式.
❖ 拉普拉斯在系统总结前人工作的基础上写出了《分 析的概率理论》,明确给出了概率的古典定义,并 在概率论中引入了更有利的分析工具,将概率论推 向一个新的发展阶段.
11
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
概率论与数理统计 吴赣昌 理工类简明版 1 1

随机现象的统计规律性 随机试验具有下列特点: 1. 可重复性:试验可以在相同的条件下重复进 行; 2. 可观察性:试验结果可观察,所有可能的结 果是明确的; 3. 不确定性:每次试验出现的结果事先不能准 确预知. 历史上,研究随机现象统计规律最著名的试验
完
随机现象的统计规律性 由于随机现象的结果事先不能预知,初看似乎 毫无规律. 然而人们发现同一随机现象大量重 复出现时,其每种可能的结果 出现的频率具有 稳定性, 从而表明随机现象也有其固有的规律 性. 人们把随机现象在大量重复出现时所表现 出的量的规律性称为随机现象的统计规律性. 概率论与数理统计是研究 随机现象统计规律性 的一门学科.
尽管一个随机试验 将要出现的结果是不确定的, 但其所有可能结果是明确的,我们把随机试验 的每一种可能的结果 称为一个样本点,常记为
? . 它们的全体称为样本空间,记为 S (或 ? ).
例如:
S ? {正面,反面} 或
S ? {e1 ,e2 }(e1 ? 正面,e2 ? 反面).
2. 在将一枚硬币抛掷三次,观察正面H、反面T 出现情况的试验中,有8个样本点,样本空间:
0.5181 0.5069 0.5016 0.5005
试验表明:虽然每次投掷硬币事先无法准确预
知将出现正面还是反面,但大量重复试验时,
随机现象的统计规律性 试验表明:虽然每次投掷硬币事先无法准确预 知将出现正面还是反面,但大量重复试验时, 发现出现正面和反面的次数大致相等,即各占 总试验次数的比例大致为0.5,并且随着试验次 数的增加,这一比例更加稳定地趋于0.5.
吴赣昌编 概率论与数理统计 第7章(new)

0
n
k 成立的样本值(x1,x2,…,xn)为
检验的接受域,记为W0。
2、检验的两类错误
当H0为真时,作出拒绝H0的判断,称这类错误为第一类错
误或弃真错误; 当H0不真时,作出接受H0的判断,称这类错误为第二类错 误或取伪错误。 记α=P{拒绝H0| H0真};β=P{接受H0| H0假} 对于给定的一对H0和H1,总可找出许多临界域W, 人们自然希望找到这种临界域W,使得犯两类错误的概率都 很小。 奈曼—皮尔逊(Neyman—Pearson)提出了一个原则: “在控制犯第一类错误的概率不超过指定值的条件下,尽 量使犯第二类错误小”,按这种法则做出的检验称为“显 著性检验”,称为显著性水平或检验水平。
x 21 S 2 12.5 (4)由题意,计算得到样本均值和样本方差分别为 x 0 21 18 2.55 计算统计量观察值 t S n 12.5 9 (5)由于 t 2.55 t (n 1) 2.3060 所以拒绝原假设H0,而接受H1,
2
即能以95%的把握推断该地区青少年犯罪的平均年龄不是18岁。
2
(5)结论 u 1.258 u 1.96
2
接受原假设H0
即不能否定这批产品该项指标为1600。
例7.5 完成生产线上某件工作的平均时间不少于15.5分钟,标准 差为3分钟。对随机抽取的9名职工讲授一种新方法,训练期结束 后,9名职工完成此项工作的平均时间为13.5分钟。这个结果是 否说明用新方法所需时间比用老方法所需时间短?设α=0.05,并 假定完成这件工作的时间服从正态分布。 解(单边检验问题)(1)提出原假设H0:μ≥15.5,H1μ<15.5;
1、检验方法 总体X~N(μ,σ2) ,要检验μ是否为μ0,而μ是未知的.我们知道μ X 的无偏估计是 ,样本均值X 的大小在一定程度上反映了 μ的大小,因此,当H0为真时,即μ=μ0时, X 的观察值 x | 与μ0的偏差 | x 0 一般不应太大。如果 | x 0 | 过分大, 我们就应怀疑假设H0的正确性并拒绝H0,而| x 0 | 的大小, | X 0 | 可归结为统计量 的大小。 0 n X 0 ~ N (0,1) 当H0为真时,统计量 U 0 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1 n
Ch7-65
第十四周
问 题
母亲嗜酒是否影响下一代的健康
美国的Jones医生于1974年观察了母 亲在妊娠时曾患慢性酒精中毒的 6 名七 岁儿童(称为甲组).以母亲的年龄,文 化程度及婚姻状况与前 6 名儿童的母亲 相同或相近,但不饮酒的 46 名七岁儿童 为对照租(称为乙组). 测定两组儿童的智 商,结果如下:
i 1 2 i
n
1i j n
(c
2 i
c ) n c
2 j i 1
n
2 i
1 c n i 1
n 2 i
1 2 ˆ ) D( ˆ1 ) D( n
结论
算术均值比加权均值更有效.
