2017年浙江省丽水市中考数学试卷
【数学】2017年浙江省丽水市中考真题(解析版)
2017年浙江省丽水市中考真题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数1,0,﹣1,﹣2中,最大的数是( )A .﹣2B .﹣1C .0D .12.计算,正确结果是( )A .B .C .D .3.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4.根据PM 2.5空气质量标准:24小时PM 2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM 2.5一周的检测数据制作成如下统计表,这组PM 2.5数据的中位数是( )A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米5.化简的结果是( ) A .x +1 B .x ﹣1 C . D .6.若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤223a a ⋅5a 4a 8a 9a 天数 3 1 1 1 1 PM2.518202129302111x x x+--21x -211x x +-7.如图,在▱ABCD 中,连结AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( )A. B .C .D .8.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移1个单位9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( )A .B .C .D . 10.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段 表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早小时 二、填空题(每题4分,满分24分,将答案填在答题纸上)222242y x =433π-4233π-233π-2332π-11211.分解因式:=.12.等腰三角形的一个内角为100°,则顶角的度数是.13.已知,则代数式的值为.14.如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形I J KL 的边长为2,且 I J ∥AB ,则正方形EFGH 的边长为.16.如图,在平面直角坐标系xOy 中,直线y =﹣x +m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,点O 到直线AB 的距离是;(2)设点P 为线段OB 的中点,连结P A ,PC ,若∠CP A =∠ABO ,则m 的值是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:.22m m +21a a +=23a a --011(2017)()93---+18.解方程:(x﹣3)(x﹣1)=3.19.如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表县(市、区)任务数(万方)A25B25C20D12E13F25G16H25I11J28合计200(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.如图,在Rt△ABC中,∠C=Rt∠AED,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.如图1,在△ABC中,∠A=30°,点P从点A出发以2c m/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(c m/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设.(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.ADn AEADAB参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D.【解析】试题分析:﹣2<﹣1<0<1,所以最大的数是1,故选D.考点:有理数大小比较.2.【答案】A.考点:同底数幂的乘法.3.【答案】B.【解析】试题分析:A.俯视图是一个正方形,主视图是一个长方形,故A错误;B.左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C.左视图是一个长方形,俯视图是一个正方形,故C错误;D .俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D 错误; 故选B .考点:简单几何体的三视图. 4.考点:中位数;统计表. 5.【答案】A . 【解析】试题分析:原式== =x +1,故选A . 考点:分式的加减法. 6.【答案】C . 【解析】试题分析:∵程x ﹣m +2=0的解是负数,∴x =m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解. 7.【答案】C .考点:平行四边形的性质. 8.【答案】D . 【解析】试题分析:A .平移后,得y =(x +1)2,图象经过A 点,故A 不符合题意; B .平移后,得y =(x ﹣3)2,图象经过A 点,故B 不符合题意; C .平移后,得y =x 2+3,图象经过A 点,故C 不符合题意; D .平移后,得y =x 2﹣1图象不经过A 点,故D 符合题意; 故选D .考点:二次函数图象与几何变换.2111x x x ---211x x --9.【答案】A .考点:扇形面积的计算;圆周角定理. 10.【答案】D . 【解析】试题分析:A .由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意; B .∵乙先出发,0.5小时,两车相距(100﹣70)km ,∴乙车的速度为:60km/h ,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h ),故B 选项正确,不合题意;C .由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,40+60=100,故两车相遇,故C 选项正确,不合题意;D .由以上所求可得,乙到A 地比甲到B 地早:1.75﹣=(小时),故此选项错误,符合题意. 故选D .考点:函数的图象.二、填空题(每题4分,满分24分,将答案填在答题纸上) 11.【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法. 12.【答案】100°.10060213213112考点:等腰三角形的性质. 13.【答案】2. 【解析】试题分析:∵,∴原式==3﹣1=2.故答案为:2. 考点:代数式求值;条件求值;整体思想. 14.【答案】. 【解析】试题分析:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.考点:利用轴对称设计图案;列表法与树状图法. 15.【答案】10.考点:勾股定理的证明. 16.【答案】(1);(2)12.21a a +=23()a a -+132613132(2)作OD =OC =2,连接CD .则∠PDC =45°,如图,由y =﹣x +m 可得A (m ,0),B (0,m ).所以OA =OB ,则∠OBA =∠OAB =45°.当m <0时,∠APC >∠OBA =45°,所以,此时∠CP A >45°,故不合题意. 所以m >0.因为∠CP A =∠ABO =45°,所以∠BP A +∠OPC =∠BAP +∠BP A =135°,即∠OPC =∠BAP ,则△PCD ∽△APB ,所以,即,解得m =12.故答案为:12.考点:一次函数综合题;分类讨论;综合题.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 17.【答案】1. 【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=1﹣3+3=1.考点:实数的运算;零指数幂;负整数指数幂. 18.【答案】x 1=0,x 2=4.PD CD AB PB =12222122m m m +=考点:解一元二次方程﹣因式分解法. 19.【答案】1.1m . 【解析】试题分析:作AE ⊥CD 于E ,BF ⊥AE 于F ,则四边形EFBC 是矩形,汽车AF 、EF 即可解决问题.试题解析:作AE ⊥CD 于E ,BF ⊥AE 于F ,则四边形EFBC 是矩形,∵OD ⊥CD ,∠BOD =70°,∴AE ∥OD ,∴∠A =∠BOD =70°,在Rt △AFB 中,∵AB =2.7,∴AF =2.7×cos70°=2.7×0.34=0.918,∴AE =AF +BC =0.918+0.15=1.068≈1.1m . 答:端点A 到地面CD 的距离是1.1m .考点:解直角三角形的应用.20.【答案】(1)完成进度最快的是C 县,完成进度最慢的是I 县;(2)85.9%;(3)答案见解析. 【解析】试题分析:(1)利用条形统计图结合表格中数据分别求出C ,I 两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案. 试题解析:(1)C 县的完全成进度=×100%=107%; I 县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C 县,完成进度最慢的是I 县;21.420311C 类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I 县作出评价,如:截止3月31日,I 县的完成进度=×100%≈27.3%,完成进度全市最慢; 截止5月4日,I 县的完成进度=×100%≈104.5%,超过全市完成进度, 104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大. 考点:条形统计图;统计表. 21.【答案】(1);(2)不能;(3)75≤v ≤. 【解析】试题分析:(1)根据表格中数据,可知V 是t 的反比例函数,设V =,利用待定系数法求出k 即可;(2)根据时间t =2.5,求出速度,即可判断;考点:反比例函数的应用.22.