第二章电力系统元件

合集下载

第二章 电力系统元件参数和等值电路

第二章 电力系统元件参数和等值电路

由上两式可见,这时线路始端、末端乃至线路上任何一点 的电压大小相等,功率因数都等于1。而线路两端电压的相位差 则正比于线路长度,相应的比例系数就是相位系数β。 超高压线路大致接近于无损线路,在粗略估计它们的运行 时,可参考上例结论。例如,长度超大型过300km的500kV线 路,输送的功率常约等于自然功率1000MV,因而线路末端电 压往往接近始端,同样,输送功率大于自然功率时,线路末端 电压将低于始端;反之,输送功率小于自然功率时,线路末端 电压将高于始端。
I1
.
k
r
k
x
I2
(2-37)
U1
.
j kb B 2
j kb B 2
U2
图2-8 长线路的简化等值电路
注意,由于推导式(2-37)时,只用了双曲函数的前三项, 在电力线路很长时,该式就不适用了,应直接使用式(2-33)、 (2-34)。反之,电力线路不长时,这些修正系数都接近于1, 就不必修正了。
第二章 电力系统元件参数和等值电路
间漏抗最大,因此短路电压百分数Uk(1-2)(%)最大,而Uk(2-3)(%)、Uk(1-3)(%)都 较小。)
降压结构的绕组,从绕组最外层至铁心的排列顺序为:高 压绕组、中压绕组和低压绕组。(由于高、中压绕组间隔最远,二者
这样便可套用双绕组变压器求电阻的公式,得出三绕组变压 器每个绕组的电阻为 2 2 2 U P k1 N U P UN P k 33 RT1 3 2 (2-48) R T 2 k 23 2N 2 R T3 10 S N 10 S N 10 S N 对于三个绕组的容量比为100/50/100时,制造厂家给出每对绕 组间的短路损耗是:Pk(1-3)为2绕组开路,1-3绕组作短路试验时的 额定损耗;而Pk’(1-2)、Pk’(2-3)则为在2绕组流过它本身的额定电流 IN2=0.5IN时的短路损耗。因此应将Pk’(1-2)、Pk’(2-3)归算到对应于变

电力系统分析第二章

电力系统分析第二章



2-2 架空输电线的等值电路
电力线路的数学模型是以电阻、电抗、电纳和电导来表 示线路的等值电路。 分两种情况讨论: 1) 一般线路的等值电路 一般线路:中等及中等以下长度线路,对架空线 为300km;对电缆为100km。 2)长线路的等值电路 长线路:长度超过300km的架空线和超过100km的电 缆。
I
2
T
YI I

y 20
k k k (k 1) k (k 1)YT ZT ZT ZT
2
(1 k)YT
k (k 1)YT
1)
电力网络中应用等值变压器模型的计算步骤:
有名制、线路参数都未经归算,变压器参数则归在低 压侧。
有名制、线路参数和变压器参数都已按选定的变比归 算到高压侧。 标幺制、线路和变压器参数都已按选定的基准电压折 算为标幺值。
三、三相电力线路结构参数和数学模型
输电线路各主要参数(电阻、电抗、电纳、电导 等)的计算方法及等效电路的意义
*.电力网络数学模型
1、标幺值
1)标幺值=有名值(实际值)/基准值; 2)在标幺制下,线量(如线电流、线电压等) 与相量(如相电流、相电压等)相等,三相与单 相的计算公式相同
3)对于不同系统采用标幺值计算时,首先要 折算到同一基准下。
S B 3U B I B U B 3I B ZB Z B 1 / YB
Z B U / SB
2 B
YB S B / U
2 B
I B S B / 3U B
功率的基准值=100MVA
电压的基准值=参数和变量归算的额 定电压
三. 不同基准值的标幺值间的换算
V X (有名值) =X (N)* SN

