锂电池发鼓胀气和爆炸原因分析简易版

合集下载

锂电池胀气原因分析

锂电池胀气原因分析

锂电池胀气原因分析通过郭工了解到:1、锂电池胀气可能与水分控制有关;(通过周工了解到我们目前生产水分控制除了手套箱湿度达不到要求,其他均能达到要求)2、与正极配方有关;(通过周工了解到,与配方无关,与配方材料有关)3、与化成工序有关,包括排气不彻底与水分为烘干;(通过周工及相关资料了解到,化成与分容过程中,对其时间和湿度控制均有关,并且该过程是重中之重。

)通过网络及相关资料查询了解:1、锂电池出现胀气现象与正极过冲有关,正极过冲会引起电化学反应,从而产生气体;2、电池在使用与搁置过程中,电池不断的形成\消耗SEI膜会产生助负极成膜类气体,这时也会出现胀气现象,但该现象会在几次充放电循环中恢复正常;(可加入成膜性能稳定的添加剂,如碳酸亚乙烯酯VC, VC是一种不稳定的化合物,在锂离子电池的首次充电过程中氧化电位较低的VC几乎完全分解,电解液中加入少量VC添加剂,改善了石墨电极表面SE I膜的性能)3、当预充-化成不够完全时,也会出现胀气现象;(需要严格控制化成时间)4、锰酸锂电池存在胀气现象与电解质本身组成也有关系;因现缺乏相关经验与相关资料,所以对于以上每一条更深的原因(如为什么与组成或材料有关,有哪些关系?),我需要在今后工作学习中来逐渐总结。

工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。

前面已经介绍了引起T op s ealing、Side s ealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以T op sealing 和Degassing居多,T op sealin g主要是T ab位密封不良,D egassing 主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。

封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。

2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。

锂电软包电池气鼓、硬鼓原因!

锂电软包电池气鼓、硬鼓原因!

软包锂电池胀气的原因聚合物锂离子电池芯採用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外观如何,电池芯的使用性能(Capacity、Cycle life、C-rate等)会发生严重的失效,导致电池芯不能使用。

胀气会发生在生产过程中也会在客户甚至最终用户手中。

当然,电池芯在化成启动或Baking过程中会正常的产生一定量(一般很少)的气体,这根据所使用的原材料而异,这种气体在Degassing工序会被抽掉。

目前部分Model(一次封装成型电池芯)通过添加V18溶剂来消除这种SEI层形成、相介面稳定时所产生的气体。

但是由于工序异常所产生的气体在Degassing前表面非常明显或者Degassing后产生不能再消掉或者添加V18也不能消除。

这里简要介绍工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。

前面已经介绍了引起Top sealing、Side sealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以Top sealing 和Degassing居多,Top sealing主要是Tab位密封不良,Degassing 主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。

