人教新课标A版 高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样 同步测试C卷

合集下载

高中数学人教A版必修3目录_doc

高中数学人教A版必修3目录_doc

必修3
第一章算法初步
1.1算法与程序框图
1.1.1算法的概念(1课时)
1.1.2程序框图与算法的基本逻辑结构(3课时)
(程序框图与顺序结构,条件结构,循环结构与程序框图的画法)1.2基本算法语句
1.2.1输入语句、输出语句与赋值语句(1课时)
1.2.2条件语句(1课时)
1.2.3循环语句(1课时)
1.3算法案例(2课时)
(辗转相除法与更相减损术,秦九韶算法与进位制)
第二章统计
2.1 随机抽样
2.1.1 简单随机抽样(1课时)
2.1.2 系统抽样(1课时)
2.1.3 分层抽样(2课时)
(分层抽样,三种抽样方法的联系)
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(2课时)
(频率分布表与频率分布直方图,频率分布折线图与茎叶图)
2.2.2 用样本的数字特征估计总体的数字特征(2课时)
(众数、中位数、平均数,标准差)
2.3 变量间的相关关系(2课时)
(变量间的相关关系与散点图,线性回归方程)
第三章概率
3.1 随机事件的概率
3.1.1 随机事件的概率(1课时)
3.1.2 概率的意义(1课时)
3.1.3 概率的基本性质(1课时)
3.2 古典概型
3.2.1 古典概型(2课时)
(古典概型的定义,古典概型的计算)
3.2.2 (整数值)随机数(random numbers)的产生(1课时)
3.3 几何概型
3.3.1 几何概型(1课时)
3.3.2 均匀随机数的产生(1课时)。

高中数学第二章统计2.1随机抽样2.1.3分层抽样课件新人

高中数学第二章统计2.1随机抽样2.1.3分层抽样课件新人
2.1.3 分层抽样
考纲定位
重难突破
1.理解分层抽样的定义及其步骤. 2.掌握分层抽样的适用条件,能利
用分层抽样抽取样本.
重点:理解分层抽样的定义及其步 骤. 难点:分层抽样的适用条件,以及
利用分层抽样抽取样本.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理] 一、分层抽样的概念 在抽样时,将总体分成 互不交叉 的层,然后按照 一定比例 ,从各 层 独立地 抽取一定数量的个体,将各层取出的个体合在一起作为样 本,这种抽样方法是一种分层抽样.
36 n6,n3,n2,所以 n 应是 6 的倍数, 所以 n=6 或 12 或 18 或 36. 当样本容量为 n+1 时,总体中先剔除 1 人时还有 35 人,系统抽样间隔
为n3+51∈N+所以 n 只能是 6. [答案] 6
[错因与防范] 由3n6,n6,n3,n2∈N+求 n 时,n 的值有遗漏;n3+51∈N +易错写成n3+61∈N+.
3.有一批产品,其中一等品 10 件,二等品 25 件,次品 5 件.用分层
抽样从这批产品中抽出 8 件进行质量分析,则抽取二等品的件数应该为
________. 解析:总体容量 N=10+25+5=40,样本容量 n=8,故二等品被抽取
的个数,480×25=5. 答案:5
探究一 分层抽样的概念 [典例 1] 某企业共有 3 200 名职工,其中青、中、老年职工的比例为 3∶ 5∶2.若从所有职工中抽取一个容量为 400 的样本,则采用哪种抽样方法 更合理?青、中、老年职工应分别抽取多少人?每人被抽到的可能性相 同吗?
样本容量 为获取各层入样数目,需先正确计算出抽样比 k=总体容量,若 k 与某 层个体数的积不是整数时,可先将该层等可能性剔除多余个体.