电力系统各元件的数学模型

电力系统各元件的数学模型

推导过程:从1-1’,2-2’之间等值,将导纳支路拿出去
ZT 1:k
I1 1 I2 k
U2
k
U1
I1
ZT
1 I1
U1
ZT
1:k I2
2 U2
I1
U1 ZT
U2
1’
ZT k
U1 (y10
y) 12
2’
U2
y 12
I2
U1 ZT k
U2 ZT k2
U1 y12
U2 (y20
y) 12
§2.5 电力系统的等值电路
一些常用概念
1. 实际变比 k
k=UI/UII UI、UII :分别为与变压器高、低压绕组实际 匝数相对应的电压。 2. 标准变比kN
• 有名制:归算参数时所取的变比 • 标幺制:归算参数时所取各基准电压之比
3. 非标准变比 k* k*= k /kN=UIIN UI /UII UIN
U
U UB
I S Z
I IB S SB Z ZB
P jQ SB
R jX ZB
P SB R ZB
j
Q SB
P
jQ
j
X ZB
R
jX
§2.5 电力系统的等值电路
2、基准值的选取 1) 基准值的单位与对应有名值的单位相同 2) 各种量的基准值之间应符合电路的基本关系
SB 3 UB IB UB 3 IB ZB
§2.5 电力系统的等值电路
四、电力系统的等值电路制订
1、决定是用有名值,还是用标幺值
容量不相同时 2、变压器的归算问题
电压等级归算
采用Γ型和T型 采用π型—不归算
3、适当简化处理

第二章 电力系统元件参数和等值电路详解

第二章 电力系统元件参数和等值电路详解

(2-2)
( / km)
其中:
t — 导线实际运行的大气温度(oC);
rt,r20 — t oC及20 oC时导线单位长度的电阻;
— 电阻温度系数。
铝, = 0.0036;铜, = 0.00382
第二章 电力系统元件参数和等值电路
(2)电抗
1)单导线每相单位长度的电抗 x1
x1
2f
(4.6 lg
第二章 电力系统元件参数和等值电路
第二章 电力系统元件参数和等值电路
第二章 电力系统元件参数和等值电路
第一节 电力线路参数和等值电路 第二节 变压器参数和等值电路 第三节 发电机和负荷的参数及等值电路 第四节 电力网络的等值网络
第二章 电力系统元件参数和等值电路
第一节 电力线路参数和等值电路
一、电力线路结构
(<31.5) (<18.8)
铝、铜的电阻率略大于直流电阻率,有三个 原因:
(1)交流电流的集肤效应; (2)绞线每股长度略大于导线长度; (3)导线的实际截面比标称截面略小。
注:在手册中查到的一般是20oC时的电阻或电阻率, 当温度不为20oC时,要进行修正。
rt r20[1 (t 20)]
第二章 电力系统元件参数和等值电路
(Dab、Dbc、Dca分别为导线AB、BC、CA相之间的距离)
将 f = 50 Hz,μr=1代入下式:
x1
2f
(4.6 lg
Dm
r
0.5
r)104 ( / km)
x1
0.1445 lg
Dm
r
0.0157( /
km)
经过对数运算,上式可写成:
x1
0.1445lg

第二章电力系统各元件的数学模型

第二章电力系统各元件的数学模型

试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk (12)
P' k (12)
IN 0.5IN
P 4 ' k (12)
2
Pk ( 23)
P' k (23)
IN 0.5IN
P 4 ' k ( 23 )
3) 对于(100/100/50)
2
Pk (13)
P' k (13)
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
一次整循环换位:
A B
C
换位的目的:为了减 少三相参数的不平衡
§2.3 电力线路的参数和数学模型
Xd
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧
转子绕组: Eqn ife 励磁电流为限—F园弧 Xd
原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12) (%) k(13) (%) (%) k(23)
XT1
Uk
1(%
)U2 N
100SN
U U U U 1 k2 (%) 2
k(12) (%) k(23) (%) (%) k(13)