封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。

2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。

3.角位破损,由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔作用。

可以在角位加皱纹胶或热熔胶缓解。

并且在顶封后的各工序禁止拿气袋移动电池芯,更要注意操作方式防止老化板上电芯池的摆动。

4.电池芯内部水含量超标,前面我们已经介绍过对电池芯内水含量有一定的要求,一旦水含量超标,电解液会失效在化成或Degassing后产生气体。

常见锂电池爆炸原因及避免措施

常见锂电池爆炸原因及避免措施

常见锂电池爆炸原因及避免措施锂电池的爆炸主要是由于电池内部发生异常热失控而引起的。

锂电池爆炸的主要原因可以归纳为以下几个方面:过充、过放、短路、挤压、高温环境和材料缺陷等。

首先,过充是导致锂电池爆炸的一个主要原因。

当电池在充电时,如果电池内部的温度过高,或者充电电压超过了电池的耐受范围,就会导致电池内部的化学反应失控,产生大量的热量。

这种热量不能及时散发出去,就会导致电池内部的压力骤然增大,进而导致电池爆炸。

其次,过放也是导致锂电池爆炸的一个重要原因。

在使用过程中,如果将锂电池放电到超低电压,会导致锂电池内部的化学反应异常失控。

这种失控会导致电池内部的温度迅速升高,压力骤增,进而引发爆炸。

另外,短路也是引发锂电池爆炸的一个常见原因。

短路是指电池的正、负极之间发生电流直接流通的现象。

当锂电池内部的正、负极由于其中一种原因直接接触,电流就会被短路通路直接通过。

这会导致电池产生过高的电流,进而产生过热,引发电池爆炸。

此外,如果锂电池在使用或运输过程中受到挤压,也会引发锂电池爆炸。

当锂电池被挤压时,电池内部的隔膜和电池皮膜有可能被破坏,正、负极之间产生短路,从而引发温度升高和电池爆炸。

高温环境也是锂电池爆炸的一个重要因素。

当锂电池处于高温环境下,电池的内阻会明显降低,这样会导致电池放电速度加快,从而产生过多的热量,进而引发爆炸。

此外,锂电池的材料缺陷也会导致爆炸。

例如,如果电池内部的材料质量不合格,或者电池的外包装存在缺陷,就容易导致电池内部的化学反应失控,从而引发爆炸。

为了避免锂电池的爆炸,可以采取以下一些措施。

首先,选购正规品牌的锂电池,避免购买假冒伪劣产品。

其次,避免过充过放,控制好充电和使用电池的电压和时间。

再次,避免电池短路,比如避免不当、过于紧密的存放。

此外,要避免电池受到挤压和高温环境,尽量避免在高温环境中长时间使用和存放锂电池。

最后,应定期检查锂电池的状态,如有变形、漏液等异常情况应及时更换电池。

锂电池为什么会鼓胀气或者发生爆炸?

锂电池为什么会鼓胀气或者发生爆炸?

本文摘自再生资源回收-变宝网()锂电池为什么会鼓胀气或者发生爆炸?一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为 4.2V。

锂电芯放电时也要有电压下限。

锂电池鼓包产气

锂电池鼓包产气

锂电池鼓包产气锂电池作为目前主流的电池技术之一,在众多电子设备中得到了广泛应用。

然而,锂电池虽然具有高能量密度、长寿命等优点,但其也存在一些问题,其中之一就是鼓包产气的现象。

本文将就锂电池鼓包产气的原因、影响以及解决方法进行探讨。

我们需要了解什么是锂电池鼓包产气。

简单来说,锂电池鼓包产气指的是锂电池在使用过程中,电池内部产生气体,导致电池外壳膨胀、变形甚至爆炸的现象。

产生这种现象的原因主要有以下几点:1.电池内部结构问题:锂电池内部由正负极、隔膜和电解液组成,如果电池内部结构设计不合理,或者隔膜材料不符合要求,就容易导致电池内部产生气体积聚。

2.充放电过程中的化学反应:锂电池在充放电过程中,正极和负极之间会发生氧化还原反应,这些反应可能会产生气体,当气体不能及时排出时,就会导致电池鼓包。

3.过度充放电:如果电池在充电时过度充电,或者在放电时过度放电,就会导致电池内部产生气体积聚,进而引起鼓包产气。

锂电池鼓包产气不仅会影响电池的正常使用,还可能对人身安全造成威胁。

鼓包的电池外壳可能会在充放电过程中发生破裂,导致电解液泄漏,甚至引发火灾或爆炸。

因此,及早发现并解决锂电池鼓包产气的问题是非常重要的。

针对锂电池鼓包产气问题,可以采取以下措施进行解决:1.优化电池结构设计:改进电池内部结构,提高隔膜材料的质量,以减少气体积聚的可能性。

2.控制充放电过程中的温度:合理控制充放电过程中的温度,避免温度过高或过低,以减少气体产生的可能性。

3.严格控制充放电过程:合理控制充放电的电流和电压,避免过度充放电,以减少气体积聚。

4.加强电池质量检测:在生产过程中,严格把控电池的质量,确保每一颗电池都符合质量标准,以减少鼓包产气的风险。

5.合理使用和储存锂电池:在使用锂电池时,避免过度使用或过度充放电,同时在储存锂电池时,要注意避免长时间存放和高温环境。

锂电池鼓包产气是锂电池技术面临的一个重要问题。

了解产生鼓包产气的原因,并采取相应的解决措施,可以有效减少鼓包产气的风险,提高锂电池的安全性和可靠性。

锂电池爆炸原理(图文参照)

锂电池爆炸原理(图文参照)

一、锂电池为什么有安全性问题1、内部短路是如何形成的:锂离子电池的最大的隐患是应用钴酸锂的锂离子电池在过充的情况下(甚至正常充放电时),锂离子在负极堆积形成枝晶,刺穿隔膜,形成内部短路。

