电力载波通讯
低压电力线载波通信报告1
低压电力线载波通信1.引言:电力线载波通信(PLC)是电力系统特有的、基本的通信方式。
早在20世纪20年代,电力载波通信就开始应用到10 kV配电网络线路通信中,并形成了相关的国际标准和国家标准。
对于低压配电网来说,利用电力线来传输用户用电数据,实现及时有效收集和统计,是国内外公认的最佳方案。
但在早期的实际应用中,由于我国电网环境恶劣,电力线信道高衰减、强干扰和波动范围大等特点,导致数据采集的成功率和实时性不能完全满足实际通信的需求。
近年来,随着许多新兴的数字技术,例如扩频通信、数字信号处理和网络中继拓扑等技术的大力发展,提高和改善低压配电网电力载波通信的可用性和可靠性成为可能,电力载波通信技术的应用前景变得更为广阔。
2.国内外现状:2.1国外现状:国外低压电力线载波通信开展较早,美国联邦通信委员会FCC规定了电力线频带宽度为100~450 kHz;欧洲电气标准委员会的EN 50065-1规定电力载波频带为3.0~148.5 kHz。
这些标准的建立为电力载波技术的发展做出了显著的贡献。
20世纪90年代,一些欧洲公司进行涉及电力线数据传输的试验,实验结果好坏参半,但随着通信技术的不断进步与互联网业务的蓬勃发展,电力线载波通信技术也得到了显著增长。
在美国,弗吉尼亚州马纳萨斯市首次开始大范围部署PLC的服务,提供抄表、上网等业务,速率达到了10Mbit/s。
国外利用电力线传输信号已经有一百多年的历史。
如早在1838年,埃德华戴维就提出了用遥控电表来监测伦敦利物浦无人地点的电压等级。
直到20世纪20年代,国外一些著名的公司和研究机构才开始对低压电力载波通信技术进行研究。
1930年西门子公司在德国波茨坦建立了用于低压配电网络和传输媒介的波纹载波系统(RCS系统)。
该系统能够以最小的损耗通过低压配电网实现对终端设备的管理。
1958至1959年间,美国德克萨斯元件公司的Jack Kilby和Fairchild半导体公司的Robert Noyce最早发明了电力线载波通信集成电路。
电力线载波通信系统
摘要电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。
电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。
本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。
以及我们对噪声的滤波耦合等。
并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。
课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。
文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。
实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。
PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。
这样一个系统阶完成了接收与发送信号,形成了一个通信系统。
关键字:电力线载波通信系统SSC1641 调制解调1、绪论1.1设计任务及要求电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。
根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。
系统至少具备以下特性:1)开关量输入和输出各5路; 2)系统24V供电;3)具有通信状态指示功能; 4)有232、485或USB有线通信接口;5)断电继续工作能力; 6)其他自己发挥的功能。
电力线路载波通讯
电力线路载波通讯随着社会的进步和科技的发展,电力供应已经成为人们生活中不可或缺的部分。
为了提高电力系统的安全性和可靠性,电力线路的通讯系统也逐渐发展起来。
其中,电力线路载波通讯技术因其高效、可靠的特点而备受关注。
本文将从电力线路载波通讯的基本原理、应用领域以及未来发展趋势等方面进行探讨。
一、基本原理电力线路载波通讯是一种将电力线路作为传输介质的通信方式,利用电力线路本身的特性进行数据传输。
其基本原理是利用频率高于电力系统运行频率的载波信号,通过调制、解调等技术手段,在电力线路中传输通信信号。
通过在电力线路上布设载波通信设备,可以实现在电力线路上双向传输数据。
在电力线路载波通讯中,主要采用的载波信号频段有低频载波和高频载波两种。
低频载波一般选择在2kHz到150kHz的频段,适用于远程距离传输;高频载波则选择在5MHz到150MHz的频段,适用于局域网和近距离传输。
通过合理的选择载波信号频段,可以满足不同距离、不同应用场景下的通讯需求。
二、应用领域电力线路载波通讯广泛应用于电力系统中的各个环节,为电力系统的运行提供了重要的支持。
1.远程监控和控制电力线路载波通讯可实现对电力设备的远程监控和控制。
通过在电力线路上部署载波通信终端设备,可以对电力系统中的关键设备进行实时监测,并实现对其进行远程控制。