第2章 电力系统稳态分析_电力系统各元件的特性和数学模型

第2章 电力系统稳态分析_电力系统各元件的特性和数学模型
k U 1N : U 20 U 1N : U 2 N
第二节 变压器的参数和数学模型
两绕组变压器的 Γ 型等值电路与参数计算公式
2 2 Pk U N Uk % UN ,X T RT 2 SN 100 S N P0 I0 % SN GT 2 ,BT 2 U 100 U N N k U 1 N / U 2 N
~ S (U d jU q )(I d jI q ) (U d I d U q I q ) j(U q I d U d I q )
P U d I d U q I q Q U q I d U d I q
从而
第一节 发电机组的运行特性和数学模型
P0 GT 2 1000 UN
第二节 变压器的参数和数学模型
3. 变比 k 定义为一次额定电压与二次空载电压之比,可由 空载试验测得或由变压器铭牌查得。 安装在高压绕组上; 对应于额定电压的抽头为主抽头,其余抽头的 电压相对额定电压偏离一定值;
变压器的实际变比=对应于实际 抽头位置的一 次电压与二次电压之比。
一型
第二节 变压器的参数和数学模型
特点:
增加传输能力 减少功率损耗
S 3UI
S L 3I 2 Z ZS 2 / U 2
减少电压降落
3ZI Z S/ U dU


类型:
单相、三相 两绕组、三绕组 普通、自耦 普通、有载调压、加压调压
第二节 变压器的参数和数学模型
一、双绕组变压器的参数和数学模型
1 U 1ZT 1 NhomakorabeaYT
ZT 2
2
ZT 3
3
U 3
U 2
第二节 变压器的参数和数学模型

电力系统各元件的特性参数和等值电路

电力系统各元件的特性参数和等值电路

第二章 电力系统各元件的特性参数和等值电路 主要内容提示:本章主要内容包括:电力系统各主要元件的参数和等值电路,以及电力系统的等值网络。

§2-1电力系统各主要元件的参数和等值电路一、发电机的参数和等值电路一般情况下,发电机厂家提供参数为:N S 、N P 、N ϕcos 、N U 及电抗百分值G X %,由此,便可确定发电机的电抗G X 。

按百分值定义有100100%2⨯=⨯=*NNGG G U S X X X 因此 NNG G S U X X 2100%⋅= (2—1) 求出电抗以后,就可求电势G E •)(G G G G X I j U E •••+=,并绘制等值电路如图2-1所示。

二、电力线路的参数和等值电路电力线路等值电路的参数有电阻、电抗、电导和电纳。

在同一种材料的导线上,其单位长度的参数是相同的,随导线长度的不同,有不同的电阻、电抗、电导和电纳。

⒈电力线路单位长度的参数电力线路每一相导线单位长度参数的计算公式如下。

⑴电阻:()[]201201-+=t r r α(Ω/km ) (2—2) ⑵电抗:0157.0lg1445.01+=rD x m(Ω/km ) (2—3) 采用分裂导线时,使导线周围的电场和磁场分布发生了变化,等效地增大了导线半径,从而减小了导线电抗。

此时,电抗为nr D x eq m 0157.0lg1445.01+=(Ω/km ) 式中m D ——三相导线的几何均距;(a ) G ·(b )G ·图2-1 发电机的等值电路(a )电压源形式 (b )电流源形式eq r ——分裂导线的等效半径;n ——每相导线的分裂根数。

⑶电纳:6110lg 58.7-⨯=rD b m(S/km ) (2—4)采用分裂导线时,将上式中的r 换为eq r 即可。

⑷电导:32110-⨯=UP g g∆(S/km ) (2—5)式中g g ∆——实测的三相线路的泄漏和电晕消耗的总功率, kW/km ; U ——实测时线路的工作电压。

【电力系统分析】第02章(1-2节) 电力系统各元件的等值电路和参数计算

【电力系统分析】第02章(1-2节) 电力系统各元件的等值电路和参数计算
29
本节学习要求
熟记计算公式和公式中各参数的含义、单 位。
学会查表计算线路等值参数电阻、电抗、 电导和电纳。
30
2-2 架空输电线路的等值电路
一、输电线路的方程式
长线的长度范围定义 架空线路:>300km 电缆线路:>100km
31
2-2 架空输电线路的等值电路
长线等值电路
z0 r0 jL0 r0 jx0 y0 g0 jC0 g0 jb0
影响因素:m1:材料表面光滑程度
m2:天气状况系数 空气的相对密度
2.89 103
p
材料半径
273 t
分裂情况
25
对于水平排列的线路,两根边线的电晕临界电压 比上式算得的值搞6%;而中间相导线的则低4%。
Vcr
49.3m1m2 r
lg
D r
kV
增大导线半径是减小电晕损耗的有效方法 220kV以下线路按照免电晕损耗选择导线半径 220kV以上采用分裂导线。
1
I 1
2
V 2
shl
Z c
2c
I Z chl 2c
36
ห้องสมุดไป่ตู้
将上述方程同二端口网络的通用方程相比 可得:
V1
AV
2
B
I2
I1 C V 2 D I2
A
D
ch
l,
B
Zc
sh
l和C
=
sh
Zc
l
输电线就是对称的无源二端口网络,并可用
对称的等值电路来表示。
37
线路的传播常数和波阻抗
对于高压架空线输电线
lg Deq r
(S/km)
• 分裂导线