2、产生大电流:外部短路,内部短路将产生几百安培的过大电流i. 外部短路时,由于外部负载过低,电池瞬间大电流放电。

在内阻上消耗大量能量,产生巨大热量。

ii. 内部短路,主要原因是隔膜被穿透,内部形成大电流,温度上升导致隔膜熔化,短路面积扩大,进而形成恶性循环3、气体是哪里来的:锂离子电池为达到单只电芯 3 - 4.2V 的高工作电压(镍氢和镍硌电池工作电压为 1.2V ,铅酸电池工作电压为 2V ),必须采取分解电压大于 2V 的有机电解液,而采用有机电解液在大电流,高温的条件下会被电解,电解产生气体,导致内部压力升高,严重会冲破壳体4、燃烧是如何发生的:热量来源于大电流,同时在高电压(超过 5V )情况下,正极锂的氧化物也会发生氧化反应,析出金属锂,在气体导致壳体破裂的情况下,与空气直接接触,导致燃烧,同时引燃电解液,发生强烈火焰,气体急速膨胀,发生爆炸。

5、聚合物电池是否会有安全性问题:聚合物电池与锂离子电池的区别在于电解液为胶状、半固态,锂离子电池电解液为液态。

所以,聚合物电池可以使用软包装,在内部产生气体时,可以更早的突破壳体,避免气体聚集过多,产生激烈涨裂。

但聚合物电池并没有从根本上解决安全性问题,同样使用钴酸锂和有机电解液,而且电解液为胶状,不易泄漏,将会发生更猛烈的燃烧,燃烧是聚合物电池安全性最大的问题。

二、如何解决大容量锂电池的安全性问题锂离子电池的安全性问题,并不是外围问题,而是一个基于材料技术的本质问题。

在材料技术上取得突破:1、选择安全的正极材料,目前的正极有钴酸锂和锰酸锂两种量产的材料产品。

钴酸锂在小电芯方面是很成熟的体系,由于钴酸锂在分子结构方面( LiCo )的特点:充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶是采用钴酸锂材料的电池过充时必然的结果,甚至在正常充放电过程中,也有可能会有多余的锂离子游离到负极形成枝晶。

深度剖析锂离子电池鼓胀原因

深度剖析锂离子电池鼓胀原因

深度剖析锂离子电池鼓胀原因锂离子电池由于具有高寿命、高容量被广泛推广使用,但是随着使用时间的延长,其存在鼓胀、安全性能不理想和循环衰减加快的问题也日益严重,引起了锂电界深度的分析和抑制研究。

根据实验研发经验,笔者将锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。

在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。

一、电极极片厚度变化在锂电池使用过程中,电极极片厚度会发生一定的厚度变化,尤其是石墨负极。

据现有数据,锂电池经过高温存储和循环,容易发生鼓胀,厚度增长率约6%——20%,其中正极膨胀率仅为4%,负极膨胀率在20%以上。

锂电池极片厚度变大导致的鼓胀根本原因是受石墨的本质影响,负极石墨在嵌锂时形成LiCx(LiC24、LiC12和LiC6等),晶格间距变化,导致形成微观内应力,使负极产生膨胀。

下图是石墨负极极片在放置、充放电过程中的结构变化示意图。

石墨负极的膨胀主要是嵌锂后产生不可恢复膨胀导致的。

这部分膨胀主要与颗粒尺寸、粘接剂剂及极片的结构有关。

负极的膨胀造成卷芯变形,使电极与隔膜间形成空洞,负极颗粒形成微裂纹,固体电解质相界面(SEI)膜发生破裂与重组,消耗电解液,使循环性能变差。

影响负极极片变厚的因素有很多,粘接剂的性质和极片的结构参数是最重要的两个。

石墨负极常用的粘接剂是SBR,不同的粘接剂弹性模量、机械强度不同,对极片的厚度影响也不同。

极片涂布完成后的轧制力也影响负极极片在电池使用中的厚度。

在相同的应力下,粘接剂弹性模量越大,极片物理搁置反弹越小;充电时,由于Li+嵌入,使石墨晶格膨胀;同时,因负极颗粒及SBR的形变,内应力完全释放,使负极膨胀率急剧升高,SBR处于塑性变形阶段。