人教A版高中数学必修3第2章 2.1.1 简单随机抽样

人教A版高中数学必修3第2章 2.1.1 简单随机抽样

随机数表法的方案设计
现有 120 台机器,请用随机数表法抽取 10 台机器,写出抽样过程. 【 精 彩 点 拨 】 已 知 N = 120 , n = 10 , 用 随 机 数 表 法 抽 样 时 编 号 000,001,002,…,119,抽取 10 个编号(都是三位数),对应的机器组成样本. 【尝试解答】 第一步,先将 120 台机器编号,可以编为 000,001,002,…, 119; 第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向, 例如选出第 9 行第 7 列的数 3,向右读;
抽签法的方案设计
要从某汽车厂生产的 30 辆汽车中随机抽取 3 辆进行测试,请选择合
适的抽样方法,并写出抽样过程. 【精彩点拨】 已知 N=30,n=3,抽签法抽样时编号 1,2,…,30,抽取
3 个编号,对应的汽车组成样本. 【尝试解答】 应使用抽签法,步骤如下: ①将 30 辆汽车编号,号码是 1,2,3,…,30; ②将 1~30 这 30 个编号写在大小、形状都相同的号签上; ③将写好的号签放入一个不透明的容器中,并搅拌均匀; ④从容器中每次抽取一个号签,连续抽取 3 次,并记录上面的编号; ⑤所得号码对应的 3 辆汽车就是要抽取的对象.
1.在简单随机抽样中,某一个个体被抽中的可能性( ) A.与第几次抽样有关,第一次抽中的可能性要大些 B.与第几次抽样无关,每次抽中的可能性都相等 C.与第几次抽样有关,最后一次抽中的可能性要大些 D.每个个体被抽中的可能性无法确定 【解析】 在简单随机抽样中,每一个个体被抽中的可能性都相等,与第
②随机数表法的步骤如下: (ⅰ) _编__号___. 将各个个体编号. (ⅱ) _选__定__初__始__值__(_数__)__. 为了保证所选数字的随机性,在查看随机数表前就 指出开始数字的横、纵位置. (ⅲ) __选__号__. 从选定的数字开始按照一定的方向读下去,得到的号码若不在 编号中或已被选用,则跳过,直到选满 n 个为止. (ⅳ) _确__定__样__本__. 按步骤③选出的号码从总体中找出与其对应的个体,组成 样本.