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)首先证明AC =2DE =20,在Rt △ADC 中,DC==12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,可得x 2+122=(x +16)2﹣202,解方程即可解决问题;31111.511300v t =6007kt222016-试题解析:(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2D E=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.考点:切线的性质;勾股定理.23.【答案】(1)1;(2);(3)2<x<3.(3)求出的最大值,根据二次函数的性质计算即可.试题解析:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;222016-22129+21533y x x=-+212y x=1212212ax121212(3),解得,x 1=0,x 2=2,由图象可知,当x =2时,有最大值,最大值是×22=2,=2,解得,x 1=3,x 2=2,∴当2<x <3时,点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积.考点:三角形综合题;二次函数的性质;分段函数;动点型;综合题. 24.【答案】(1)证明见解析;(2)=;(3)n =16或. 【解析】试题分析:(1)因为GF ⊥AF,由对称易得AE =EF ,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E 是AG 的中点;(2)可设AE =a ,则AD =na ,即需要用n 或a 表示出AB ,由BE ⊥AF 和∠BAE ==∠D =90°,可证明△ABE ~△DAC ,则,因为AB =DC ,且DA ,AE 已知表示出来了,所以可求出AB ,即可解答;(3)求以点F ,C ,G 为顶点的三角形是直角三角形时的n ,需要分类讨论,一般分三个,∠FCG =90°,∠CFG =90°,∠CGF =90°;根据点F 在矩形ABCD 的内部就可排除∠FCG =90°,所以就以∠CFG =90°和∠CGF =90°进行分析解答.22115233x x x =-+212y x =1221533x x -+ADABn 842+AB AEDA DC=(3)解:设AE=a,则AD=na,由AD=4AB,则AB=.当点F落在线段BC上时(如图2),EF=AE=AB=a,此时,∴n=4,∴当点F落在矩形外部时,n>4.∵点F落在矩形的内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,则点F落在AC上,由(2)得=,∴n=16.若∠CGF=90°(如图3),则∠CGD+∠AGF=90°,∵∠F AG+∠AGF=90°,∴∠CGD=∠F AG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即.解得n=或n=<4(不合题意,舍去),∴当n=16或时,以点F,C,G为顶点的三角形是直角三角形.考点:矩形的性质;解直角三角形的应用;相似三角形的判定与性质;分类讨论;压轴题.4na4na a=ADABnAB AEDG DC=2()(2)4na n a a=-⋅842+842-842+。
浙江省丽水市2017年中考数学真题试题(含解析)
浙江省丽水市2017年中考数学真题试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【答案】D.【解析】试题分析:﹣2<﹣1<0<1,所以最大的数是1,故选D.考点:有理数大小比较.a a ,正确结果是()2.计算23A.5a B.4a C.8a D.9a【答案】A.考点:同底数幂的乘法.3.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【答案】B.【解析】试题分析:A.俯视图是一个正方形,主视图是一个长方形,故A错误;B.左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C.左视图是一个长方形,俯视图是一个正方形,故C错误;D .俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D 错误; 故选B .考点:简单几何体的三视图.4.根据PM 2.5空气质量标准:24小时PM 2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM 2.5一周的检测数据制作成如下统计表,这组PM 2.5数据的中位数是( )天数 3 1 1 1 1 PM2.51820212930A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米 【答案】B .考点:中位数;统计表.5.化简2111x x x+−−的结果是( ) A .x +1 B .x ﹣1 C .21x − D .211x x +−【答案】A . 【解析】试题分析:原式=2111x x x −−−=211x x −− =x +1,故选A . 考点:分式的加减法.6.若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤2 【答案】C . 【解析】试题分析:∵程x ﹣m +2=0的解是负数,∴x =m ﹣2<0,解得:m <2,故选C .考点:解一元一次不等式;一元一次方程的解.7.如图,在▱ABCD 中,连结AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( )A .2B .2C .22D .4 【答案】C .考点:平行四边形的性质.8.将函数2y x =的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移1个单位 【答案】D . 【解析】试题分析:A .平移后,得y =(x +1)2,图象经过A 点,故A 不符合题意; B .平移后,得y =(x ﹣3)2,图象经过A 点,故B 不符合题意; C .平移后,得y =x 2+3,图象经过A 点,故C 不符合题意; D .平移后,得y =x 2﹣1图象不经过A 点,故D 符合题意; 故选D .考点:二次函数图象与几何变换.9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( )A .433π B .4233π− C .233π D .233π【答案】A.考点:扇形面积的计算;圆周角定理.10.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D.【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:100 60 =213(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C 选项正确,不合题意;D .由以上所求可得,乙到A 地比甲到B 地早:1.75﹣213=112(小时),故此选项错误,符合题意. 故选D .考点:函数的图象.二、填空题(每题4分,满分24分,将答案填在答题纸上) 11.分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.12.等腰三角形的一个内角为100°,则顶角的度数是 . 【答案】100°.考点:等腰三角形的性质.13.已知21a a +=,则代数式23a a −−的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a −+=3﹣1=2.故答案为:2. 考点:代数式求值;条件求值;整体思想.14.如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是 .【答案】13.【解析】试题分析:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:26=13.故答案为:13.考点:利用轴对称设计图案;列表法与树状图法.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形I J KL的边长为2,且I J∥AB,则正方形EFGH的边长为.【答案】10.考点:勾股定理的证明.16.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.【答案】(1)2 ;(2)12.(2)作OD =OC =2,连接CD .则∠PDC =45°,如图,由y =﹣x +m 可得A (m ,0),B (0,m ). 所以OA =OB ,则∠OBA =∠OAB =45°.当m <0时,∠APC >∠OBA =45°,所以,此时∠CPA >45°,故不合题意. 所以m >0.因为∠CPA =∠ABO =45°,所以∠BPA +∠OPC =∠BAP +∠BPA =135°,即∠OPC =∠BAP ,则△PCD ∽△APB ,所以PD CDAB PB =,即12222122m m m +=,解得m =12.故答案为:12.考点:一次函数综合题;分类讨论;综合题.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:011(2017)()93−−− 【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1﹣3+3=1.考点:实数的运算;零指数幂;负整数指数幂.18.解方程:(x﹣3)(x﹣1)=3.【答案】x1=0,x2=4.考点:解一元二次方程﹣因式分解法.19.如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】1.1m.【解析】试题分析:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,汽车AF、EF即可解决问题.试题解析:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°=2.7×0.34=0.918,∴AE=AF+BC=0.918+0.15=1.068≈1.1m.答:端点A到地面CD的距离是1.1m.考点:解直角三角形的应用.20.在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表县(市、区)任务数(万方)A25B25C20D12E13F25G16H25I11J28合计200(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【答案】(1)完成进度最快的是C县,完成进度最慢的是I县;(2)85.9%;(3)答案见解析.【解析】试题分析:(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.