这部分膨胀率与SBR的弹性模量和断裂强度有关,导致SBR的弹性模量和断裂强度越大,造成不可逆的膨胀越小。

详解锂离子电池鼓胀原因

详解锂离子电池鼓胀原因
2
一、电极极片厚度变化
石墨负极膨胀影响因素及机理讨论 锂离子电池在充电过程中电芯厚度增加主要归结为负极的膨胀,正极膨胀率仅为 2~4%。负极通常由石墨、粘接剂、导电碳组成,其中石墨材料本身的膨胀率达到 ~10%,造成石墨负极膨胀率变化的主要影响因素包括:SEI膜形成、荷电状态 (state of charge,SOC)、工艺参数以及其他影响因素。
(4)其他因素 粘接剂的粘接强度(粘接剂、石墨颗粒、导电碳以及集流体相互间界面的粘 接强度),充放电倍率,粘接剂与电解液的溶胀性,石墨颗粒的形状及其堆积密度,以及 粘接剂在循环过程失效引起的极片体积增加等,均对阳极膨胀有一定程度的影响。
5
膨胀率计算: 膨胀率计算用二次元测量阳极片X、Y方向尺寸,千分尺测量Z方向厚度,在冲片以 及电芯满充后分别测量。
11
图5 铜箔厚度和涂布质量不同时阳极的膜膨胀率变化
图6 不同厚度铜箔的应力-应变5种不同类型的石墨进行实验(见表2),涂布质量0.165g/1,540.25mm2,压实 密度1.6g/cm3,铜箔厚度8μm,其他条件相同,实验结果如图7所示。从图7(a)可 以看出,不同石墨在X/Y方向膨胀率差异较大,最小0.27%,最大1.14%,Z方向膨胀率 最小15.44%, 最大17.47%, X/Y方向膨胀大的,在Z方向膨胀小,同2.2节分析的结 果一致。其中采用A-1石墨的电芯出现严重变形,变形比率20%,其他各组电芯未出 现变形,说明X/Y膨胀率大小对电芯变形有显著影响。
图2 阳极在不同方向的膨胀率
8
阳极片冷压时,阻力最小的方向为MD方向(极片的Y方向,如图3所示),应力在MD方向更容易释 放,而TD方向(极片的X方向)阻力较大,辊压过程应力不易释放,TD方向应力较MD方向大。故 导致电极片满充后,X方向膨胀率大于Y方向膨胀率.另一方面,压实密度增大,极片孔隙容量 降低(如图4所示),当充电时,阳极膜层内部没有足够的空间吸收石墨膨胀的体积,外在表现 为极片整体向X、Y、Z三个方向膨胀。从图2(c)、(d)可以看出,涂布质量从0.140g/1, 540.25mm2增大到0.190g/1,540.25mm2,X方向膨胀率从0.84%增大到1.15%,Y方向膨胀率 从0.89%增大到1.05%,Z方向膨胀率趋势与X/Y方向变化趋势相反,呈下降趋势,从16.02%降低 到13.77%。说明石墨阳极膨胀在X、Y、Z三个方向呈现此起彼伏的变化规律,涂布质量变化 主要体现在膜层厚度的显著变化。以上阳极变化规律与文献结果一致,即集流体厚度与膜 层厚度比值越小,集流体中应力越大。

锂电池发鼓胀气和爆炸原因分析详细版

锂电池发鼓胀气和爆炸原因分析详细版

文件编号:GD/FS-6355(安全管理范本系列)锂电池发鼓胀气和爆炸原因分析详细版In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.编辑:_________________单位:_________________日期:_________________锂电池发鼓胀气和爆炸原因分析详细版提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。

,文档所展示内容即为所得,可在下载完成后直接进行编辑。

一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

干货丨锂离子电池鼓胀分析

干货丨锂离子电池鼓胀分析

干货丨锂离子电池鼓胀分析来源:《电源技术》杂志锂离子电池具有能量密度高,体积小的优点[1],近年来,随着4G 的普及,5G的到来,对于锂离子电池的要求更加苛刻,锂离子电池朝着更高能量密度、更快的充电速度发展。

然而能量越高,其危险性就越大,近年来社会上发生的锂电池安全事故越来越多,2018年~2019年上半年一共发生了60多起纯电动汽车起火事故,导致16万辆纯电动汽车召回[2],手机鼓胀、起火、爆炸的事故更是频发。