人教新课标A版高中数学必修3第二章统计2.1随机抽样2.1.1简单随机抽样同步测试C卷

人教新课标A版高中数学必修3第二章统计2.1随机抽样2.1.1简单随机抽样同步测试C卷

人教新课标A版高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样同步测试C卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) (2018高一下·南阳期中) 从随机编号为的1500名参加某次沈阳市四校联考期末测试的学生中,用系统抽样的方法抽取一个样本进行成绩分析,已知样本中编号最小的两个编号分别为,则样本中最大的编号应该是()A . 1466B . 1467C . 1468D . 14692. (2分)某学校高一年级有35个班,每个班的56名同学都是从1到56编的号码,为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是()A . 分层抽样B . 抽签抽样C . 随机抽样D . 系统抽样3. (2分) (2019高二上·钦州期末) 2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮,节目组为热心广众给以奖励,要从2018名观众中抽取50名幸运观众,先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样的方法抽取50人,则在2018人中,每个人被抽到的可能性()A . 均不相等B . 不全相等C . 都相等,且为D . 都相等,且为4. (2分) (2019高一下·南海月考) 某班有位同学,座位号记为.用如图的随机数表选取组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第列和第列数字开始.由左到右依次选取两个数字,则选出来的第个志愿者的座号是()A .B .C .D .5. (2分) (2019高一下·南阳期中) 某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A . 1000名学生是总体B . 每名学生是个体C . 每名学生的成绩是所抽取的一个样本D . 样本的容量是1006. (2分)要完成下列3项抽样调查:①从某班10名班干部中随机抽取3人进行一项问卷调查.②科技报告厅的座位有60排,每排有50个,某次报告会恰好坐满听众,报告会结束后,为了解听众意见,需要随机抽取30名听众进行座谈.③某高中共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了解教职工的文化水平,拟随机抽取一个容量为40的样本.较为合理的抽样方法是()A . ①简单随机抽样,②分层抽样,③系统抽样B . ①简单随机抽样,②系统抽样,③分层抽样C . ①系统抽样,②简单随机抽样,③分层抽样D . ①分层抽样,②系统抽样,③简单随机抽样7. (2分)(2014·湖南理) 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1 , P2 , P3 ,则()A . P1=P2<P3B . P2=P3<P1C . P1=P3<P2D . P1=P2=P38. (2分)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步人数a b c登山人数x y z其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的 .为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则应从高三年级参与跑步的学生中抽取()A . 15人B . 30人C . 40人D . 45人9. (2分) (2019高一上·太原月考) 某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A . 分层抽样法,系统抽样法B . 分层抽样法,简单随机抽样法C . 系统抽样法,分层抽样法D . 简单随机抽样法,分层抽样法10. (2分)现要完成下列3项抽样调查:①从10盒黑色水笔芯中抽取2盒进行质量检查.②天空影院有32排,每排有60个座位,《速度与激情7》首映当晚,恰好坐满了观众,电影结束后,为了听取意见,需要请32名观众进行座谈.③抚州市某中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.请问较为合理的抽样方法是()A . ①系统抽样,②简单随机抽样,③分层抽样B . ①简单随机抽样,②分层抽样,③系统抽样C . ①简单随机抽样,②系统抽样,③分层抽样D . ①分层抽样,②系统抽样,③简单随机抽样11. (2分) (2016高二上·孝感期中) 从一个含有40个个体的总体中抽取一个容量为7的样本,将个体依次随机编号为01,02,…,40,从随机数表的第6行第8列开始,依次向右,到最后一列转下一行最左一列开始,直到取足样本,则获取的第4个样本编号为()(下面节选了随机数表第6行和第7行)第6行84 42 17 56 31 07 23 55 06 82 77 04 74 43 59 76 30 63 50 25 83 92 12 06第7行63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38.A . 06B . 10C . 25D . 35二、填空题 (共2题;共2分)12. (1分)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________13. (1分) (2019高二上·内蒙古月考) 总体由编号为的个个体组成,利用随机数表(以下选取了随机数表中的第行和第行)选取个个体,选取方法是从随机数表第行的第列开始由左向右读取,则选出来的第个个体的编号为________;三、解答题 (共3题;共15分)14. (5分)因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?15. (5分)某校高一年级500名学生中,血型为O的有200人,血型为A的有125人,血型为B的有125人,血型为AB型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB型的抽样过程.16. (5分) (2017高二下·正定期末) 某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示.(1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定?(3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共2题;共2分)12-1、13-1、三、解答题 (共3题;共15分)14-1、15-1、16-1、16-2、16-3、。

山东省人教新课标A版高中数学必修3第二章统计2.1随机抽样2.1.2系统抽样同步测试

山东省人教新课标A版高中数学必修3第二章统计2.1随机抽样2.1.2系统抽样同步测试

山东省人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.2系统抽样同步测试姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)从学号为0~55的高一某班55名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A . 1,2,3,4,5B . 2,4,6,8,10C . 5,16,27,38,49D . 4,13,22,31,402. (2分)某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是()A . ①用简单随机抽样法;②用系统抽样法B . ①用分层抽样法;②用简单随机抽样法C . ①用系统抽样法;②用分层抽样法D . ①用分层抽样法;②用系统抽样法3. (2分)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A . 26,16,8B . 25,17,8C . 25,16,9D . 24,17,94. (2分) (2015高二上·安徽期末) 高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是()A . 8B . 13C . 15D . 185. (2分) 2011年3月11日,日本发生了9级大地震并引发了核泄漏。

某商场有四类食品,粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。

人教A版高中数学必修3第二章 统计2.1 随机抽样教案(1)

人教A版高中数学必修3第二章 统计2.1 随机抽样教案(1)