试题解析:(1)C县的完全成进度=21.420×100%=107%;I县的完全成进度=311×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=311×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=11.511×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.考点:条形统计图;统计表.21.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【答案】(1)300vt=;(2)不能;(3)75≤v≤6007.【解析】试题分析:(1)根据表格中数据,可知V是t的反比例函数,设V=kt,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;考点:反比例函数的应用.22.如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15.【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)首先证明AC =2DE =20,在Rt △ADC 中,DC =222016−=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,可得x 2+122=(x +16)2﹣202,解方程即可解决问题;试题解析:(1)证明:连接OD ,∵DE 是切线,∴∠ODE =90°,∴∠ADE +∠BDO =90°,∵∠ACB =90°,∴∠A +∠B =90°,∵OD =OB ,∴∠B =∠BDO ,∴∠ADE =∠A .(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC =222016−=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 22129+.考点:切线的性质;勾股定理.23.如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m/s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m/s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.【答案】(1)1;(2)21533y x x =−+;(3)2<x <3.(3)求出212y x =的最大值,根据二次函数的性质计算即可. 试题解析:(1)如图1,作PD ⊥AB 于D ,∵∠A =30°,∴PD =12AP =x ,∴y =12AQ •PD =212ax ,由图象可知,当x =1时,y =12,∴12×a ×12=12,解得,a =1;(3)22115233x x x =−+,解得,x 1=0,x 2=2,由图象可知,当x =2时,212y x =有最大值,最大值是12×22=2,21533x x −+=2,解得,x 1=3,x 2=2,∴当2<x <3时,点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积.考点:三角形综合题;二次函数的性质;分段函数;动点型;综合题.24.如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AD n AE=.(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示AD AB的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.【答案】(1)证明见解析;(2)AD AB =n ;(3)n =16或 842+. 【解析】试题分析:(1)因为GF ⊥AF ,由对称易得AE =EF ,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E 是AG 的中点;(2)可设AE =a ,则AD =na ,即需要用n 或a 表示出AB ,由BE ⊥AF 和∠BAE ==∠D =90°,可证明△ABE ~△DAC , 则AB AE DA DC=,因为AB =DC ,且DA ,AE 已知表示出来了,所以可求出AB ,即可解答;(3)求以点F ,C ,G 为顶点的三角形是直角三角形时的n ,需要分类讨论,一般分三个,∠FCG =90°,∠CFG =90°,∠CGF =90°;根据点F 在矩形ABCD 的内部就可排除∠FCG =90°,所以就以∠CFG =90°和∠CGF =90°进行分析解答.(3)解:设AE =a ,则AD =na ,由AD =4AB ,则AB =4n a . 当点F 落在线段BC 上时(如图2),EF =AE =AB =a ,此时4n a a =,∴n =4,∴当点F 落在矩形外部时,n >4. ∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°,若∠CFG =90°,则点F 落在AC 上,由(2)得AD AB=n ,∴n =16. 若∠CGF =90°(如图3),则∠CGD +∠AGF =90°,∵∠FAG +∠AGF =90°,∴∠CGD =∠FAG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ~△DGC ,∴AB AE DG DC =,∴AB ·DC =DG ·AE ,即2()(2)4n a n a a =−⋅. 解得 n =842+或n =842−<4(不合题意,舍去),∴当n =16或 842+时,以点F ,C ,G 为顶点的三角形是直角三角形.考点:矩形的性质;解直角三角形的应用;相似三角形的判定与性质;分类讨论;压轴题.。
浙江省丽水市2017年中考数学试卷含答案
2017年中考数学真题试题浙江省丽水市2017年中考数学试卷(解析版)、选择题3、( 2017丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(A 、 俯视图与主视图相同B 、 左视图与主视图相同C 、 左视图与俯视图相同D 、 三个视图都相同4、( 2017丽水)根据PM2.5空气质量标准:24小时PM2.5均值在1~35 (微克/立方米)的空气质量等级 为优•将环保部门对我市 PM2.5 一周的检测数据制作成如下统计表 •这组PM2.5数据的中位数是( )天数 31 1 1 1PM2.518 20 21 2930A 、 21微克/立方米B 、 20微克/立方米C 、 19微克/立方米D 、 18微克/立方米1、 (2017丽水)在数 1,0, -1, -2中,最大的数是( A 、B 、 C-2 -1 012、 (2017丽水)计算a 2 a 3的正确结果是( A 、 B 、 C 5a 6a 8 a9a主视方向5、(2017丽水)化简^丁■的结果是()A、x+1B、x-12C、x -16、(2017丽水)若关于x的一元一次方程x-m+2=0的解是负数,贝U m的取值范围是()A、m>2B、m>2C、m<2D、m<27、(2017 丽水)如图,在dBCD 中,连结AC,/ ABC=Z CAD=45°, AB=2,贝U BC 的长是()D、4&( 2017丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点 A (1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位D、12+1▼IB、210、( 2017丽水)在同一条道路上,甲车从 A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段 表示甲、乙两车之间的距离 y (千米)与行驶时间 x (小时)的函数关系的图象•下列说法错误的是()A 、 乙先出发的时间为 0.5小时B 、 甲的速度是80千米/小时C 、 甲出发0.5小时后两车相遇D 、 甲到B 地比乙到A 地早小时二、填空题211、 ( 2017丽水)分解因式: m +2m= _______ .12、 ( 2017丽水)等腰三角形的一个内角为 100 °则顶角的。
2017年浙江省丽水市中考数学试卷
2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.2.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a9【解答】解:a2•a3=a2+3=a5,故选A.3.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【解答】解:原式=﹣===x+1,故选A6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.7.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长A.B.2 C.2 D.4【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.8.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)12.(4分)等腰三角形的一个内角为100°,则顶角的度数是100°.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:214.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,由S=OA2=A B•d,得△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.18.(6分)解方程:(x﹣3)(x﹣1)=3.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【解答】解:(1)根据表格中数据,可知v=,∵v=75时,t=4,∴k=75×4=300,∴v=(t≥3).(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【解答】解:(1)如图1,作PD⊥AB于D,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(由于n>4,所以舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.。
2017年浙江省丽水市中考数学试卷
v (千米/小时) 75
80
85
90
95
t (小时)
4.00 3.75 3.53 3.33 3.16
(1)根据表中的数据,求出平均速度 v (千米/小时)关于行驶时间 t (小时)的函数表达
于 A , B 两点,已知点 C(2,0) .