第二章电力系统元件参数和等值电路

第二章电力系统元件参数和等值电路
n:分裂导线的分裂根数 req:分裂导线的等值半径
二分裂导线 req rd
三分裂导线 req 3 rd 2
四分裂导线 2020/4/26 req 4 r 2d3
3.架空线路的电纳 Y=G+jB 1)单导线每相单位长度的电纳
b1
7.58 lgDm
*106(s/km)
r
r:导线的半径(单位 cm或mm)
2020/4/26
二、电力线路的参数
1.有色金属导线架空线路的电阻
r1 s
铝 31.5.mm 2/km 铜 18.8.mm 2/km
2020/4/26
2.有色金属导线架空线路的电抗
是由于导线中通过交流电时,在导线周围产 生交变磁场而形成的 1)单导线每相单位长度的电抗
x10.14l4gD r5m0.01( 5/7 km )
线路电压不同,每串绝缘子的片数也不同。规程规定:对35kv 线路,不得少于3片;60kv不得少于5片;110kV不得少于7片, 154kv不得少于10片;220kV不得少于13片,330kv不得少于19片, 500kV不得少于25片。因此,通常可根据绝缘于串上绝缘子的片数 来判断线路的电压等级。
2020/4/26
第二章 电力系统元件的参数和等值电路
从本章开始将转入电力系统的定量分析和计算。 这一章阐述两个问题:电力系统中生产、变换、 输送、消耗电能的四大部分——发电机组、变压 器、电力线路、负荷的特性和等值电路;由变压 器和电力线路构成的电力网络等值电路。
第一节 第二节 第三节 第四节
电力线路的参数和等值电路 变压器、电抗器的参数和等值电路 发电机和负荷的参数及等值电路 电力网络的等值网络
XT1
Uk1(%U) N2 100SN

第二章电力系统分析 等值电路

第二章电力系统分析 等值电路

y 1
y1
shl
shl
l z1l l Z
KzZ
修正系数
Y 2(chl 1) ZC shl
2(chl 1) y1 l shl l
2(chl 1)Y shl l
杆塔:用来支撑导线和避雷线,并使导线与导线、导线与大 地之间保持一定的安全距离。 杆塔的分类 按材料分:有木杆、钢筋混凝土杆(水泥杆)和铁塔。 按用途分:有直线杆塔(中间杆塔)、转角杆塔、耐张杆 塔(承力杆塔)、终端杆塔、换位杆塔和跨越杆塔等。
横担:电杆上用来安装绝缘子。常用的有木横担、铁横担 和瓷横担三种。
Z ZCshl
Y 2(A 1) B
令全线路总阻抗和总导纳分别为
2(chl 1) ZC shl
z (r1 jx1)l z1l
Y y1l
特性阻抗(定义)ZC
z1
y 1
传播常数
z1
y 1
ZC
Z

ZC shl

z1

shl
z1 z1
绝缘层:用来使导体与导体之间、导体与保护包皮之间保 持绝缘。绝缘材料一般有油浸纸、橡胶、聚乙烯、交联聚 氯乙烯等。
保护包皮:用来保护绝缘层,使其在运输、敷设及运行过 程中免不受机械损伤,并防止水分浸入和绝缘油外渗。常 用的包皮有铝包皮和铅包皮。此外,在电缆的最外层还包 有钢带铠甲,以防止电缆受外界的机械损伤和化学腐蚀。
第二章 电力系统元件参数和等值电路
第一节 电力线路参数和等值电路 第二节 变压器、电抗器的参数和等值电路
第三节 电力网络的等值网络
2.1 电力线路参数计算和等值电路 2.1.1 电力线路的结构