本文以一款客户投诉电池(简称客诉电池)的分析为切入点,研究该电池的起鼓原因,并实验模拟手机日常使用中可能存在的失效情况,并分析其机理。

实验1.1 客诉电池分析对客诉电池进行电压内阻测试,根据电池编码进行系统查询,判断其出厂是否合格;对其进行充放电测试,判定是否可以正常进行充放电,判断电性能是否正常;测试气体成分,拆解进行电感耦合等离子体光谱分析法(ICP)、扫描电子显微镜法(SEM)测试,分析其失效原因。

1.2 过放模拟实验采用6组电池,每组3只,以0.5 C、0.1 C、0.01 C、0.001 C分别将电池放电至3、2、1、0.5、0.2、0 V,放电后休眠1 h,再继续进行后续放电,观察是否鼓胀产气,拆解进行SEM、ICP分析;对放电至3与2.5 V的电池进行长期存储,观察其是否产气,测试其低压下长期存储电压内阻的变化情况。

1.3 高温浮充模拟实验采用4组电池,每组3只,分别进行45、60、70 ℃浮充,60 ℃ (4.2~4.4 V)循环充电,测试其厚度变化,观察鼓胀产气情况,测试气体成分,拆解进行SEM、ICP分析。

1.4 设备与仪器充放电设备采用ARBIN;电压内阻测试设备采用BK-300内阻测试仪;气体成分采用津岛质联用仪GCMS-2010测试;形貌采用扫描电子显微镜JSM-6510测试;微量金属元素含量采用电感藕合等离子体发射光谱仪 Optima 8000DV测试。

结果与分析2.1 客诉电池分析检测客诉电池六面外观(图1),未发现存在破损、腐蚀现象,排除封装破损导致电池起鼓。

浅析锂电池火灾事故的主要原因及对策

浅析锂电池火灾事故的主要原因及对策

浅析锂电池火灾事故的主要原因及对策锂电池作为重要的化学电池,因其比能量高、电压高、无记忆效应、充放电寿命长、环境污染小等优点而广泛用于手机、数码相机、电动自行车、电动汽车以及航空航天等领域。

近年来,随着锂电池在生活中的普及应用,火灾爆炸事故却频频发生,造成严重的人员伤亡和财产损失,因而锂电池的使用安全越来越受到全社会的关注。

锂电池除正常的充放电的电化学反应之外,还存在一些副反应,这些副反应大多会产热。

当电池内部的产热速率大于散热速率时,电池内部温度会不断升高,产生更多的热和气体产物,电池进入无法控制的自加温状态,电池就会发生燃烧甚至爆炸。

这种现象成为热失控,锂电池发生燃烧或爆炸就是由于热失控引起的,而引起锂电池热失控的因素有很多,其中主要原因包括三个:短路(内部短路和外部短路)、过充和电池内在因素。

一是短路因素。

如果电池受到针刺、撞击等外部冲击导致电池内具有保护作用的SEI膜被击穿,电池则会发生短路。

一旦发生短路,其正极的热分解反应及其他放热反应也会随之发生,使电池的温度快速升高,电解液发生汽化,引发热失控而引起火灾爆炸。

二是过充因素。

当使用非原装充电器,或者充电器运行不正常的情况下,对电池进行充电可能会导致电池的温度上升。

当电池过度充电时,一般电池内都会有一个过充电的保护电路IC,但是在实际应用中,由于设计、管理、工艺等因素会导致保护的IC失效,电池会继续充电,过充后电池内部会发生内部短路,从而引起火灾爆炸事故。

三是电池内在因素。

内在因素主要包括电池结构的设计、产品质量控制等。

电池芯如果结构设计不合理、材料选择不当或者工艺控制不好,在充电过程中容易出现电解液气化、电极短路和电池过热而发生火灾爆炸。

而如果在生产过程中发生电解液注入量不足、焊接密封性差导致漏气、正负极片壳壁偏厚未达工艺要求、密封性差导致吸水,会影响产品的质量而引发火灾。

根据应急管理部消防救援局2022年1月20日发布的2021年全国消防救援队伍接处警与火灾情况数据显示,2021年共接报电动自行车及其电池故障引发的火灾近1.8万起,亡57人。

锂离子电池气胀原因探讨

锂离子电池气胀原因探讨
的极片厚度。
2 结果与讨论
2. 1 过充电产气测试及机理分析
所制备的锂离子电池在过充电测试时,电压和表面温度
随时间的变化曲线见图 1。
6 μm 厚的铜箔( 苏州产,99. 8%) 表面,涂覆速度为( 15 ± 2)
m / min,温度 75 ~ 92 ℃ ,辊压至 132 μm 厚,再进行分切和制
charge. When the w( Co) of the anode of the overcharged battery exceeded 0. 1%,there were more alkanes composition generated in
the gas, indicating that gas was generated through decomposition of the cathode and the destruction and re-repair of the solid