(1)当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是
.
(2) 设 点 P 为 线 段 OB 的 中 点 , 连 结 PA , PC , 若 CPA ABO , 则 m 的 值
是
.
数学试卷 第 2 页(共 6 页)
三、解答题(本题有 8 小题,共 66 分.各小题都必须写出解答过程) 17.(本题 6 分)计算: (2 017)0 (1)1 9 .
二、填空题(本题有 6 小题,每小题 4 分,共 24 分)
11.分解因式: m2 2m
.
12.等腰三角形的一个内角为100 ,则顶角的度数是
.
13.已知 a2 a 1 ,则代数式 3 a a2 的值为
.
14.如图,由 6 个小正方形组成的 2 3 网格中,任意选取 5 个小正方形并涂黑,则黑色部分
B. a6
C. a8
D. a9
3.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是
卷
()
A.俯视图与主视图相同 C.左视图与俯视图相同
B.左视图与主视图相同 D.三个视图都相同
4.根据 PM2.5 空气质量标准:24 小时 PM2.5 均值在 0~35(微克/我市 PM2.5 一周的检测数据制作成
2017年各地中考试卷2017年浙江省丽水市中考数学试卷
2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•丽水)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.12.(4分)(2017•丽水)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.13.(4分)(2017•丽水)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:2【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.(4分)(2017•丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确得出符合题意的位置是解题关键.15.(4分)(2017•丽水)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.【点评】考查了勾股定理的证明,关键是熟练掌握正方形面积公式,以及面积的和差关系,难点是得到正方形EFGH的面积.16.(4分)(2017•丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.【点评】本题考查了一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,另外,解题时,注意分类讨论数学思想的应用.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2017•丽水)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.18.(6分)(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(6分)(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.【点评】本题考查解直角三角形的应用、解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(8分)(2017•丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.21.(8分)(2017•丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.22.(10分)(2017•丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O 交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB 运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.【点评】本题考查的是三角形的面积计算、二次函数的解析式的确定、二次函数的性质,根据图象确定x的运动时间与面积的关系是解题的关键.24.(12分)(2017•丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.【点评】此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题,是一道中考常考题.。
中考复习【数学】2017年浙江省丽水市中考真题(解析版)
16.如图,在平面直角坐标系 xOy 中,直线 y=﹣x+m 分别交 x 轴,y 轴于 A,B 两点,已知 点 C(2,0). (1)当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是; (2)设点 P 为线段 OB 的中点,连结 PA,PC,若∠CPA=∠ABO,则 m 的值是.
考点:平行四边形的性质. 8.【答案】D. 【解析】 试题分析:A.平移后,得 y=(x+1)2,图象经过 A 点,故 A 不符合题意; B.平移后,得 y=(x﹣3)2,图象经过 A 点,故 B 不符合题意; C.平移后,得 y=x2+3,图象经过 A 点,故 C 不符合题意; D.平移后,得 y=x2﹣1 图象不经过 A 点,故 D 符合题意; 故选 D. 考点:二次函数图象与几何变换.
考点:解一元二次方程﹣因式分解法. 19.【答案】1.1m. 【解析】 试题分析:作 AE⊥CD 于 E,BF⊥AE 于 F,则四边形 EFBC 是矩形,汽车 AF、EF 即可解 决问题. 试题解析:作 AE⊥CD 于 E,BF⊥AE 于 F,则四边形 EFBC 是矩形,∵OD⊥CD,∠BOD=70°, ∴AE∥OD,∴∠A=∠BOD=70°,在 Rt△AFB 中,∵AB=2.7,∴AF=2.7×cos70°=2.7×0.34=0.918, ∴AE=AF+BC=0.918+0.15=1.068≈1.1m. 答:端点 A 到地面 CD 的距离是 1.1m.
D.甲到 B 地比乙到 A 地早 1 小时 12
2017年浙江省丽水市中考数学试卷
第10页(共1页)
A. B.2 C.2 D.4
【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的 长. 【解答】解:∵四边形ABCD是平行四边形, ∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°, ∴AC=CD=2,∠ACD=90°, 即△ACD是等腰直角三角形,
A
25
B
25
C
20
D
12
E
13
F
25
G
16
H
25
I
11
J
28
合计
200
(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最
快、最慢的县(市、区)分别是哪一个?
(2)求截止5月4日全市的完成进度;
(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行
评价.
21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽
15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦 图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长 为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为 .
16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴 于A,B两点,已知点C(2,0). (1)当直线AB经过点C时,点O到直线AB的距离是 ; (2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是 .