这种方式不仅提高了电力系统的运行效率,还减少了维护人员的工作量。
2.电力信息采集电力线路载波通讯广泛应用于电力信息采集系统中。
通过在电力线路上安装载波通信设备,可以实现对电量、功率因数等关键数据的采集。
这些数据可以帮助电力公司实时监测电力负荷,满足用户不同需求,并进行合理的电网调度。
3.智能电网随着智能电网的发展,电力线路载波通讯也越来越重要。
通过在电力线路上布设载波通信设备,可以实现对电力系统中各个环节的智能化管理。
智能电表、智能变电站等智能设备的使用,大大提高了电力系统的安全性和稳定性。
三、未来发展趋势电力线路载波通讯技术在未来还有很大的发展空间。
智能家居布线方式(电力载波、总线、无线)
智能家居布线方式(电力载波、总线、无线)智能家居介绍智能家居是指通过人工智能技术和物联网技术,对家庭各种设备进行集成控制,从而实现家庭自动化、智能化的生活体验。
智能家居系统包括家庭娱乐、照明、安防、环境控制、健康管理、家庭办公等各种场景,并通过手机、平板电脑等多种终端来控制和管理。
智能家居布线方式智能家居布线方式是指将各种设备进行有线或无线的连接和控制,其中最常用的有电力载波、总线、无线三种方式。
电力载波电力载波是指利用家用电线作为信道传输控制信号的一种方式。
具体是在电力公司提供的交流220V前点位置上,插入一块600HZ的载波滤波器,将信号叠加在交流电中传输,通过专门的载波信号接收器,可以控制家庭设备。
电力载波的优点是无需额外的布线,利用原有电线进行传输,节省了布线成本,可以在各个电器之间传输信号,操作方便。
但是电力载波的稳定性不够,如果家中有大功率电器,会造成干扰影响传输效果,另外电力载波的速度比较慢,难以支持高速数据传输。
总线总线是指通过一根线或多根线将控制信号传输到各个设备的一种方式。
总线可以分为三个部分:传输线、控制器和终端设备。
传输线指总线上用来传输数据的通道,控制器是总线上的数据交流中心,负责控制终端设备的通信和活动,终端设备是接收控制器信息的节点,通过终端设备可以对家电等设备进行控制。
总线的优点是速度快、传输稳定,支持大型智能家居系统,可以进行复杂的联动控制。
缺点是需要专业人员进行安装和调试,成本较高,同时可能存在单点故障的风险。
无线无线是指利用无线通信技术进行设备之间的传输和控制。
无线通信方式基本分为三种:红外线、蓝牙和Wi-Fi。
红外线主要用于遥控,不能支持联动,通讯距离和通讯角度都较为受限。
蓝牙通讯距离比较短,只能在同一个房间内进行通讯,但是耗电低,传输速度快,适合用于小型智能家居设备的控制。
Wi-Fi通讯是最常用的无线通讯方式,在家庭内部布线后,可以轻松连接各种智能家居设备。
载波通信技术及方案
载波通信技术及方案1.1.1技术特点配电线载波通信是一种利用配电线路进行信号的传输的传统的技术,其优点是具有投资小,见效快,是电力专网,灵活且安全。
10 kV配电载波通道的传输特性较恶劣,这表现在:(1)通道衰耗变化剧烈:与输电线路相比,10 kV通道虽然传输半径不大,大多不超过10km,但是,由于配电网在变电站侧一般不装设阻波器,变电站的各条出线实际上是总线型连接,引起的衰耗大。
另外10 kV线路状况复杂,架空线、地埋电缆特性阻抗相差很大,每公里衰耗值也相差许多,对于架空线、地埋电缆混合敷设的线路,衰耗情况更严重一些。
10 kV通道的衰耗特性是影响载波数据传输的重要原因。
(2)干扰严重:10 kV载波通道的干扰主要有背景噪声和尖脉冲干扰,其来源很多,设备开关切换产生的脉冲干扰、用电设备产生的噪声以及电力线耦合的外界电磁波等。
在这样恶劣的环境下进行数据传输,要保证实时性要求,必须要物理层调制技术及链路技术的协调配合,才能保证误码率的要求。
多年来载波技术并没在在配网通信中大规模的应用,主要的难点问题是:a)在速率在配网自动化应用中已经可以满足要求,但是可靠性不高;b)配电线路恶劣,造成通信误码;c)开关开合造成通信故障;d)线路拓扑结构的变化,载波机不能适应,从而带来运行维护上很多麻烦。
目前的配网载波技术在以下几个方面作多不少的改进:a)丰富耦合和中继的方式,减小线路中的开关开合对通信信道带来的影响。
b)设计性能优异的调制解调程序和模拟前端部件,提高物理层通信的可靠性。
c)通过网络协议的设计,提高通信的可靠性,延长通信的距离,适应网络拓扑结构以及线路情况的变化。
d)通过网管程序的设计,提高系统对于网络设备的配置管理和监测控制的能力。
目前使用于城市配网应用的载波技术主要是电缆屏蔽线载波通信,根据在上海供电局的配网方式调研中,可以看到目前电缆屏蔽线载波的应用效果还比较好。
具体建设规模可见附件二。
在佛山供电局的载波测试中选用了两家公司,分别是南瑞国网南京自动化研究院水情水调及环境监测研究所(以下简称南瑞水情所PLC-075)、许继昌南通信设备有限公司(以下简称许继西门子),并选用了这两家目前已有应用的产品。
青岛鼎信通讯有限公司 电力载波技术简介
电力线载波通信技术介绍1.电力线载波通信简要介绍通信:是指通过电力线作为载体来进行信息交互的过程。
包括发送和接收两个过程。
发送过程:●编码:将要传输的数据按照一定的规则进行重新组合,同时加入一些已知信息,这些信息成为冗余码,用于解码时纠错校验。