《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。

如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。

简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。

注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。

在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。

高中数学 人教A版必修3 第二章2.1 随机抽样 课件 付费

高中数学 人教A版必修3 第二章2.1  随机抽样 课件  付费

多维探究
题型三 抽签法与随机数法及应用
命题角度1 抽签法 例3 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小 组去参加救治工作,请用抽签法设计抽样方案. 解 方案如下: 第一步,将18名志愿者编号,号码为01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次不放回地取出6个号签,并记录上面的编号. 第五步,与所得号码对应的志愿者就是医疗小组成员.
从中任意取出1个零件进行质量检验后,再把它放回箱子里.
A.0
√B.1
C.2
D.3
(2)下列问题中,最适合用简单随机抽样方法抽样的是 A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐
满了听众,报告会结束后为听取意见,要留下32名听众进行座谈
√B.从10台冰箱中抽出3台进行质量检查
C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人, 教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为 20的样本
D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷, 现抽取农田48公顷估计全乡农田平均每公顷产量
反思感悟 简单随机抽样必须具备下列特点 (1)被抽取样本的总体中的个体数N是有限的; (2)抽取的样本是从总体中逐个抽取的; (3)简单随机抽样是一种不放回抽样; (4)简单随机抽样是一种等可能的抽样. 如果四个特征有一个不满足,就不是简单随机抽样.
题型二 简单随机抽样等可能性应用
例2 一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球, 3
则某一特定小球被抽到的可能性是___1_0__,第三次抽取时,剩余每个小球被 1

人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案

人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案

2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.。

人教新课标A版 高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样 同步测试B卷

人教新课标A版 高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样 同步测试B卷

人教新课标A版高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样同步测试B卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)有20位同学,编号为从1至20,现在从中抽取4人进行问卷调查,若用系统抽样方法,则所抽的编号可能为()A . 5,10,15,20B . 2,6,10,14C . 2,4,6,8D . 5,8,9,142. (2分) (2016高一下·汕头期末) 省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是()(如表是随机数表第7行至第9行)A . 105B . 507C . 071D . 7173. (2分)(2020·漳州模拟) 某公司决定利用随机数表对今年新招聘的800名员工进行抽样调查他们对目前工作的满意程度,先将这800名员工进行编号,编号分别为001,002,…,799,800,从中抽取80名进行调查,下图提供随机数表的第4行到第6行32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的编号是()A . 007B . 253C . 328D . 7364. (2分)(2017·渝中模拟) 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒肉夹谷56粒,则这批米内夹谷约为()A . 1365石B . 338 石C . 168石D . 134石5. (2分) (2018高二上·铜仁期中) 总体由编号为01,02,…,19,20的20个个体组成。

人教A版高中数学必修3《二章统计2.1随机抽样2.3分层抽样》优质课教案

人教A版高中数学必修3《二章统计2.1随机抽样2.3分层抽样》优质课教案

第二章统计2.1.3 分层抽样(第 1 课时)教学设计★教学目标知识与技能:正确理解分层抽样的概念,掌握分层抽样的一般步骤;过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决问题的方法;情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与精确性”的矛盾统一,培养学生的辩证唯物主义世界观与价值观★教学重难点重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本难点:利用分层抽样抽取样本时,确定各层的入样个体数目及相关的计算★教学过程一、复习回顾:【教师】1、什么是简单随机抽样?2、什么是系统抽样?问题:调查我校高二学生的平均身高,如何进行抽样?【学生】让学生回忆系统抽样的内容回答问题,并过度到本节课的内容.二、创设情境假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查。