第二章电力系统等值电路

第二章电力系统等值电路

7
第二章
架空线路的参数计算
电A 感 D12
B
D23
C
A
D13
D13
A
1
B
2
C
3
C 3C 1A 2B
D12
B
D23
2B 3C 1A
I
II
III
第二章电力系统等值电路
8
第二章
架空线路的参数计算
电感
IaIbIC0
a I2 1 7 0 (Ialn D 1 S Ibln D 1 1 2Icln D 1 3)1 aI I2 1 70 (Ialn D 1 S Ibln D 1 2 3Icln D 1 1)2 aI I2 I 1 7( 0 Ialn D 1 S Ibln D 1 3 1Icln D 1 2)3
电容:反映带电导线周围的电场效应
第二章电力系统等值电路
3
第二章
架空线路的参数计算
电阻 (钢芯铝绞线,铜导线) 注:电缆及钢导线需查表
r
s
有色金属的直流电阻
(/公里)
长度为公里时每相导线的电阻:
Rr.l
( )
式中:S——导线的标称截面(mm2)
2r
P —— 导线的电阻率()
P值略大,原因有3点见P8
P d1
A +q
d01 O
d2
d02
D
B
-q
当+q单独存在时:
VP1
q
2
ln
d0 1 d1
当-q单独存在时:
VP2
q 2
第二章电力系统等值电路
lnd02 d2
17
第二章
架空线路的参数计算
电容

电力系统分析-孙丽华主编-第二章电力系统各元件参数和等效电路

电力系统分析-孙丽华主编-第二章电力系统各元件参数和等效电路
2023/5/20
3. 长线路的等值电路 指电压为330kV及以上、长度大于300km的架空线路。 ——应考虑分布参数特性。
图2-9 长线路的均匀分布参数等值电路
单位长度的阻抗和导纳分别为 z1r1 jx1,y1g1 jb1
长线路的基本方程(略去推导)为
cosh x
U
I
sinh
Zc
10
3
U
2 N
思考:变压器的空载试验
如何测试?
电纳BT:变压器的励磁功率 Q0 与电纳相对应,即
电抗XT:变压器的短路电压百分数为
Uk %
3IN ZT 100 UN
3IN XT 100 SN XT 100
UN
U
2 N
所以
XT
UN2Uk % 100SN
说明:UN 、SN的单 位分别为kV和MVA。
电导GT:变压器电导对应的是变压器的铁耗,它近
似等于变压器的空载损耗 P0,于是
GT
P0
2. 中等长度线路的等值电路 指电压为110~220kV、长度在100~300km的架空
线路。 ——采用π型(或T型)等值电路。
Z R jX Y G jB
图2-8 中等长度线路的等值电路
a)π型 b)T型
注意:这两种等值电路都只是电力线路的一种近似等值电路,相互之 间并不等值,因此两者之间不能用 Y 变换公式进行等效变换。
LGJ-400/50型导线,直径27.63mm铝线部分截面
积399.73mm2 ;使用由13片绝缘子组成的绝缘子
串,长2.6m,悬挂在横担端部。试求该线路单位
长度的电阻,电抗和电纳。
计算时取
1.线路电阻
导线额定 面积

第二章 电力系统各元件的等值电路和参数计算

第二章 电力系统各元件的等值电路和参数计算
' ' S (1 − 2 )
( (
SN 2 ) S2N SN min{ S 2 N , S 3 N SN 2 ) S 3N
'
S (2−3)
S ( 3 −1)
(
)2 }
(3)仅提供最大短路损耗的情况
R( S N )
2 ∆PS .maxVN = ×103 2 2S N
2 ∆PSiVN Ri = × 10 3 (i = 1,2,3) 2 SN
2.2.3 三绕组变压器的参数计算
(2)三绕组容量不同(100/100/50、100/50/100) 三绕组容量不同(100/100/50、100/50/100)
∆ PS (1 − 2 ) = ∆ P ∆ PS ( 2 − 3 ) = ∆ P ∆ PS ( 3 − 1 ) = ∆ P
2.2.3 输电线路的参数计算
1.电阻 电阻 有色金属导线单位长度的直流电阻: 有色金属导线单位长度的直流电阻: r = ρ / s 考虑如下三个因素: 考虑如下三个因素: (1)交流集肤效应和邻近效应。 )交流集肤效应和邻近效应。 (2)绞线的实际长度比导线长度长 ~3 %。 )绞线的实际长度比导线长度长2~ (3)导线的实际截面比标称截面略小。 )导线的实际截面比标称截面略小。 2 因此交流电阻率比直流电阻率略为增大: 因此交流电阻率比直流电阻率略为增大:铜:18.8 Ω ⋅ mm / km 铝:31.5 Ω ⋅ mm 2 / km 精确计算时进行温度修正: 精确计算时进行温度修正: rt = r20 [1 + α (t − 20)]
架空线路的换位问题
A B C C A B B C A A B C
目的在于减少三相参数不平衡 整换位循环: 整换位循环:指一定长度内有两次换位而三相导线 都分别处于三个不同位置,完成一次完整的循环。 都分别处于三个不同位置,完成一次完整的循环。 滚式换位 换位方式 换位杆塔换位