●交织:将信息能量按照固定的规则打散分布到不同的时段或频段的过程叫做交织。
交织的目的是尽量降低在连续一段时间或连续一个频段内的持续干扰给信息完整性的破坏程度,一位解码时对连续的误码是很难纠错的,容易造成误判。
●同步:同步是电力线载波通信的一个技术难点,其作用就是要发端加载一些不易误判的已知信息-----这些已知信息叫同步前导,接收端根据这些已知信息来确定发送数据的起始帧,这个过程就叫同步。
●调制:送的数字信号转换为适应模拟信道传输的信号的过程。
●滤波去带外干扰:为了降低对电网质量的影响,发送时要尽量抑制有效信号频带以外的能量,因此一般在功放前端都有抑制带外干扰的滤波器。
●功放:将调制出来的弱信号放大,以增加通讯距离。
●耦合:由于电力线是~220V强电,调制的信号不能直接加载到电力线上,因此必须通过电感或电容将通讯信号耦合到电力线上。
接收过程:●滤波:这里主要指模拟滤波,将带外的噪声滤掉便于接收处理。
●解调:将接收到的模拟信号转换为数字信息的过程。
●去交织:将分散到不同时域或频域上的能量,按照一定的规则还原,用于纠错解码。
●解码:就是将发送信息通过一定的规则还原的过程。
2.电力线通信的调制方式通信最基本的调制方式只有三种:AM(调幅)、FM(调频)、PM(调相)。
AM(调幅):以信号波形的幅度来定为“1”或“0”。
FM(调频):通过不同的载波频率来定为“1”或“0”。
PM(调相):通过不同的载波相位来定为“1”或“0”。
一般来说,电力线上电网谐波严重,经常会产生周期性“震荡波”,因此AM(调幅)方式是不适合用于电力线通信传输,目前大家在电力线通信主要采用FM(调频)和PM(调相)两种方式。
利用电力载波通讯实现物联网的信息传输的方法
利用电力载波通讯实现物联网的信息传输的方法【摘要】电力载波通讯是一种通过电力线传输数据的技术,在物联网中发挥着重要作用。
本文首先介绍了物联网技术的发展概况,并探讨了电力载波通讯在物联网中的应用。
接着详细解析了电力载波通讯的原理与特点,以及基于此技术的物联网数据传输技术。
还分析了电力载波通讯在智能家居、智慧城市和工业物联网中的具体应用场景。
结尾部分探讨了电力载波通讯在物联网中的优势和发展前景,指出未来的应用方向,并进行了总结。
通过本文的阐述,读者将更深入地了解电力载波通讯在物联网中的重要性和潜力。
【关键词】电力载波通讯、物联网、数据传输、智能家居、智慧城市、工业物联网、优势、发展前景、应用方向、技术发展1. 引言1.1 物联网技术的发展概况随着信息技术的不断发展,物联网技术逐渐成为人们生活中不可或缺的一部分。
物联网技术是指通过各种设备和物品之间的互联互通,实现信息的传递和数据的交换。
物联网技术已经深入到人们的生活和工作中,极大地改变了我们的生活方式和工作方式。
物联网技术的发展可以追溯到20世纪90年代,当时人们开始意识到使用传感器、无线通信和数据处理技术来实现设备之间的连接和数据交换是一种全新的方式。
随着技术的不断进步,物联网技术得到了迅速的发展并逐渐应用到各个领域。
目前,物联网技术已经广泛应用于智能家居、智慧城市、工业物联网等领域。
通过物联网技术,人们可以实现家居设备的智能控制,城市的智能管理以及工业设备的远程监控。
物联网技术已经成为推动社会进步和提高生活品质的重要力量。
未来,随着5G、人工智能等技术的发展,物联网技术将更加普及和深入各个领域,为人们的生活和工作带来更多的便利和效益。
希望通过不断的创新和发展,物联网技术能够更好地服务于人类社会,实现更大的社会价值。
1.2 电力载波通讯在物联网中的应用物联网技术的发展概况随着科技的不断进步,物联网技术已经开始逐渐走进人们的日常生活。
物联网技术的核心是实现物品之间的互联互通,让物品具备智能化和自动化的功能,从而实现更加便捷和高效的生活方式。
电力载波通讯简介
定义:电力载波通讯即PLC,是英文Power line Communication的简称。
电力载波是电力系统特有的通信方式,电力载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。
特点:最大特点是不需要重新架设网络,只要有电线,就能进行数据传递;调制解调模块的成本也远低于无线模块。
主要缺点:1、配电变压器对电力载波信号有阻隔作用,电力载波信号只能在一个配电变压器区域范围内传送;2、电力线对载波信号造成高削减。
实际应用中,当电力线空载时,点对点载波信号可传输到几公里。
但当电力线上负荷很重时,只能传输几十米。
应用领域:远程抄表系统,路灯远程监控系统等)以及工业智能化(比如各类设备的数据采集)。
在技术上,电力载波通讯不再是点对点通讯的范畴,而是突出开放式网络结构的概念,使得每个控制节点(受控设备)组成一个网络进行集中控制。
应用案例一:远程抄表系统(AMR)远程自动抄表(AMR)系统是智能控制网的重要应用之一。
它可以使电力供应商在提高服务质量的同时降低管理成本;并让用户有机会充分利用各种用电计划(如分时电价)来节省开支和享受多种便利。