[1]
的关注。 目前,我国锂离子电池技术的发展仍面临能量密度
失效分析可在高性能电池的开发过程中起到反馈作用,促进
电池的开发研究。 相对于国外长期的积累和发展,国内电池
( 如高温、浮充电、短路、过充电、过放电、振动、挤压和撞击
产品体积的制,电芯的鼓胀对用于智能终端的锂离子电池
及相应用电产品的寿命和安全性能有较大影响。 在过充电、
关键词:锂离子电池; 气胀; 失效; 过充电; 过放电; 浮充
中图分类号:TM912. 9 文献标志码:A 文章编号:1001-1579(2021)03-0261-05
Discussion on the causes of Li-ion battery swelling
HU Li-na1 ,SUN Shan-shan2∗ ,YUE Juan1 ,DU Chen-shu1

锂电池发鼓胀气和爆炸原因分析

锂电池发鼓胀气和爆炸原因分析

锂电池发鼓胀气和爆炸原因分析standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

软包锂电池胀气原因及措施

软包锂电池胀气原因及措施

软包锂电池胀气原因及措施软包装锂离子电池稍有气胀现象就会影响用电器使用,降低电池性能,严重时将会撑破包装铝箔,造成漏液腐蚀危险。

本文结合生产实际,分析气胀的类型和产生的可能原因,并提出解决方案,供大家参考。

一、气体产生的类型软包装锂离子电池气体的产生分为正常产气和异常产气两种。

正常产气是指在电芯生产工艺过程中的化成工序,SEI膜的形成过程中伴随产生的,常称为化成产气。

此种气体一般可暂时存放于气袋中,并于后续工序中排出,对电芯不产生明显影响。

异常产气是指,当气袋切除,封装完成后,由于电池内部发生异常造成气体量过多,此种情况下气体不能排出,引起电芯鼓胀,影响用电器使用,且会对电芯造成性能恶化。

当内部压力过大时,容易撑开包装铝箔,造成漏液、腐蚀等严重损害。

因此了解电芯整个产气过程,防止异常产气发生是软包装锂离子电池生产的关键。

1化成产气化成产气是指在电芯制造工艺过程的化成工序,也即电池的首次充电过程中,电解液在电极表面发生了氧化、还原反应,形成固体电解质膜(SEl膜)时伴随着产气;中国电子科技集团公司第十八研究所的陈益奎等研究了正极、负极产气量对比与气体成分分析,得出电池出化成阶段产气主要集中在电池负极。

厦大宝龙电池研究所的黄丽等人详细研究了不同化成电压下,所产生的气体种类和数量。

研究结果表明,在2.5V以下,产气主要为H2和C02;2.5V以后,EC少量开始分解,产物主要为C2H4;3V后,电解液中DMC和EMC开始分解,产气除了C2H4夕卜,还包含CH4和C2H6等烷羟;电压超过3.8V,EC分解的产物C2H4基本消失。

电压在3.0~3.5V,化成过程产气量最大,表明在3.5V时,为SEl 膜的主要成膜区。

SEI膜离子导通电子不导通,在结构上由两层组成,内层为致密稳定的无机层,外层为多孔疏松的有机层,厚度在2nm到几十纳米之间,外层有机产物层,具有一定的柔韧性,可以提高整个膜层的机械强度和完整性,有效阻隔溶剂分子在电极表面持续的还原反应,因此,3.5V以后由于SEI膜的阻隔作用,产气基本完成,产气量迅速下降。