电力系统稳态分析-第二章

电力系统稳态分析-第二章

上式中,A1和A2为积分常数,由边界条件确定;γ为线路
的传播常数;Zc为线路的波阻抗。 γ和Zc都是只与线路参数和
频率有关的物理量。
◆关于传播系数和波阻抗
传播系数: z1 y1 j
波阻抗: Z c
z1 Rc jX c Z c e j c y1
对于高压线路g1=0 :
电力系统稳态分析
主讲 周任军
电力系统稳态分析
第二章 电力系统元件的数学模型
第一节 输电线路的参数计算
主讲
周任军
一、 系统等值模型的基本概念
1、电力系统分析和计算的一般过程
首先将待求物理系统进行分析简化,抽象出等效电路
(物理模型); 然后确定其数学模型,也就是说把待求物理问题变成数 学问题; 最后用各种数学方法进行求解,并对结果进行分析。

导体 绝缘层 保护层
三、架空输电线路的参数
1、参数类型
(1)电阻r0 :反映线路通过电流时产生的有功功率损耗效应, 实际上就是导体对电流的阻碍作用。 (2)电感L0 :反映载流导体的磁场效应,实际上就是电流磁场 在导线中所产生的感应电动式对电流的阻碍作用。 (3)电导g0 :线路带电时绝缘介质中产生的泄漏电流及导体 附近空气游离而产生有功功率损耗。 (4)电容C0 :带电导体周围的电场效应,实际上就是导线与大地 和导线之间的电容。 输电线路的以上四个参数沿线路均匀分布。
方程
ZY U 1 2 1 ZY I 1 Y ( 1) 4
U 2 ZY 1 I 2 2 Z
一、长线路的分布参数等值电路
1、分布参数等值电路
微元段等值电路
I1
I dI

电力系统分析第2章

电力系统分析第2章

第二章 系统元件的等值电路和参数计算
4、开路试验求GT、BT
条件:一侧开路,另一侧加额定电压
空载损耗:
GT

P0 V2
N
103
(S)
空载电流百分比 I0%
有功分量Ig 无功分量Ib
I0

Ib
VN
3
BT
I0% I IN 010 0 I01 I% 0 IN 0Ib
%
I S 0 BT 100
2) 三相不对称布置时 将采取换位技术,使得三相电感一致。
1
D12 D31
2
D23
3
A
C
B
A
C
B
B
位置1
C
位置2
A
位置3
第二章 系统元件的等值电路和参数计算
2) 三相不对称布置时 将采取换位技术,使得三相电感一致。
第二章 系统元件的等值电路和参数计算
分别列写三段中a相磁链的表达式,并求平均,可得
短路试验求RT、XT
条件:令一个绕组开路,一个绕组短路,而在余下的一个 绕组施加电压,依此得的数据(两两短路试验)
第二章 系统元件的等值电路和参数计算
1、由短路损耗求RT 1) 对于第Ⅰ类(100/100/100)
RT1 jXT1
-jBT GT I N
IN
P I R I R P P
3 2 3 2
Vs%-短路电压百分数
VS%
3INZT1003INXT100
VN
VN
△P0-空载损耗
P0VN2GT
I0%-空载电流百分数
I0%VN 3Y IT N100 VN 3B IN T100
第二章 系统元件的等值电路和参数计算