系统功能特点:远程自动抄表、远程控制电表拉合闸、实时查询用户用电量、电表用量组抄或个别选择抄读可与收费系统联为一体、根据电网负载的峰谷时段分段电价、分时段抄表及计费、控制非法窃电行为、减少人力成本及管理成本、自动保存抄读的历史数据、统计电表数据,分析用电规律、估计线损和由电表计量误差引起的自损、配电系统评估、供电服务质量检测和负荷管理等应用案例二:远程路灯监控系统远程路灯监控系统利用电力载波技术通过已有电力线将路灯照明系统连成智能照明系统。
此系统能在保证道路安全的同时节省电能,并能延长灯具寿命以及降低运行维护成本。
系统功能特点:全天候24小时自动监控、单灯状态检测:电压、电流、开关、温度等、监控范围可达数公里、监控范围成倍增加、单灯故障状态自动上报、照明系统节能控制、各类故障或异常情况报警、多种报警方式供用户选择、远程报警信息送至控制中心或值勤人员手机、可与110等紧急呼救系统联网。
国内外低压电力线载波通信应用现状分析
国内外低压电⼒线载波通信应⽤现状分析国内外低压电⼒线载波通信应⽤现状分析1.概述电⼒线载波通信(PLC)是电⼒系统特有的、基本的通信⽅式。
早在20世纪20年代,电⼒载波通信就开始应⽤到10KV配电⽹络线路通信中,并形成了相关的国际标准和国家标准。
对于低压配电⽹来说,许多新兴的数字技术,例如扩频通信技术,数字信号处理技术和计算机控制技术等,⼤⼤提⾼和改善了低压配电⽹电⼒载波通信的可⽤性和可靠性,使得电⼒载波通信技术具有更加诱⼈的应⽤前景。
为此,美国联邦通信委员会FCC规定了电⼒线频带宽度为100~450kHZ;欧洲电⽓标准委员会的EN50065-1规定电⼒载波频带为3~148.5kHZ。
这些标准的建⽴为电⼒载波技术的发展做出了显著的贡献。
利⽤低压电⼒线来传输⽤户⽤电数据,实现及时有效收集和统计,是⽬前国内外公认的⼀个最佳⽅案。
低压电⼒线是最为⼴泛的⼀种通讯媒介⽹络,采⽤合适的技术充分⽤好这⼀现成的媒介,所产⽣的经济效益和⽣产效率是显⽽易见的。
在20世纪90年代,⼀些欧洲公司进⾏涉及电⼒线数据传输的试验,虽然最初实验效果好坏参半,通信技术的不断进步与互联⽹业务的蓬勃发展带动了电⼒线通信的显著增长。
在美国,弗吉尼亚州马纳萨斯市⾸次开始⼤范围部署PLC的服务,提供抄表、上⽹等业务,速率达到了10Mbps,费⽤为30美元/每⽉,在该地区已覆盖3.5万城市居民⽤户。
⽬前,摩托罗拉公司正在进⾏Powerline MU计划,该技术提⾼到⼀个新系统,摩托罗拉的系统只使⽤居民住宅⽅⾯的低压电⼒线传输,以减少天线效应。
摩托罗拉公司邀请美国⽆线电中继联盟参加与这些测试,甚⾄摩托罗拉在其总部安装了系统,初步结果⾮常乐观的展⽰了抗⼲扰特性。
该PLC技术仅⽤于最后电⽹分⽀向室内的⼀段进⾏数据传输,⽽信号通过⽆线电获取传到配电⽹节点,这就限制了从最后这⼀段到室内的信号对周围地区的⼲扰,实现了居民⽤户的电能数据采集。
在埃及,综合项⽬⼯程办公室(EOIP)部署了⼴泛的PLC技术应⽤在亚历⼭德⾥亚、法耶德和坦塔。
电力载波通讯技术-概述说明以及解释
电力载波通讯技术-概述说明以及解释1.引言1.1 概述电力载波通讯技术作为一种基于电力线路进行信息传输的技术,已经得到广泛的应用。
它通过利用电力线路作为传输介质,将信息通过高频信号的方式在电力线路上传输,从而实现远距离的信号传输。
电力载波通讯技术具有很高的实用性和经济性。
相比于传统的有线通信方式,如光纤、铜线等,电力载波通讯技术无需建设额外的通信线路,可以利用已有的电力线路进行信息传输,减少了建设成本和维护费用。
同时,电力线路普遍存在于城市和农村的各个角落,覆盖范围广,能够较好地满足信息传输的需求。
电力载波通讯技术在电力系统中的应用主要集中在两个方面。
首先,电力载波通讯技术可以实现对电力系统的监测和控制。
通过在电力线路上安装载波通讯设备,可以实时监测电力系统的运行状态,远程控制设备的开关状态,提高电力系统的稳定性和可靠性。
其次,电力载波通讯技术可以实现对用户的数据传输。
通过在电力线路上传输数据,可以为用户提供各类信息服务,如远程抄表、智能家居等。
尽管电力载波通讯技术具有广泛的应用前景,但它也存在一定的局限性。
首先,由于电力线路的物理特性,如损耗、干扰等,会对载波通讯信号的传输质量产生一定的影响。
其次,电力载波通讯技术传输距离受到限制,远距离的传输会面临信号衰减和延迟的问题。
此外,由于电力载波通讯技术需要共享电力线路资源,当多个设备同时使用时,可能会出现干扰和碰撞的情况。
然而,随着技术的进步和发展,电力载波通讯技术仍然具备良好的未来发展趋势。
在技术方面,通过提高调制解调技术的性能,减小系统的噪声和干扰,可以提高信号传输的质量和稳定性。
在应用方面,随着智能电网的建设和发展,电力载波通讯技术将发挥更加重要的作用,为实现电力系统的自动化、智能化提供基础支撑。
综上所述,电力载波通讯技术作为一种高效、经济的信息传输方式,在电力系统领域具有广泛的应用前景。
尽管存在一些限制,但随着技术的不断突破和应用场景的扩大,电力载波通讯技术有望迎来更加美好的未来。
PLC(电力线载波通讯)性能仿真检测
PLC(电力线载波通讯)性能仿真检测通过对用电信息采集设备采集方式、检测流程和方法进行分析研究,模拟采集系统现场实际运行工况,搭建采集设备载波芯片性能试验装置,对入网采集设备载波芯片性能进行综合评价。