【解答】解:原式= ﹣ = =
=x+1,
故选A 【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是( ) A.m≥2 B.m>2 C.m<2 D.m≤2 【分析】根据方程的解为负数得出m﹣2<0,解之即可得. 【解答】解:∵程x﹣m+2=0的解是负数, ∴x=m﹣2<0, 解得:m<2, 故选:C. 【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列 出不等式是解题的关键. 7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC= ∠CAD=45°,AB=2,则BC的长是( )
2017年浙江省丽水市中考数学试卷
三、解答题(本大题共 8 小题,第 17-19 题每题 6 分,第 20,21 题每题 8 分,第 22,23 题每
题 10 分,第 24 题 12 分,共 66 分,各小题都必须写出解答过程)
17.
; 18.
; 19.
; 20.
; 21.
; 22.
; 23.
;
24.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
.
第2页(共7页)
13.(4 分)已知 a2+a=1,则代数式 3﹣a﹣a2 的值为
.
14.(4 分)如图,由 6 个小正方形组成的 2×3 网格中,任意选取 5 个小正方形并涂黑,则
黑色部分的图形是轴对称图形的概率是
.
15.(4 分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为
第3页(共7页)
求端点 A 到地面 CD 的距离(精确到 0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34, tan70°≈2.75)
20.(8 分)在全体丽水人民的努力下,我市剿灭劣 V 类水“河道清淤”工程取得了阶段性 成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止 2017 年 3 月 31 日和截止 5 月 4 日,全市十个县(市、区)指标任务累计完成数的统计图.
天数
3
1
1
1
1
PM2.5
18
20
21
29
30
A.21 微克/立方米
B.20 微克/立方米
C.19 微克/立方米
D.18 微克/立方米
5.(3 分)化简 + 的结果是( )
2017年浙江省丽水市中考数学试卷
2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•丽水)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.12.(4分)(2017•丽水)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.13.(4分)(2017•丽水)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:2【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.(4分)(2017•丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确得出符合题意的位置是解题关键.15.(4分)(2017•丽水)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.【点评】考查了勾股定理的证明,关键是熟练掌握正方形面积公式,以及面积的和差关系,难点是得到正方形EFGH的面积.16.(4分)(2017•丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.【点评】本题考查了一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,另外,解题时,注意分类讨论数学思想的应用.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2017•丽水)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.18.(6分)(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(6分)(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.【点评】本题考查解直角三角形的应用、解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(8分)(2017•丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.21.(8分)(2017•丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.22.(10分)(2017•丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O 交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB 运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.【点评】本题考查的是三角形的面积计算、二次函数的解析式的确定、二次函数的性质,根据图象确定x的运动时间与面积的关系是解题的关键.24.(12分)(2017•丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.【点评】此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题,是一道中考常考题.。
2017年浙江省丽水市中考数学试卷
2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.12.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简的结果是()A.x+1B.x﹣1C.x2﹣1D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.2C.D.10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A ﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE 的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.1【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选:D.2.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a9【解答】解:a2•a3=a2+3=a5,故选:A.3.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选:B.5.(3分)化简的结果是()A.x+1B.x﹣1C.x2﹣1D.【解答】解:原式x+1,故选:A.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤2【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.7.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.4【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD2;故选:C.8.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.2C.D.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC21π ,故选:A.10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1(小时),故此选项错误,符合题意.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)12.(4分)等腰三角形的一个内角为100°,则顶角的度数是100°.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:214.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:.故答案为:.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,10.答:正方形EFGH的边长为10.故答案为:10.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是12.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,由S△OAB OA2AB•d,得4=2d,则d.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CP A>45°,故不合题意.所以m>0.因为∠CP A=∠ABO=45°,所以∠BP A+∠OPC=∠BAP+∠BP A=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以,即,解得m=12.故答案是:12.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1.【解答】解:(﹣2017)0﹣()﹣1=1﹣3+3=1.18.(6分)解方程:(x﹣3)(x﹣1)=3.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【解答】解:(1)C县的完全成进度100%=107%;I县的完全成进度100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【解答】解:(1)根据表格中数据,可知v,∵v=75时,t=4,∴k=75×4=300,∴v(t≥3).(2)∵10﹣7.5=2.5,∴t=2.5时,v120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v,答:平均速度v的取值范围是75≤v.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC15.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A ﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD AP=x,∴y AQ•PD ax2,由图象可知,当x=1时,y,∴a×12,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sin B=(10﹣2x)•sin B,∴y AQ×PD x×(10﹣2x)•sin B,∵当x=4时,y,∴4×(10﹣2×4)•sin B,解得,sin B,∴y x×(10﹣2x)x2x;(3)x2x2x,解得,x1=0,x2=2,由图象可知,当x=2时,y x2有最大值,最大值是22=2,x2x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC 上任意一点时△APQ的面积.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE 的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EF A,∵GF⊥AF,∴∠EAF+∠FGA=∠EF A+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB a,∴;(3)若AD=4AB,则AB a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠F AG+∠AGF=90°,∴∠CGD=∠F AG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(由于n>4,所以舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.第21页(共21页)。
(高清版)2017年浙江省丽水市中考数学试卷
答
A C B 运动,点 Q 从点 A 出发以 a (cm/s) 的速度沿 AB 运动. P , Q 两点同时出发,
当某一点运动到点 B 时,两点同时停止运动,设运动时间为 x (s) , △APQ 的面积为
y (cm2 ) , y 关于 x 的函数图象由 C1 , C2 两段组成,如图 2 所示. (1)求 a 的值.
等,即可解答.
数学试卷 第 7页(共 20页)
【考点】简单几何体的三视图
4.【答案】B 【解析】7 个数据从小到排列的第 4 个数据是中位数,而 3 1 4 ,故中位数是 20 微克/
立方米.故选 B.
【提示】一共有 7 个数据,∴中位数是这组数据从小到大排列时,排在第 4 位的数.
【考点】中位数,众数
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
方 形 IJKL 的 边 长 为 2, 且 IJ∥AB , 则 正 方 形 EFGH 的 边 长
为
.
16.如图,在平面直角坐标系 xOy 中,直线 y x m 分别交 x 轴, y
数学试卷 第 2页(共 20页)
轴于 A , B 两点,已知点 C(2,0) .