0305第二章电力系统各元件的等值电路和参数计算资料

0305第二章电力系统各元件的等值电路和参数计算资料

N
xd
)
O'
O
Q
I N
b、运行极限图
2.1 发电机组的运行特性和数学模型
决定隐极式发电机组运行极限的因素: 定子绕组温升约束。取决于发电机的视在 功率。以O点为圆心,以OB为半径的圆弧S。 励磁绕组温升约束。取决于发电机的空载 电势。以O’点为圆心,以O’B为半径的圆弧F。 原动机功率约束。即发电机的额定功率。 直线BC。 其他约束。当发电机以超前功率因数运行 的场合。综合为圆弧T。
×
a b 单相线路 n=1 首先求外部磁链






r
D dx
x
i
磁动势 F ni 1* i



度H

x
Fl
1 i
2x ( Am)



度B

x

xH

x

r0H

x
0 4 107 (H m)
空 气r 1
(1)求外部磁链
2.2 输电线路的等值电路和参数计算
(2)杆塔 木塔:较少采用 铁塔:主要用于220kV及以上系统 钢筋混凝土杆:应用广泛
2.2 输电线路的等值电路和参数计算
(3)绝缘子 针式:10kV及
以下线路
图2-8 针式绝缘子
针式绝缘子
2.2 输电线路的等值电路和参数计算
悬式绝缘子 主要用于35kV及 以上系统,根据电 压等级的高低组成 数目不同的绝缘子 链。