通过文章的分析,希望对相关工作起到借鉴的作用。
标签:电力线;载波;采集设备;性能测试引言低压电力线载波抄表系统是低压电网通讯的一种重要应用。
由于低压电网线路的阻抗变化和噪声干扰十分复杂,常常使得抄表系统在实际运行中的抄收成功率很低。
因此,通过对用电信息采集设备采集方式、检测流程和方法进行研究,在相对理想的检测环境下对入网采集设备载波性能进行综合评价。
1 总体设计方案1.1 采集系统基本结构分析目前,全国范围内的居民客户用电信息采集主要采用集中器实现,集中器通过上行信道与抄表主站通信,通过下行信道抄读下面挂载的各种表计。
目前集中器的上行传输方式主要选用光纤专网、GPRS/CDMA/3G无线公网;下行传输方式主要采用RS485通信、电力线载波、微功率无线网络等方式。
1.2 总体设计方案为模拟采集系统实际运行工况,项目组对以上所采用的方案进行分析,简化得出采集系统简化结构,按照此结构进行电力线载波通讯性能仿真模块设计。
电力线载波通讯性能仿真模块总体采用模块化设计,总体设计方案结构如图1总体设计方案结构图所示。
图1 总体设计方案结构图2 PLC(电力线载波通讯)性能仿真检测载波信号的传输介质是低压电力线,电力线中存在载波信号干扰、噪声干扰、衰减、阻抗变化、信号畸变等影响,造成电力线载波通信难以实现100%的通讯成功率。
为了衡量不同厂商集中器载波通讯的质量,文章分析了低压电力线的仿真模型,提出采用模块化设计仿真模拟各种现场运行工况,在同一测试平台下对集中器的载波通讯性能进行综合评判,具体设计思路及方案如下:2.1 电力线长度仿真模块2.1.1 线路长度电路模型低压电力线是一种分布参数电路,电流在导线的电阻中引起了沿线的电压降,同时又在导线周围产生了变动的磁场,这个变动的磁场沿着全线产生感应电压。
电力线载波-Prime PLC技术简介
1.电力线载波电力载波通讯即PLC,是英文Power line Communication的简称。
电力载波是电力系统特有的通信方式,电力载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。
最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。
目前常见的且有国际标准/联盟支持的电力线载波通讯协议有2种-Prime or G3,这里先介绍Prime,G3另外开贴再表。
2. Prime 网络结构Prime的网络结构大体如下3. 物理层Prime协议没有免俗,使用了时下最流行的OFDM(正交频分复用)技术。
像G3 PLC或者更为大众所熟知的LTE,也都使用了OFDM这项技术。
关于OFDM的具体细则这里就不做展开了。
Prime PLC工作在42-89 kHz Band A or 100-500 kHz FCC(Prime 1.4新加入)以下以Band A为例子:物理层的OFDM调制工作在41.992kHz~88.867kHz,在这个频段上共有97个子载波(等距子载波)子载波的间隔Δf=0.488kHz(488.28125Hz)。
一个Prime OFDM symbol时间为1/Δf+192μs (循环前缀)=2240μs4. MAC层4.1 MAC FrameMAC Frame是Prime网络的立身之本,决定了各节点对Prime网络的使用MAC Frame的定义是–Time is divided into composite units of abstraction for channel usage。
MAC Frame在1.36和1.4中的定义分别如下4.1.1 CFPCFP-Contention Free Part: 在CFP period内只有被授权的节点才能使用网络关于CFP的时间1.36中CFP并不是一定需要的,可以为0,在1.4中CFP时间至少为(MACBeaconLength1 + 2 x macGuardTime)一般情况下CFP时间是通过CFP MAC control packet获得的,在1.4中CFP这种特权会在中继节点转发Beacon-Slot时获得。
低压电力线载波通讯技术浅析
低压电力线载波通讯技术浅析电力线载波通信是电力系统特有的一种通信方式,利用电力系统天然的网络资源,实现数据通讯,经济、便利,也有利于电力部门资产管理,具有投资少见效快,与电网建设同步等优点。
1.低压电力线信道特点低压配电网是为50Hz电能传输设计的,有许多不利于载波信号传输的因素,其中比较突出的是:●高衰减。
低压电力线上两个通信节点间距离越远,中间所连用电负载越多,信号衰减就越大。
用电负载的连接和断开也会导致信号衰减。
●大动态变化线路阻抗。
低压电力线上的输入阻抗与所传输的信号频率密切相关。
总体上,阻抗随着频率增加而增加,但某些局部会出现所谓的阻抗低谷区。
其原因是电力线连接的感性负载和容性负载与电力线组合成许多谐振回路,在谐振频率及其附近频率上形成低阻抗区,在局部频率段内阻抗随着频率增加而减小的现象,造成线路阻抗不连续。
这使电力线信道具有多径信道的特征,造成信号的多径传播。