2017年浙江省丽水市中考数学试卷及答案解析
2017年浙江省丽水市中考数学试卷满分:120分 版本:浙教版一、选择题(每小题3分,共10小题,合计30分)1.(2017浙江丽水·1·3分)在数1,0,-1,-2中,最大的数是( )A .-2B .-1C .0D .1答案:D .解析:根据“负数小于0,正数大于0,正数大于负数”,所以这四个数中最大的数是1,故选D . 2.(2017浙江丽水·2·3分)计算a 2·a 3的正确结果是( )A .a 5B .A 6C .A 8D .A 9答案:A .解析:根据同底数幂乘法法则,a 2·a 3=a 2+3=a 5,故选A .3.(2017浙江丽水·3·3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同答案:B .解析:根据三视图的概念,这个几何体的主视图和左视图是相同的长方形,俯视图是正方形,故选B . 4.(2017浙江丽水·4·3分)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是( )A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米答案:B .解析:把这几个数按大小排列:18,18,18,20,21,29,30,根据中位数的概念,7个数中最中间的数(第4个数)是20,所以这组数据的中位数是20微克/立方米,选B .5.(2017浙江丽水·5·3分)化简xx x -+-1112的结果是( )A .x +1B .x -1C .x 2-1D .112-+x x答案:A .解析:根据分式的加法法则,x x x -+-1112=1)1)(1(1111122--+=--=--x x x x x x x x -=x +1,选A . 6.(2017浙江丽水·6·3分)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2答案:C .解析:解关于x 的一元一次方程x -m +2=0得x =m -2,由于方程的解是负数,即m -2<0,解得m <2,选C .7.(2017浙江丽水·7·3分)如图,在□ABCD 中,连结AC ,∠ABC =∠CAD =450,AB =2,则BC 的长是( )A .2B .2C .22D .4答案:C .解析:∵□ABCD ,∴AD ∥BC ,∴∠DAC =∠ACB =45°=∠ABC ,∴∠BAC =90°,AB =AC =2,由勾股定理得BC =2282222==+,选C .8.(2017浙江丽水·8·3分)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位答案:D . 解析: 选项 知识点结果 A 将函数y =x 2的图象向左平移1个单位得到函数y =(x +1)2,其图象经过点(1,4). × B 将函数y =x 2的图象向右平移3个单位得到函数y =(x -3)2,其图象经过点(1,4). × C 将函数y =x 2的图象向上平移3个单位得到函数y =x 2+3,其图象经过点(1,4). × D 将函数y =x 2的图象向下平移1个单位得到函数y =x 2-1,其图象不经过点(1,4).√9.(2017浙江丽水·9·3分)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( ) A .433πB .4233π- C .233πD .2332π-答案:A .解析:连接OC ,∵点C 是半圆的三等分点,∴∠AOC =600,∴△AOC 是等边三角形,∠BOC =1200,由三角形面积公式求得S △BOC =33221=⨯⨯,由扇形的面积公式求得S 扇形BOC =2120243603ππ⋅⨯=∴S 阴影=S 扇形BOC-S △BOC =433π-,选A .10.(2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误. 二、填空题:(每小题3分,共8小题,合计24分)11.(2017浙江丽水·11·4分)分解因式:m 2+2m =答案:m (m +2).解析:运用提公因式法,m 2+2m =m (m +2).12.(2017浙江丽水·12·4分)等腰三角形的一个内角为100°,则顶角的度数是答案:100°.解析:根据三角形的内角和等于1800,又等腰三角形的一个内角为100°,所以这个100°的内角只可能是顶角,故填100°.13.(2017浙江丽水·13·4分)已知a 2+a =1,则代数式3-a 2-a 的值为答案:2.解析:3-a 2-a =3-(a 2+a ),把a 2+a =1整体代入得原式=3-1=2.14.(2017浙江丽水·14·4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是答案:31.解析:把第二行的任一正方形留白,其他5个正方形涂黑都能得到轴对称图形,有2种情况,一共有6种情况,根据概率计算公式得黑色部分的图形是轴对称图形的概率=3162=. 15.(2017浙江丽水·15·4分)我国三国时期数学家赵爽为了证明勾股定理,绘制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ ∥AB ,则正方形EFGH 的边长为答案:10.解析:设直角三角形的勾(较短的直角边)为a ,股(较长的直角边)为b ,根据题意得⎩⎨⎧=-=+214a b b a ,解得⎩⎨⎧==86b a ,由勾股定理得直角三角形的弦(斜边)为1008622=+=10,即方形EFGH 的边长为10.16.(2017浙江丽水·16·4分)如图,在平面直角坐标系xOy 中,直线y =-x +m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 ;(2)设点P 为线段OB 的中点,连结P A ,PC ,若∠CP A =∠ABO ,则m 的值是 .答案:(1)2;(2)12.解析:(1)∵直线y =-x +m 经过点C(2,0),∴0=-2+m ,m =2,函数表达式为y =-x +2,当x =0时,y =2,∴点B 坐标为(0,2),由勾股定理AB =222222=+,设点O 到AB 距离为h ,根据三角形面积公式h 22212221⨯=⨯⨯,h =2,填2;(2)当x =0时,y =m ;当y =0时,-x +m =0,x =m ,∴点A 坐标为(m ,0),点B 坐标为(0,m ),∴OA =0B =m ,∴∠OAB =∠OBA =450,又点P 是OB 中点,∴BP =OP =2m.在y 轴负半轴上取点D (0,-2),连结CD ,∴OC =OD =2,∴∠OCD =∠ODC =450=∠APC =∠ABO ,易证∠CPD =∠P AB ,∴△CPD ∽△P AB ,∴PBCDAB PD =,由勾股定理得AB =2m ,CD =22, ∴222222m m=+m ,解得m =12.三、解答题:本大题共8个小题,满分66分. 17.(2017浙江丽水·17·6分)计算:(-2017)°-(31)-1+9 思路分析:先根据零指数幂、负整数指数幂和算术平方根的概念分别求(-2017)0、(31)-1、9,再进行有理数的加减运算. 解:(-2017)°-(31)-1+9=1-3+3=1. 18.(2017浙江丽水·18·6分)解方程:(x -3)(x -1)=3.思路分析:先把方程化为一元二次方程的一般形式,再选用合适的方法解方程. 解:原方程整理为:x 2-4x =0,x (x -4)=0,x 1=0,x 2=4.19.(2017浙江丽水·19·6分)如图是某小区的一个健身器材,已知BC =0.15m ,AB =2.70m ,∠BOD =70°,求端点A 到底面CD 的距离(精确到0.1m )(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)思路分析:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥AE 于点F ,构造Rt △ABF ,运用解直角三角形的知识求出AF ,进而求出AE 得出结果.解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥AE 于点F ,∵OD ⊥CD ,∠BOD =700,∴AE ∥OD ,∴∠A =∠BOD =700,在Rt △ABF 中,AB =2.7,∴AF =2.7×cos 700=2.7×0.34=0.918,∴AE =AF +BC =0.918+0.15=1.068≈1.1(m ).