(1) 你认为应当怎样抽取样本?(2) 为什么这样取各个学段的个体数?(3) 请归纳分层抽样的定义.(4) 其适用于什么样的总体?设计意图:通过创设问题情境,激发学生的兴趣三、新课讲解结果展示⑴分别利用系统抽样在高中生中抽取2 400 X 1%=24人,在初中生中抽取10 900 X 1%=109人,在小学生中抽取11 000 X 1%=110人.这种抽样方法称为分层抽样.(2) 含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.(3) 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.(板书)(4) 当总体个体差异明显时,采用分层抽样.注意:分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样.四、合作探究设计意图:分层抽样利用了调查者对调查对象实现掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具有代表性,在实际调查中被广泛应用•探究1 一个单位有职工500人,其中不到35岁的有125人,35岁至49 岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本•解:用分层抽样来抽取样本,步骤是:(1) 分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.1⑵确定每层抽取个体的个数.抽样比为 -,51在不到35岁的职工中抽125X —=25人;在35岁至49岁的职工中抽2805X 1 =56;在50岁以上的职工中抽95X 1 =19人.5 5(3) 在各层分别按抽签法或随机数表法抽取样本.(4) 综合每层抽样,组成样本.【教师】分层抽样的操作步骤是怎样的?【学生】分层抽样的操作步骤:第一步,将总体分成互不交叉的层•第二步,计算样本容量与总体的个体数之比(抽样比),按比例确定各层抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体•第四步,将各层抽取的个体合在一起,就得到所取样本•思考:在分层抽样中,若总体的个体数为N,样本容量为n,第i层个体数为k,则在第i层应抽取的个体数如何计算? - kN【教师】说明:(1)分层需遵循不重复、不遗漏的原则.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简单随机抽样进行.思考:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?调节样本容量,剔除个体.探究2某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+8仁163样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36 : 163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36:162=2: 9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

人教新课标A版 高中数学必修3 第二章统计 2.1随机抽样 2.1.2系统抽样 同步测试C卷

人教新课标A版 高中数学必修3 第二章统计 2.1随机抽样 2.1.2系统抽样 同步测试C卷

人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.2系统抽样同步测试C卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)(2018·栖霞模拟) 高三某班有学生人,现将所有同学随机编号并用系统抽样的方法,抽取一个容量为的样本.已知号,号,号学生在样本中,则样本中还有一个学生的编号为()A .B .C .D .2. (2分) (2018高二上·思南月考) 有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编()A . 5,17,29,41,53B . 5,12,31,39,57C . 5,15,25,35,45D . 5,10,15,20,253. (2分)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A . 26,16,8B . 25,17,8C . 25,16,9D . 24,17,94. (2分)从N个号码中抽n个号码作为样本,考虑用系统抽样法,抽样间距为()A .B .C .D .5. (2分) (2017高二上·长春期末) 为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔为()A . 50B . 60C . 30D . 406. (2分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A . 7B . 9C . 10D . 157. (2分)从2004名学生中抽取50名组成参观团,若采用下面的方法选取,先用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的概率是()A . 不全相等B . 均不相等C . 都相等,且为D . 都相等,且为8. (2分)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1、2、…、60,选取的这6名学生的编号可能是()A . 1,2,3,4,5,6B . 6,16,26,36,46,56C . 1,2,4,8,16,32D . 3,9,13 ,27,36,549. (2分)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A . 10B . 11C . 12D . 1610. (2分)(2017·广西模拟) 某校高二年级共有600名学生,编号为001~600.为了分析该年级上学期期末数学考试情况,用系统抽样方法抽取了一个样本容量为60的样本.如果编号006,016,026在样本中,那么下列编号在样本中的是()A . 010B . 020C . 036D . 04211. (2分) (2016高二上·淄川开学考) 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是()A . 14B . 13C . 12D . 1112. (2分)下列抽样实验中,最适宜用系统抽样的是()A . 某市的4个区共有2000名学生,且4个区的学生人数之比为3:2 :8 :2,从中抽取200人入样B . 从某厂生产的2000个电子元件中随机抽取5个入样C . 从某厂生产的2000个电子元件中随机抽取200个入样D . 从某厂生产的20个电子元件中随机抽取5个入样13. (2分)某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A . 简单随机抽样B . 系统抽样C . 分层抽样D . 非上述答案14. (2分) (2016高三上·焦作期中) 某校高三年级有1221名同学,现采用系统抽样方法舟曲37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有()A . 12人B . 11人C . 10人D . 9分15. (2分) (2017高二上·孝感期末) 抽取以下两个样本:①从二(1)班数学成绩最好的10名学生中选出2人代表班级参加数学竞赛;②从学校1000名高二学生中选出50名代表参加某项社会实践活动.下列说法正确的是()A . ①、②都适合用简单随机抽样方法B . ①、②都适合用系统抽样方法C . ①适合用简单随机抽样方法,②适合用系统抽样方法D . ①适合用系统抽样方法,②适合用简单随机抽样方法二、填空题 (共5题;共8分)16. (1分)一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是________.17. (1分) (2018高一下·新乡期末) 从编号为01,02,…,50的50个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为03,08(编号按从小到大的顺序排列),则样本中最大的编号是________.19. (1分) (2019高三上·柳州月考) 某中学采用系统抽样方法,从该校高三年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是42,则在第1小组1~16中随机抽到的数是________.20. (4分)已知某商场新进6000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.三、解答题 (共3题;共15分)21. (5分) (2018高二下·牡丹江月考) 某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:下面的临界值表供参考:0.150.100.050.0100.0050.0012.072 2.7063.841 6.6357.87910.828(参考公式:,其中)(1)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;(2)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?(3)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.22. (5分) (2018高一下·汕头期末) 已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.23. (5分)为了研究某种农作物在特定温度下(要求最高温度t满足:27℃≤t≤30℃)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验.现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D1 , D2 ,估计D1 , D2的大小?(直接写出结论即可).(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共8分) 16-1、17-1、19-1、20-1、三、解答题 (共3题;共15分) 21-1、21-2、21-3、22-1、22-2、22-3、23-1、。