电力线阻抗特性的变化加剧了载波信号的畸变和衰减。
●噪声。
低压电力线上的噪声种类很多,大致可归纳为:周期性脉冲噪声(由开关电源、可控硅整流器件等造成)、随机脉冲噪声、窄带噪声和有色背景噪声等,他们不是单纯的加性高斯白噪声,特别是前两类噪声的时变性强,当出现这些噪声时,功率谱密度会突然上升,对载波数据传输造成很大的误差。
另外还有诸如:三相电力线间信号损失较大(10~30dB);不同信号耦合方式对电力载波信号损失不同等现象。
2.低压电力线通讯技术由于低压电力线信道时变的特殊性,同时低压电力线载波信号对配电网/无线通讯网络也是一种噪声,其谐波系数不能高于相关的规定,这对电力线载波通信的调制、解调技术提出了更高的要求。
结合行业应用需求侧的要求,目前比较有实用价值的技术为:窄带过零正交扩频技术和高速OFDM技术。
窄带过零正交扩频技术特点:(1)利用低压电力线在过零的区间里,电网噪声相对最弱,网上干扰最小,阻抗一致性强的特点进行数据传输,大大提高了通信的稳定性和可靠性。
电力载波通信原理_电力载波通信的优缺点
电力载波通信原理_电力载波通信的优缺点电力线载波通信简介电力线载波通信(powerlinecarriercommunication)以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
载波通信方式(1)电力线载波通信。
这种通信具有高度的可靠性和经济性,且于调度管理的分布基本一致。
但这种方式受可用频谱的限制,并且抗干扰性能稍差。
(2)绝缘架空地线载波通信。
这种通信设备简单、造价低,可扩展电力线载波通信频谱,送电线路检修接地期间可以不中断通信,受系统短路接地故障影响较小,易实现长距离通信。
其缺点是易发生瞬时中断。
电力载波通信的优点只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小!电力线载波通信的缺点1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送;2、三相电力线间有很大信号损失(10dB-30dB)。
通讯距离很近时,不同相间可能会收到信号。
一般电力载波信号只能在单相电力线上传输;3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。
线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用;4、电力线存在本身因有的脉冲干扰。
目前使用的交流电有50HZ和60HZ,则周期为20ms 和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。
有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交。
高速电力载波通信原理概述
图1 OFDM系统原理图首先发送端输入串行数据,串并变换器将其变为N路并行信号,此时码元宽度变为NT;随后对各路信号进行基带调制,通过h快速傅里叶反变换将基带信号调制到各个子载波上;其次,通过数模转换将数字信号转为模拟信号发送;最后在接收端将接收到的各个子信号相加,得到OFDM信号,通过一系列反相变换得到原始数据。
在实际应用中,为了消除码间干扰,在OFDM信号中会加入保护间隔。
实现方法为将OFDM符号尾部长度为L的样品复制到本符号的前面,作为循环前缀用以间隔各符号。
接收端会丢弃符号开始的前缀部分,将剩余部分进行傅里叶变换,然后进行解调。
1.2 关键技术由于OPDM容易受到频率偏差与放大器线性度影响,故同步问题与非线性失真问题的解决是该技术实现的关键。
1.2.1 OFDM的同步问题图2 扩频系统原理图输入信息数据D,经过载波调制后变成了带宽为B的信号,再1有伪随机码调制成带宽为B的宽度信号后发射。
在接收端,首先通2图3 自适应滤波器一般结构示意图在未知环境中滤波器接收到一个信号x(k),该信号中可能包含有用信号与噪声等,通过一个参数可调的滤波器得到一个输出y(k),将y(k)与预期接收的信号即参考信号x(k)做比较得到信号误差e(k)。
最后将e(k)与对应的输入信号x(k)带入自适应算法,完成对滤波器参数的调整。
在自适应滤波过程中,滤波器参数以e(k)最小为目标不断变化,同时滤波器在工作工程中逐渐得出信号与噪声的统计规律,从而达到最佳滤波效果,实现自适应过程。
4 自适应均衡技术由于信道的非理想特性,信号在传播过程中会受到干扰,在接收端常常产生码间干扰,增加了系统误码率,严重时会是系统不能正常工作。
均衡器是一种可以校正补偿系统特性、减少码间干扰的滤波器,可以从时域及频域两个方面进行补偿:在频域校正称为频。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力载波通讯在中国电力载波应用大概有数据传输又名叫电力猫,多媒体传输视频音频等,指令传输各种抄表系统及智能家具。
此技术已不是什么新技术,但是在中国为什么没有看到其大规模的应用呢?更不说了大部分人听都没有听说过这个名词。