Ch7-60
例如 X ~ N( , 2 ) , ( X 1 ,X 2 ) 是一样本.
2
未落在拒绝域内,故接受 H 0 . 即可认为 两总体方差相等. 下面用 t — 检验法检 验 1 是否比 2 显著偏小? 即检验假设
Ch7-70
H 0 : u1 u2 ;
T X1 X 2 Sw 1 1 n1 n2
H1 : u1 u2
~ t (n1 n2 2)
当 H 0 为真时,检验统计量
N (u1 , )和N (u 2 , )
2 1 2 2
本问题实际是检验甲组总体的均值是 否比乙组总体的均值偏小? 若是,这个差异范围有多大? 前一问 题属假设检验,后一问题属区间估计.
Ch7-68
由于两个总体的方差未知,而甲组 的样本容量较小,因此采用大样本下两 总体均值比较的U—检验法似乎不妥. 故
n 1 2 2 S ( X X ) (2) 是 D( X ) 的无偏估计量. i n 1 i 1
n 1 n 1 2 2 2 证 前已证 ( X i X ) X i X n i 1 n i 1
E ( X i ) E ( X ) , D( X i ) D( X ) 2 E ( X ) E ( X ) , D( X )
Ch7-54
1 x x 0, e f ( x ; ) 0 为常数 0 x0 ( X 1 , X 2 , , X n ) 为 X 的一个样本 的无偏 证明 X 与 n min{ X 1 , X 2 ,, X n } 都是
估计量
证Байду номын сангаас
1 X ~ E
1 2 故 (n n) p X i X m i 1
2 2
m
Ch7-53
因此, p 2 的无偏估计量为
1 1 m 2 p 2 Xi X n n m i 1
1 X i ( X i 1) m i 1 n(n 1)
m
2
例4 设总体 X 的密度函数为
1 P( X 1 z ) P( X 2 z ) P( X n z )
Ch7-56
有效性
ˆ ( X , X ,, X ) 定义 设 1 1 1 2 n
ˆ ( X , X ,, X ) 2 2 1 2 n
都是总体参数 的无偏估计量, 且
ˆ1 ) D( ˆ2 ) D(
t0.005 (50) 2.67, S w 16.32
于是置信度为 99% 的置信区间为
Ch7-73
n
2
Ch7-51
因而
n n 1 1 2 2 2 E ( X i X ) E ( X i ) E ( X ) n i 1 n i 1 2 2 2 2 ( ) ( ) n n 1 2 2 n 1 n 2 2 (Xi X ) 故 E 证毕. n 1 i 1
i 1 i 1
n
i 1
n
(2)
而
ˆ1 ) ci2 D( X i ) 2 ci2 D(
i 1 i 1
n
n
Ch7-59
n 2 j c ic 2 ic ic 1 n j i1 1 i 1 i n
2
c
落在拒绝域内,故拒绝 H 0 . 即认为母亲
嗜酒会对儿童智力发育产生不良影响.