[精品]新人教A版必修三高中数学数学人教A版必修3第二章《统计》教案和答案

[精品]新人教A版必修三高中数学数学人教A版必修3第二章《统计》教案和答案

2. 1.1简单随机抽样一、三维目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

三、教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。

(2)简单随机样本数n小于等于样本总体的个数N。

(3)简单随机样本是从总体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为n/N。

思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

二、抽签法和随机数法1、抽签法的定义。

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

【说明】抽签法的一般步骤:(1)将总体的个体编号。

新人教版高中数学必修三 第二章统计教案:2.1随机抽样

新人教版高中数学必修三 第二章统计教案:2.1随机抽样

2.1 随机抽样【知识要点】1. 总体、个体、样本、随机抽样等概念的理解a. 总体、个体:我们一般把所考察对象的某一数值指标的全体构成的集合看成总体,构成总体的每一个元素作为个体。

b. 从总体中随机抽取若干个体进行考察,这若干个个体构成的集合叫总体的样本。

c. 每一个个体被抽到的机会是均等的,满足这样的条件的抽样是随机抽样。

2. a. 简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

b. 常用的简单随机抽样方法:(1)抽签法:先把总体中的所有个体(共有N 个)编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,然后将这些号签放在一个容器里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取n次,就得到一个容量为n的样本。

(2)随机数表法:将总体中的个体编号,选定开始的数字,然后获取样本号码。

3.a. 系统抽样:将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一些个体,得到所需要的样本,这样的抽样叫做系统抽样。

b. 系统抽样的步骤:(1)编号(2)分段(3)确定起始个体编号(4)按照事先确定的规则抽取样本。

4. a. 分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样。

b. 分层抽样的操作步骤:(1)将总体按一定标准进行分层(2)计算各层的个体数与总体的个体数的比(3)按各层个体数占总体个体数的比确定各层应抽取的样本容量(4)在每一层进行抽样(可用简单随机抽样或系统抽样)5. 三种抽样方法的比较:简单随机抽样、系统抽样、分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会相等,体现了这些抽样方法的客观性和公平性。

人教A版高中数学必修3第二章 统计2.1 随机抽样课件(1)