答:端点A 到底面CD 的距离约是1.1m .20.(2017浙江丽水·20·8分)在全体丽水人民的努力下,我市剿灭劣Ⅴ类水“河道清淤”工程取得了阶段性成果.右表是全市十个县(市、区)指标任务数的统计表;左图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对I 县完成指标任务的行动过程和成果进行评价.思路分析:(1)由复合条形统计图得十个县(市、区)截止3月31日累计完成任务数,由统计表得十个县(市、区)的任务数,根据完成进度的计算公式分别求出十个县(市、区)的完成进度,通过比较得解;(2)由复合条形统计图得十个县(市、区)截止5月4日各县累计完成任务数除以十个县(市、区)任务总数可求解;(3)先从统计图表中获取I 县相关信息和数据,并通过对I 县的各项指标进行分析,进而对I 县完成指标任务的行动过程和成果进行评价.解:(1)C 县的完成进度=%%107100204.21=⨯;I 县的完成进度=%%3.27100113≈⨯. 所以截止3月31日,完成进度最快的是C 县,完成进度最慢的是I 县.(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%.(3)A 类(识图能力):能直接根据统计图的完成任务数对I 县作出评价,如截止5月4日,I 县累计完成数为11.5万方>任务数11万方,已经超额完成任务.B 类(数据分析能力):能结合统计图通过计算完成进度对I 县作出评价.如:截止5月4日,I 县的完成进度=%%5.104100115.11≈⨯,超过全市的完成进度. C 类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I 县作出评价.如:截止3月31日,I 县的完成进度%%3.27100113≈⨯,完成进度全市最慢;截止5月4日,I 县的完成进度=%%5.104100115.11≈⨯,超过全市完成进度,104.5%-27.3%=77.2%,与其他县(市、区)对比进步幅度最大. 21.(2017浙江丽水·21·8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车的行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由; (3)若汽车到达杭州市场的行驶时间t 满足3.5≤t ≤4,求平均速度v 的取值范围.思路分析:(1)把表中v ,t 的每一组对应值分别作为点的坐标在平面直角坐标系中描点,根据这些点的变化规律选用合适的函数模型(本题选用反比例函数)进行尝试,由n ,t 的一组对应值代入确定反比例函数表达式,并用表中v ,t 其他组对应值进行验证;(2)由题意先确定t =2.5,代入函数表达式求得v 的值,并与100千米/小时进行比较即可;(3)根据反比例函数图象或性质,由自变量取值范围可确定反比例函数值的取值范围.解:(1)根据表中的数据,可画出v 关于t 的函数图象(如图所示),根据图象形状,选择反比例函数模型进行尝试.设v 关于t 的函数表达式为v =tk,∵当v =75时,t =4,∴k =4×75=300.∴v =t 300.将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入v =t300验证:,,,,16.39530033.39030053.38530075.380300≈≈≈=∴v 与t 的函数表达式是v =t300(t ≥3).(2)∵10-7.5=2.5,∴当t =2.5时,v =1001205.2300>=. ∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场. (3)由图象或反比例函数的性质得,当3.5≤t ≤4时,75≤v ≤7600. 答:平均速度v 的取值范围是75≤v ≤7600. 22.(2017浙江丽水·22·10分)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.思路分析:(1)连结OD ,由圆的切线性质得到直角,再根据直角三角形的性质得到余角互余,结合同角的余角相等可得证;(2)连结CD ,根据“直径所对的圆周角是直角”得CD ⊥AB ,由“等角对等边”得到AE =DE ,由圆的切线长定理得DE =EC ,求得AC =2DE =20,在Rt △ADC 中由勾股定理求得CD ,设BD =x ,分别在Rt △BDC 和Rt △ABC 中,由勾股定理建立关于的方程求得x 的值,最后在Rt △BCD 中,运用勾股定理求B C .解:(1)连结OD ,∵DE 是⊙O 的切线,∴∠ODE =900,∴∠ADE +∠BDO =900.∵∠ACB =900,∴∠A +∠B =900,∵OD =OB ,∴∠B =∠BDO .∴∠ADE =∠A .(2)连结CD ,∵∠ADE =∠A ,∴AE =DE .∵BC 是⊙O 的直径,∠ACB =900.∴EC 是⊙O 的切线,∴DE =EC ,∴AE =E C .∵DE =10,∴AC =2DE =20.在Rt △ADC 中,DC =221620-=12.设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2-202,∴x 2+122=(x +16)2-202,解得x =9,∴BC =22912+=15.23.(2017浙江丽水·23·10分)如图1,在Rt △ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a (cm/s)的速度沿AB 运动.P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示. (1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.思路分析:过点P 作PD ⊥AB 于点D .(1)先用含x 的代数式表示PD ,再根据三角形的面积公式确定y 与x 之间的函数表达式,由函数的图象得到x ,y 的一组对应值代入可求a 的值;(2)在Rt △PBD 中,由解直角三角形知识,用含x 和sinB 的式子表示PD ,同样根据三角形面积公式建立y 与x 的关系,由函数图形得到x ,y 的一组对应值,求得sinB ,进而确定图2中图象C 2段的函数表达式;(3)先求出图象C 1段与图象C 2段函数值相等时对应的x 的值,得到图象C 1段函数的最大值,并求出图象C 1段函数的最大值在图象C 2段对应的x 的值,结合函数图象可得到x 的取值范围. 解:过点P 作PD ⊥AB 于点D .(1)在图1中,∵∠A =300,P A =2x ,∴PD =P A ·sin 300=2x ·21=x ,∴y =2212121ax x ax PD AQ =⋅=⋅.由图象得,当x =1时,y =21,则211212=⋅a ,∴a =1.(2)当点P 在BC 上时(如图2),PB =5×2-2x =10-2x .∴PD =PB ·sinB =(10-2x )·sin B .∴·y =B x x PD AQ sin )210(2121⋅-⋅=⋅.由图象得,当x =4时,y =34,∴144(108)sin 23B ⨯⨯-=,∴sinB =31,∴y =x x x x 353131)210(212+-=⋅-⋅.(3)由C 1,C 2的函数表达式,得x x x 35312122+-=,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =221x 的最大值为y =22⨯21=2.将y =2代入函数y =x x 35312+-,得2=x x 35312+-,解得x 1=2,x 2=3,∴由图象得,x 的取值范围是2<x <3.24.(2017浙江丽水·24·12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AEAD=n .(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ABAD的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.思路分析:设AE =a ,则AD =n A .