除了人们的接受需要时间外,还与中国电网的质量以及电力载波系统的成本还有比价大的关系.什么是电力载波技术?电力载波通讯即PLC,是Power line Communication的简称。
电力载波是电力系统特有的通信方式,电力载波通讯是指利用输电和供电的电力线,通过载波方式将模拟或数字信号进行高速传输的技术。
最大特点是不需要重新架设网络,只要有电线,就能进行数据传递[/B]。
[B]电力线传输的优点电力线遍布城市和乡村,其覆盖面是任何网络无法比拟的,有利于电力线通信(PLC)网络的推广。
PLC通过电力线传输数据,不需要增设更多的线路及设备,只需将调制解调器插入电力插座就可以通信,使用简单,成本低廉,有利于信息资源共享和家电上网。
PLC除了施工中的明显优势之外,在总体价格上也存在优势。
随着市场的发展,以前相对比较高的电力线上网价格在逐步的下降,目前PLC在单线成本上与xDSL、电缆调制解调器相当。
由于无线电通信易受地形和空间干扰的影响,而利用电力线通信刚好补充它的不足之处外,还可以节省资源,提高效益,降低辐射,更环保在速率上,电力线上网经过14Mb/s、85Mb/s,目前已经迎来了200Mb/s的时代。
将来还会有1GB/2GB/S问世。
200Mb/s的带宽足以满足以后数字家庭的安全、教育、娱乐等要求,是数字家庭理想的骨干网络。
但是电力线载波通讯有以下缺点,1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送;2、三相电力线间有很大信号损失(10 dB -30dB)。
当通讯距离很近时,不同相间可能会到收微小信号。
一般电力载波信号只能在单相电力线上传输;不同信号藕合方式对电力载波信号损失不同,藕合方式有接地藕合和线中线藕合。
线地藕合方式与线中线藕合方式相比,电力载波信号少损失十几dB,但线地藕合方式不是所有地区电力系统都适用;电力线存在本身因有的脉冲干扰。
目前使用的交流电有50HZ和[60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。
有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用;5、电力线对载波信号造成高削减。
当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。
实际应用中,当电力线空载时,点对点载波信号可传输到几公里。
但当电力线上负荷很重时,只能传输几十米。
电力线载波通信系统作为电力系统专用通信网中较广泛使用的传统通信产品,曾经在电力系统通信中占主导地位。
但近十年来,由于微波、光纤、卫星等通信手段的发展,而传统电力线载波机因技术水平限制,远不能满足现代电力系统通信要求。
在市场竞争日渐激烈的今天,各制造商为了得到较稳定的市场份额,在新产品开发方面,均不同程度地引入了当前通信领域中的一些新技术、新概念、新器件、新工艺,从而使这一传统的模拟通信系统从结构、性能、业务能力…等方面均有很大的改良。
其中结构的小型化、数字复用技术的应用、数字技术在高频调制/解调方面的革新是最引人注目的。
[/B]虽然我们有一些问题还没有完全的解决,但是科技飞跃进步,技术问题随着时间的发展,最终都能被解决被克服的以上技术问题是要慢慢来的,而当前[/B][B]电力线传输需要解决的是用户问题因为电力线网络设计的目的是为了传输电能只是因近些年来市场的需求才作为家庭网络的信息接入方式之一。
电力线传输所存在明显的缺点就是噪声大和安全性低的问题。
尽管电力线可以作为高速通信的一种备选介质,但电力系统的基础设备并不具备提供高质量数据传输服务的功能,家庭电器产生的电磁波会对通信产生干扰。
另外,采用电力线上网服务,是一种共享带宽的技术,用户上网时的速度,取决于当时会有多少用户上网。
如果很多用户同时上网,传输速度相对就较慢。
对于高速PLC技术的快速发展,各国反应不一致。
欧盟和美国政府已明确表示支持高速PLC技术的应用,把PLC跟其他通信技术同等对待。
日本要求高于10kHz频段的PLC设备必须得到许可,但在10~450kHz频段范围内的PLC设备无须获得许可,但需要进行公告。
目前我国信息产业部还没有制定PLC规范和颁发运营许可证。
但随着我国国民经济、科学技术水平的提高,特别是计算机技术、通信技术、网络技术、控制技术、信息技术的迅猛发展与提高,促使家庭实现了生活现代化,居住环境舒适化、安全化。
这些高科技已经影响到人们生活的方方面面,改变了人们生活习惯,提高了人们生活质量。
在我国,智能住宅这一概念推广较晚,但其发展的速度却很快,全国已建立了一些具有一定智能化功能的住宅和住宅小区。
不久的将来我国在这方面也会健全的电力线载波通讯技术可以进行模拟(语音信号)或数字信息(如:家居控制信号)双工传输,可广泛应用于家居自动化、小型办公室、家庭办公室通讯(如互联网、内部信件、游戏、音频(MP3、视频)等领域,具有普及效果、节省费用、安装方便、应用广泛等特点。
作为通讯技术的一个新兴应用领域,电力载波通讯技术以其诱人的前景及潜在的巨大市场而为全世界所关注,成为世界各大公司及研究单位争相研究的热点。
国外许多著名公司和研究单位都在对此进行研究,并开发出相对应的器件和产品,如:Intellon、ThomsonBAtmel[/B]等等。