人教A版高中数学必修3第二章 统计2.1 随机抽样课件(1)
随机数表法操作的步骤: 个体编号,任选一数,依次取号.
精品PPT
思考? 你认为随机数法有什么优点和缺点?当总体 中的个体数很多时,用随机数法方便吗?
随机数表法的优点与抽签法相同,缺点是当 总体容量较大时,仍然不是很方便,但是比 抽签法公平,因此这两种方法只适合总体容 量较少的抽样类型.
精品PPT
例1:某班有60名学生,要从中随机抽取10人参 加某项活动,如何采用简单随机抽样的方法抽取 样本?写出抽样过程.
精品PPT
假设你作为一名食品卫生工作人员, 探 要对某食品店内的一批小包装饼干进行 究 卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的 饼干作为检验的样本。(为什么?)那 么,应当怎样获取样本呢?
精品PPT
2.1.1简单随机 抽样
精品PPT
一、简单随机抽样的概念
定义:一般地,设一个总体含有N个个体,从中 逐个不放回地抽取n个个体作为样本(n≤N),如
解法1:(抽签法)将60名学生编号为01,02,…,60, 并做好大小、形状相同的号签,分别写上这60个数, 将这些号签放在一起,进行均匀搅拌,接着连续不放 回地抽取10个号签,这10个号签对应的人为所选.
解法2:(随机数表法)将60名学生编号为00, 01,…59,在随机数表中选定一个起始位置,如取第 21行第1个数开始,选取10个为34,30,13,55,40, 44,22, 26, 04, 33. 这10个号签对应的人为所选..
精品PPT
第三步,从选定的数7开始向右读(读数的方 向也可以是向左、向上、向下等),得到一个 三位数785,由于785<799,说明号码785在 总体内,将它取出;继续向右读,得到916, 由于916>799,将它去掉,按照这种方法继 续向右读,又取出567,199,507,…,依次 下去,直到样本的60个号码全部取出,这样我 们就得到一个容量为60的样本.

高中数学 第二章 统计 2.1 随机抽样(第2课时)课堂探究 新人教A版必修3(2021年最新整理)

高中数学 第二章 统计 2.1 随机抽样(第2课时)课堂探究 新人教A版必修3(2021年最新整理)

3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.1 随机抽样(第2课时)课堂探究新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.1 随机抽样(第2课时)课堂探究新人教A版必修3的全部内容。

必修31.系统抽样和简单随机抽样的区别与联系剖析:如表所示。

2剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,从而得到所需的样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.(1)若从容量为N的总体中抽取容量为n的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k,以便对总体进行分段.(2)当错误!是整数时,取k=错误!作为分段间隔即可,如N=100,n=20,则分段间隔k=错误!=5。