Ch7-72
下面继续考察这种不良影响的程度. 为此要对两总体均值差进行区间估计.
u2 u1 的置信度为1 的置信区间为
X 2 X1 Sw 1 1 t (n1 n2 2) n1 n2 2
取 0.01, 并代入相应数据可得
采用方差相等 (但未知) 时,两正态总体 均值比较的t—检验法对第一个问题作出 回答. 为此 , 利用样本先检验两总体方差 是否相等,即检验假设
H0 : ;
2 1 2 2
H1 :
2 1
2 2
S12 当 H 0 为真时,统计量 F 2 ~ F (5,45) S2
拒绝域为
Ch7-69
1 1 k k E ( Ak ) E ( X i ) E ( X i ) n i 1 n i 1 1 n k k n
n
n
Ch7-49
特别地 样本均值 X 是总体期望 E( X ) 的 无偏估计量
1 2 样本二阶原点矩 A2 X i 是总体 n i 1
Ch7-52
例3 设 ( X 1 , X 2 , , X m ) 是总体 X 的一个样本 , X~B(n , p) n > 1 , 求 p 2 的无偏估计量.
解 由于样本矩是总体矩的无偏估计量 以及数学期望的线性性质, 只要将未知 参数表示成总体矩的线性函数, 然后用样 本矩作为总体矩的估计量, 这样得到的未 知参数的估计量即为无偏估计量. 令 X E ( X ) np m 1 2 2 2 X i E ( X ) (np) np(1 p) m i 1
定义的合理性
我们不可能要求每一次由样本得到的 估计值与真值都相等,但可以要求这些估 计值的期望与真值相等.
Ch7-48
例1 设总体X 的 k 阶矩 k E ( X )存在 ( X 1 , X 2 , , X n ) 是总体X 的样本,
k
证明: 不论 X 服从什么分布(但期望存在), 1 n 则 Ak X ik 是 k 的无偏估计量. n i 1 证 由于 E ( X ik ) k i 1,2, , n 因而
n
二阶原点矩 2 E ( X ) 的无偏
2
估计量
Ch7-50
例2 设总体 X 的期望 与方差存在, X 的 样本为 ( X 1 , X 2 , , X n ) (n > 1) . 证明
n 1 2 2 (1) S n ( X i X ) 不是 D( X )的无偏估量; n i 1
的估计量. 若对于任意的 , 当n 时,
ˆ 依概率收敛于 , 即 0, ˆ ) ) 0 lim P(
n
ˆ 是总体参数 的一致(或相合)估计量. 则称
一致性估计量仅在样本容量 n 足够大时,才显示其优越性.
Ch7-62
关于一致性的两个常用结论
F F1 / 2 (5,45) 或 F F / 2 (5,45) 取 0.1 F / 2 (5,45) F0.05 (5,45) 2.43
F1 / 2 (5,45) F0.95 (5,45) 1 / F0.05 (45,5) 0.22
19 F的观察值F0 2 1.41, 得 16 F0.95 (5,45) F0 F0.05 (5,45)
E( X )
故 E( X ) E( X ) X 是 的无偏估计量.
令
FZ ( z) 1 P( X 1 z, X 2 z,, X n z)
n
Z min{ X 1 , X 2 , , X n }
Ch7-55
0 z 0 1 (1 P( X i z )) nz i 1 1 e z0 z0 0 nz f Z ( z) n e z 0 n Z ~ E E (Z ) E (nZ ) 即 n 故 n Z 是 的无偏估计量.
Ch7-66
智商
组别
人数
智商平均数
样本标准差
甲组
乙组
n 6
46
x 78
99
s
19 16
由此结果推断母亲嗜酒是否影响下一 代的智力?若有影响,推断其影响程度有 多大? 提示 前一问题属假设检验问题 后一问题属区间估计问题
Ch7-67
解 智商一般受诸多因素的影响.从而可以
假定两组儿童的智商服从正态分布.
1. 样本 k 阶矩是总体 k 由大数定律证明 阶矩的一致性估计量. 2. 设ˆ 是 的无偏估计 量, 且 lim D(ˆ ) 0, 则 用切贝雪夫不 n 等式证明 ˆ 是 的一致估计量.
矩法得到的估计量一般为一致估计量
在一定条件下, 极大似然估计具有一致性
1 e 例8 X ~ f ( x; ) 0
2 解 D( X ) , D(n min{ X 1 , X 2 ,, X n }) n 所以, X 比n min{ X 1 , X 2 ,, X n } 更有效.
2
Ch7-58
例6 设总体 X,且 E( X )= , D( X )= 2
( X 1 , X 2 , , X n )为总体 X 的一个样本
n 1 (1) 设常数 ci i 1,2, , n. ci 1. n i 1 n ˆ1 ci X i 是 的无偏估计量 证明
i 1
ˆ1 ci X i 更有效 ˆX 比 (2) 证明