而国内的许多的企业也紧随国际步伐在利用电力线传输信息,特别是在远程抄表系统方面已逐步形成应用研究的热点。
BTL功率放大器发布时间:2012-11-6 19:52:57 访问次数:364BTL是英文Balanced TransformerLess的简写,意为平衡式ECJ0EC1H390G无输出变压器。
BTL功率放大器是一种桥接式推挽电路。
BTL功率放大器基础知识1.电路结构及工作原理图2-60所示是BTL功率放大器的电路结构示意图。
这种功率放大器由两组功率放大器构成,扬声器BL1接在两组功率放大器的输出端之间。
同时,要给两个功率放大器输入大小相等、相位相反的信号。
这一电路的基本工作原理是:在输入信号U为正半周期间,输入信号-U为负半周,输入信号U经放大器l放大后从其输出端输出,这一输出信号在输出端为正半周信号。
与此同时,输入信号一“经放大器2放大后从其输出端输出,这一输出信号为负半周。
这样,流过扬声器BL1的电流方向为从上而下。
当输入信号变化了半周后,输入信号Ui为负半周,-U为正半周,这时两个输入信号经过各自的放大器放大后,放大器2输出端输出的是正半周信号,而放大器1输出端输出的是负半周信号,这时信号电流是从下而上地流过扬声器BL1,在BL1中得到了一个完整的信号。
2.电路特点BTL动率放大器与其他功率放大器相比,主要有下列一些特点。
(1)输出功率与OTL电路相比,在相同流工作电压+V和扬声器阻抗相等时,输出功率是OTL电路的4倍。
由此可知,BTL功率放大器的输出功率大,在较低直流工作电压下也能获得较大的输出功率,所以可以用于一些低压供电的机器中作为功率放大器。
(2)功放输出级所用元器件比OTL输出级电子工程师必备——九大系统电路识图宝典多一倍,即两组OTL(或两组OCL)电路才能组成一组BTL电路图1中的输入级的缓冲电路是阻抗变换用途,无论接入什么样的前级,都可以为主放大电路提供一组平衡式的稳定低输出阻抗信号,保证了主放大电路工作的稳定与增益的对称。
此缓冲器工作于无反馈状态,有必要使用性能优异的电路去减少对音质的影响。
本机采用了渥尔曼式的缓冲器。
主放大器由两个完全一样的放大器组成,每个放大器又分别由两个独立的放大器级联而成。
位于输入缓冲级后的是两个差动式电压反馈型的放大器,负责将输入信号(无论是否平衡信号)均重新处理为双端输出式的平衡信号,送入下一级的电流反馈放大器。
或许有读者会认为,从电路上看来,电流反馈放大器可以省去吧?是的,即使省去了电流反馈放大器,电路依然具有相当好的音质,但笔者经过了不少的试验与对比,觉得还是采用这个较复杂的方式音质表现更佳。
电流反馈放大器具有高速率低失真(包括令人讨厌的互调失真)的优点,而由电压反馈放大器与电流反馈放大器组成的电路,各自电路工作于最适合的方式下,再合理地分配增益,令各放大器均工作于低的闭环增益下,可以降低失真拓宽频响。
电流反馈放大器是一个简洁而性能相当好的电路,在本放大器输入级进行V/I转换后,不像其他一些电流反馈放大器一样使用电压放大级进行放大,而是使用一对上下对称的镜像电流传输电路。
在理想的情况下可以将V/I变换后的电流信号无损地输送到本级的输出端,而实际上,即使不能使用理想的器件,只要对所用器件进行一定程度的精确配对即可。
笔者对比过使用相同器件制作的金嗓子A60仿制线路,A60线路在电路结构上与本电路相近,只是在这一级使用的是渥尔曼式电压放大级,本电路声音显得更细腻平衡。
整个电流反馈放大器的开环电压增益取决于本级的负载(I/V)电阻与V/I电阻的比值,闭环增益只有11.5dB,因此整个平衡桥接电路的总增益在输入XLR平衡信号时为32dB,这是为了兼顾不平衡输入信号时的增益,因那时增益只有XLR平衡输入时的一半,即26dB。
电压反馈放大器是一个属于单级型的放大器,这种电路原来应用于马兰士的独门武器HDAM中,笔者对其小作修改,将开环增益降低到只有35dB,而闭环增益只有14.5dB,声音表现就更活泼一些。
此放大器处理的信号电平较低,因此可以使用±15V这样的低电压供电,三极管的功耗大大降低,可选取的型号更多,能够很容易选择到合适声音风格的三极管,低电压下噪声也会稍低。
输出级采用三级达林顿式,具有更高的输入阻抗,更低的输出阻抗。
在理论上,即使使用两级达林顿式输出级,电压增益级也可以充分地驱动,但音响是感性与理性的结合,音响制作有时不可单凭理论推导,还需要实际聆听及调整,在同样的电路器件状况下,笔者多次对比过两级达林顿与三级达林顿的听感差异,三级达林顿的表现具有更宽的两端延伸,低频下潜极佳,有更少的音染,表达不同速度的乐曲轻松自如。
而两级达林顿也有其优点,由于高低频延伸相对差,突出中频的韵味,低频量感稍少,容易获得结实、拳拳到肉的低频效果。
这并不代表两者孰劣孰优,爱好者可以根据自己的主观喜好去选择不同的方式,正是浓妆淡抹总相宜。
输出管的数量影响声音的厚度与平衡度,这不仅在于本电路,其他电路方式时也有同样的影响,当使用单对输出管时,声音相对稍单薄,低频量感、重量感不足,却凸显了中高频的韵味,这就是为什么有爱好者会认为一些欧洲产的小功率功放声音优美的原因。