也就是将100个个体按平均每5个为1段(组)进行分段(组);(3)当错误!不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n整除,这时分段间隔k=N′n,如N=101,n=20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k=错误!=5,也就是说,只需将100个个体平均分为20段(组).(4)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.题型一如何选择系统抽样【例题1】下列问题中,最适合用系统抽样抽取样本的是()A.从10名学生中,随机抽取2名学生参加义务劳动B.从全校3 000名学生中,随机抽取100名学生参加义务劳动C.从某市30 000名学生中,其中小学生有14 000人,初中生有10 000人,高中生有6 000人,抽取300名学生以了解该市学生的近视情况D.从某班周二值日小组6人中,随机抽取1人擦黑板解析:A项中总体个体无差异,但个数较少,适合用简单随机抽样;同样D项中也适合用简单随机抽样;C项中总体中个体有差异不适合用系统抽样;B项中,总体中有3 000个个体,个数较多且无差异,适合用系统抽样.答案:B反思如果总体中个体满足下列条件,那么可用系统抽样抽取样本:①总体中个体之间无差异;②总体中个体数较多.题型二系统抽样的应用【例题2】某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本.请用系统抽样的方法进行抽取,并写出过程.分析:按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.解:按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是:(1)编号:按现有的号码.(2)确定分段间隔k=5,把295名同学分成59组,每组5人;第1段是编号为1~5的5名学生,第2段是编号为6~10的5名学生,依次下去,第59段是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设编号为l (1≤l≤5).(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本编号为3,8,13,…,288,293.反思解决系统抽样问题的两个关键步骤为:(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样同步测
试C卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分) (2018高一上·新余月考) 已知某地区中小学生人数如图所示,用分层抽样的方法抽取名学生进行调查,则抽取的高中生人数为()
A .
B .
C .
D .
2. (2分)已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()
A . 30
B . 36
C . 40
D . 无法确定
3. (2分) (2019高二上·钦州期末) 某中学共有1000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()
B . 25
C . 30
D . 35
4. (2分) (2016高二上·东莞开学考) 一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()
A . 12,24,15,9
B . 9,12,12,7
C . 8,15,12,5
D . 8,16,10,6
5. (2分) (2016高一下·九江期中) 某单位有业务人员120人,管理人员24人,后勤人员16人.现用分层抽样的方法,从该单位职工中抽取一个容量为n的样本,已知从管理人员中抽取3人,则n为()
A . 20
B . 30
C . 40
D . 50
6. (2分) (2018高二下·长春开学考) 某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为的样本,其中高中生有24人,那么等于()
A . 12
B . 18
C . 24
7. (2分)某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为()
A . 60
B . 80
C . 120
D . 180
8. (2分) (2015高二上·葫芦岛期末) 为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()
A . 50
B . 45
C . 40
D . 20
9. (2分) (2018高三上·凌源期末) 某工厂生产甲、乙、丙三种不同型号的产品,产品的数量分别为:460,350,190.现在用分层抽样的方法抽取一个容量为100的样本,下列说法正确的是()
A . 甲抽取样品数为48
B . 乙抽取样品数为35
C . 丙抽取样品数为21
D . 三者中甲抽取的样品数最多,乙抽取的样品数最少
10. (2分) (2016高二上·秀山期中) 某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是()
B . 10
C . 12
D . 15
11. (2分)某地区300家商店中,有大型商店30家,中型商店75家,其余的为小型商店,为了掌握各商店的营业情况,要从中抽取一个容量为40的样本.若采用分层抽样的方法,则抽取的中型商店数是()
A . 4
B . 5
C . 10
D . 26
12. (2分)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级高二年级高三年级
跑步人数a b c
登山人数x y z
其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的 .为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则应从高三年级参与跑步的学生中抽取()
A . 15人
B . 30人
C . 40人
D . 45人
13. (2分)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽
取一个容量为150的样本,则样本中松树苗的数量为()
A . 30
B . 25
C . 20
D . 15
14. (2分)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是()
A . 6,12,18
B . 7,11,19
C . 6,13,17
D . 7,12,17
15. (2分) (2018高一下·开州期末) 某学院对该院名男女学员的家庭状况进行调查,现采用按性别分层抽样的方法抽取一个容量为的样本,已知样本中男学员比女学员少人,则该院女学员的人数为()
A .
B .
C .
D .
二、填空题 (共5题;共6分)
16. (1分)(2012·天津理) 某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18 所学校,中学中抽取________所学校.
17. (1分) (2017高一下·西华期末) 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出________人.
18. (1分) (2016高二上·河北开学考) 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.
19. (2分)为了解某市甲、乙、丙三所学校高三数学模拟考试成绩,采取分层抽样方法,从甲校1400份试卷、乙校640份试卷、丙校800份试卷中进行抽样调研.若从丙校800份试卷中抽取了40份试卷,则这次高三共抽查的试卷份数为________
20. (1分)(2018·河北模拟) 某乡镇中学有初级职称教师160人,中级职称教师30人,高级职称教师10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为________.
三、解答题 (共3题;共15分)
21. (5分) (2018高二上·阜城月考) 为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,
(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及均值.
22. (5分)一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求抽取的轿车中,B类轿车的数量;
(2)求z的值;
(3)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.
23. (5分) (2018高二下·葫芦岛期末) 某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:
(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.
0.150.100.050.0250.0100.0050.001
2.072 2.706
3.841 5.024 6.6357.87910.828
注:
参考答案一、单选题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共5题;共6分)
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共3题;共15分)
21-1、
21-2、
22-1、
22-2、22-3、
23-1、23-2、。

相关文档
最新文档