锂离子电池浮充测试的鼓胀原因分析及改善_李慧芳

锂离子电池浮充测试的鼓胀原因分析及改善_李慧芳

片,配以新鲜隔膜,以锂作为对电极,补充电解液,分别制作半
电池,用电化学工作站进行交流阻抗测试。
由图 3 中电化学交流阻抗频谱(EIS)数据可知:发生鼓胀 的电池,负极的 SEI 膜阻抗和充电转移阻抗均远远大于正极, 据此判断在负极上发生的反应较多,沉积物多,从而导致阻抗
500
450
Cathode
Anode
本文针对该项测试要求进行了电池浮充实验对于发生鼓胀的电池从内部产气成分正负极变化隔膜变化等方面进行了深入分析并根据分析结果提出了改善建议进一步以实验进行了验证
研究与设计
锂离子电池浮充测试的鼓胀原因分析及改善
李慧芳, 高俊奎, 李 飞, 黄家剑 (天津力神电池股份有限公司,天津 300384)
摘要:对浮充测试中发生鼓胀的锂离子电池进行了深入分析,对电池产气成分、正负极阻抗、晶体结构、隔膜形貌及孔隙 等情况进行了检测,结果表明:在浮充过程中,溶剂及添加剂在嵌锂负极表面发生还原反应,同时 SEI 膜发生不断的重 整及修复反应,这些反应产物沉积到负极表面及隔膜孔隙内,导致靠近负极面的隔膜孔隙堵塞甚至贯穿,一旦沉积物刺 穿隔膜,即引起正负极微短路,导致 SEI 膜的溶解和溶剂的氧化,释放出大量 CO2,电池厚度迅速鼓胀。通过更换 Gurley 值高的隔膜可显著改善电池的浮充性能,原因在于在发生相同程度副反应的情况下,Gurley 值高的隔膜可穿透性差,不 易被沉积物刺穿发生微短路。 关键词:锂离子电池;浮充;鼓胀 中图分类号:TM 912 文献标识码:A 文章编号:1002-087 X(2013)12-2123-04
近年来,锂离子电池在便携式电子产品和通讯工具中得 到广泛应用,在电动工具、电动汽车等动力电源方面的应用也 在日益扩大。随着人们对锂离子电池认识程度的加深,其安全 性能已经成为生产厂家和大众关注的焦点。锂离子电池在滥 用条件下(如高温、短路、过充放、振动、挤压和撞击等)容易 出现冒烟、着火甚至爆炸等情况。当前对锂离子电池过充、过 放及热稳定性的研究较多[1-3],而对于浮充测试的研究较少。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.编订:XXXXXXXX20XX年XX月XX日锂电池发鼓胀气和爆炸原因分析简易版锂电池发鼓胀气和爆炸原因分析简易版温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。

文档下载完成后可以直接编辑,请根据自己的需求进行套用。

一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。

当电芯电压低于2.4V时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。

锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。

一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。

但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。

要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

二、电池爆炸原因:1、内部极化较大;2、极片吸水,与电解液发生反应气鼓;3、电解液本身的质量,性能问题;4、注液时候注液量达不到工艺要求;5、装配制程中激光焊焊接密封性能差,漏气.测漏气漏测;6、粉尘,极片粉尘首先易导致微短路,具体原因未知;7、正负极片较工艺范围偏厚,入壳难;8、注液封口问题,钢珠密封性能不好导致气鼓;9、壳体来料存在壳壁偏厚,壳体变形影响厚度;三、爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。

此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。

消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。

其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。

电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

四、设计规范由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。

由于,电路板的故障率一般都远高于一亿分之一。

因此,电池系统设计时,必须有两道以上的安全防线。

常见的错误设计是用充电器(adaptor)直接去充电池组。

这样将过充的防护重任,完全交给电池组上的保护板。

虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。

电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。

常见的电池充电系统方块图如下,包含充电器及电池组两大部分。

充电器又包含适配器(Adaptor)及充电控制器两部分。

适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。

电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

五、文字方块: 适配器交流变直流文字方块: 充电控制器限流限压文字方块: 充电器文字方块: 保护板过充、过放过流等防护文字方块: 电池组文字方块: 限流片文字方块: 电池芯以手机电池系统为例,过充防护系利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。

第二道防护是保护板上的过充防护功能,一般设定为4.3V。

这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。

过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。

由于过放电只会发生在电子产品被使用的过程。

因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。

当电子产品侦测到供电电压低于3.0V时,应该自动关机。

如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。

总之,电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。

其中保护板是第二道防护。

把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。

结果,劣币驱逐良币,市面上出现了许多劣质充电器。

这使得过充防护失去了第一道也是最重要的一道防线。

而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。

在有些情况下,电池组内也会有充电控制器的设计。

例如:许多笔记型计算机的外加电池棒,就有充电控制器。

这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。

因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。

另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。

电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。

由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。

而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

该位置可填写公司名或者个人品牌名Company name or personal brand name can be filled in this position。

相关文档
最新文档