EqU d U dU q xd
UdUq xq

EqU
sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、架空输电线路
导线和避雷线 杆塔 绝缘子 金具
2、电缆线路
导线 绝缘层 保护层
架空输电线路
档距:架空线路相邻杆塔之间的水平距离。 弧垂:在档距中,导线的最低点和悬挂点之间
的垂直距离。
导线和避雷线 要求:导电好、机械强度大、抗腐蚀能力强
导线可分为裸导线和绝缘导线两大类,高压输电线路 基本上都采用裸导线.它的散热性能好。又节省绝缘材 料。绝缘导线主要用于低压线路,以利于人身和设备的 安全。
导线的材料主要有铝、铜、钢等。目前大量使用的是 铝或铝合金导线。钢导线一般用作避雷线,铝绞线的芯 线(即钢芯铅绞线)、或水泥杆的斜拉线,以提高其机械 强度。铜导线的导电性能和机械强度都优于铝,但价格 昂贵。
多股线绞合—J
导线结构
扩径导线—K
排列:1、6、12、18
普通型:LGJ 铝/钢 比5.6—6.0 加强型:LGJJ 铝/钢 比4.3—4.4 轻 型:LGJQ 铝/钢 比8.0—8.1 LGJ-400/50—数字表示截面积
导线的材料主要有铝、铜、钢等。目前大量使用的是 铝或铝合金导线。钢导线一般用作避雷线,铝绞线的芯 线(即钢芯铅绞线)、或水泥杆的斜拉线,以提高其机械 强度。铜导线的导电性能和机械强度都优于铝,但价格 昂贵。
导线和避雷线
导线可分为裸导线和绝缘导线两大类,高压输电线路 基本上都采用裸导线.它的散热性能好。又节省绝缘材 料。绝缘导线主要用于低压线路,以利于人身和设备的 安全。
杆塔
结构 作用分
木塔——已不用 钢筋混凝土塔—单杆、型杆 铁塔—用于跨越,超高压输电、耐张、转角、
换位。独根钢管—城市供电
直线杆塔—线路走向直线处,只承受导线自重 耐张杆塔—承受对导线的拉紧力 转向杆塔—用于线路转弯处 换位杆塔—减少三相参数的不平衡 终端杆塔—只承受一侧的耐张力,导线首末端 跨越杆塔—跨越宽度大时,塔高:100—200米
功率损失;
电容C:反映带电导线周围电场效应。
1.架空输电线路的等值电路
短距离输电线路
集中参数
中长距离输电线路
长距离输电线路 分布参数
短距离输电线路的等值电路
长度不超过100km的架 空输电线路,线路额定 电压为60kV及以下者
图2-12 短线路的等值电路
ZRjXr ljxl
中等长度输电线路的等值电路
第二章 电力系统元件模型及参数计算
架空输电线路的等值电路及参数计算 变压器的等值电路及参数计算 发电机和负荷模型 电力系统的稳态等值电路(标幺值)
2-1 基本概念
电力系统元件:构成电力系统的各组成部件。 元件参数:表征元件特性的参量。 数学模型:元件或系统物理模型的数学描述。
2-2 输电线路的等值电路及参数计算
3
7
13
19 24
作用:连接导线和绝缘子
线夹:悬重、耐张 导线接续:接续、联结 保护金具:护线条、预绞线、防震锤、阻尼线 绝缘保护:悬重锤
电缆线路
电力电缆主要由导体、
绝缘层和保护层三部分
组成,如图所示。电力
电缆的导体通常采用多
股铜绞线或铝绞线。根
据电缆中导体数目的不
同可分为单芯、三芯和
四芯电缆。
扇形三芯电缆 1-导体 2-绝缘层 3-铅包层 4-黄麻层 5-钢带铠甲 6-黄麻保护层
每相单位长度的等值电容
C0.0241106lgDreq
每相单位长度的等值电纳
(F/km (2-)14)
Deq是三相导线间
的互几何均距
r是导线的半径
线路电压为 110kV~220kV,架
空输电线路长度为 100km~ 300km,电缆线路长度不超过 100km的线路
ZRjXrljxl YGjBjBjbl
图2-5 中等长度线路的等值电路
长距离输电线路的等值电路
长度超过100km~300km的架空输电线路 和长度超过100km的电缆线路,这种线 路,必须考虑其分布参数特性
2-2 输电线路的等值电路及参数计算
1.架空输电线路的等值电路 2.架空输电线路的参数计算
1.架空输电线路的等值电路
输电线路四个参数:
电阻r:反映线路通过电流时产生有功功率损
失效应 ;
电感L:反映载流导线周围产生的磁场效应;
电导g:反映线路带电时绝缘介质中产生泄漏
电流及导线附近空气游离而产生的有功
La
0 lnDeq 2 Ds
分裂导线时Ds=Dsb
x
2fnL0.1
44l5gDeq Ds
(/km)
(2-8)
分裂导线
将输电线的每相导线分裂成若干根按一定的规则 分散排列,便构成分裂导线输电线。
分裂导线的自几何均距相比 单导线的大,故电抗小。
问题1:分裂数越多 越好吗? 问题2:分裂间距越 大越好吗?
图2-17 长线的等值电路
2.架空输电线路的参数计算
架空输电线路每一相的等值串联阻抗 Z=(r+jx)l
架空输电线路每一相的等值并联导纳 Y=(g+jb)l
每相单位长度的等值电阻
r
s
rt r2[0 1(t2)0]
每相单位长度的等值电抗 Deq是三相导线间的互几何均距
Ds是多股绞线的自几何均距
A B C
绝缘子:架空线路用的绝缘子用来支持或悬挂导线,并使之 与杆塔绝缘。它由瓷、玻璃或硅橡胶等材料制成。
要求:足够的电气与机械强度、抗腐蚀 材料:瓷质、玻璃、硅橡胶
Hale Waihona Puke 绝缘子 金具类型:针式(35KV以下),悬式( 35KV以上)
片树:35KV,110KV,220KV,330KV,500KV
钢芯铝绞线按其强度的大小,可分为普通型、轻型和加强型三 种。其区别反映在铝钢截面比上。截面比越小,机械强度越高。 对于220kV以上的输电线路,为减少线路的电抗和导线电晕, 常用分裂导线。
架空线路导线的型号是用导线的材料和结构以及截面积三部分 表示的。如T-铜线;G-钢线;L-铝线;J-多股绞线;HL- 铝合金线;LGJ-120表示120mm2的钢芯铝绞线。
扩大直径,不增加截面积LGJK300相当于LGJQ-400
和普通钢芯相区别,支撑层6股
分裂导线——每相分成若干根,相互之间保持一 定距离400-500mm,防电晕,减小了电抗,电容增大
架空线路采用的导线结构主要有单股、多股绞线和钢芯铝绞线。
(a) 单金属绞线 (b) 钢芯铝绞线 (c) 扩径钢芯铝绞线 (d) 空心导线 (e) 钢铝混合绞线
相关文档
最新文档