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EF A .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =n A .(1)由对称得AE =FE ,∴∠EAF =∠EF A .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EF A +∠EFG =900.∴∠FGA =∠EFG ,∴FG =EF .∴AE =EG .(2)当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =900,∵∠DAC +∠BAC =90°,∴∠ABE =∠DA C .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴DCAEDA AB =.∵AB =D C .∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =n a ,∴n an naAB AD ==.第 11 页 共 11 页(3)若AD =4AB ,则AB =a n 4.当点F 落在线段BC 上时(如图2),EF =AE =AB =A .此时a n 4=a ,∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =900,则点F 落在AC 上,由(2)得n ABAB n AB AD ==4,即,∴n =16. ②若∠CGF =900(如图3),则∠CGD +∠AGF =90°.∵∠F AG +∠AGF =90°,∴∠CGD =∠F AG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DG C .∴DC AE DG AB =.∴AB ·DC =DG ·AE ,即a a n a n ⋅-=)2()4(2,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).∴当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.。
2017年浙江省丽水市中考数学试卷-答案
4.【答案】B
【解析】7 个数据从小到排列的第 4 个数据是中位数,而 3 1 4 ,故中位数是 20 微克/立方米.故选 B.
【提示】一共有 7 个数据,∴中位数是这组数据从小到大排列时,排在第 4 位的数.
【考点】中位数,众数
5.【答案】A
【解析】 x2
1
x2
1
x2 1 (x 1)(x 1) x 1.故选 A.
AB
的距离是
d,由
S△OAB
1 2
OA2
1 2
d
AB
,则 4
2
2
d,
∴d 2.
(2)作 OD OC 2 ,则 PDC 45 ,如图,
4 / 11
由 y x m 可 得 A( m, 0,) B0 ( )m, , 则 可 得 OA OB , 则 OBA OAB 45 , 当 m 0 时 ,
小时,如果比 1.75 小时大,说明甲先到达 B 地,如果比 1.75 小时小,说明乙先到达 A 地,则作出判断后即
可求出甲行完全程所用的时间,以及速度,即可解答.
【考点】函数的图象
二、填空题
11.【答案】 m(m 2)
【解析】原式 m(m 2) .故答案为 m(m 2) .
【提示】先提取公因式.
S正方形ABCD
81 2
x(x
2)
22
142
,化简得
x2
2x
48
0
,解得
x1
6
,x2
8(舍去).∴正方形
EFGH
2017年浙江省丽水市中考数学试卷(含详细答案)
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前浙江省丽水市2017年初中毕业生学业考试数学(总分120分,考试时间120分钟)一、选择题(本题有10小题,每小题3分,共30分) 1.在数1,0,1-,2-中,最大的数是( ) A .2- B .1- C .0 D .12.计算23a a 的正确结果是( )A .5aB .6aC .8aD .9a 3.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4.根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是( )A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米5.化简2111x x x +--的结果是( )A .1x +B .1x -C .21x -D .211x x +-6.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是 ( )A .2m ≥B .2m >C .2m <D .2m ≤7.如图,在□ABCD 中,连结AC ,45ABC CAD ∠=∠= ,2AB =,则BC 的长是( )AB .2C. D .48.将函数2y x =的图象用下列方法平移后,所得的图象不经过点(1,4)A 的方法是( ) A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 9.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC =,则图中阴影部分的面积是 ( )A.4π3- B.4π3-C.2π3- D.2π3- 10.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象.下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:22m m += .12.等腰三角形的一个内角为100 ,则顶角的度数是 . 13.已知21a a +=,则代数式23a a --的值为 .14.如图,由6个小正方形组成的23⨯网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是 .15.我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形I J K L 的边长为2,且IJ AB ∥,则正方形EFGH 的边长为 .16.如图,在平面直角坐标系xOy 中,直线y x m =-+分别交x 轴,y 轴于A ,B 两点,已知点(2,0)C .(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 .(2)设点P 为线段OB 的中点,连结PA ,PC ,若CPA ABO ∠=∠,则m 的值是 .三、解答题(本题有8小题,共66分.各小题都必须写出解答过程)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)17.(本题6分)计算:011(2017)()3---18.(本题6分)解方程:(3)(1)3x x --=.19.(本题6分)如图是某小区的一个健身器材,已知0.15m BC =, 2.70m AB =,70BOD ∠= ,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin700.94 ≈,cos700.34 ≈,tan70 2.75 ≈)20.(本题8分)在全体丽水人民的努力下,我市剿灭劣V 类水“河道清淤”工程取得了阶段性成果.右下表是全市十个县(市、区)指标任务数的统计表;左下图是截止2017年3月31日和截至5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截至3月31日,完成进度(完成进度=累计完成数÷任务数100%⨯)最快、最慢的县(市、区)分别是哪一个?(2)求截至5月4日全市的完成进度.(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(本题8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v(1)根据表中的数据,求出平均速度(千米/小时)关于行驶时间t (小时)的函数表达式.(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由. (3)若汽车到达杭州市场的行驶时间t 满足3.54t ≤≤,求平均速度v 的取值范围.22.(本题10分)如图,在Rt ABC △中,Rt C ∠=∠,以BC 为直径的O 交AB 于点D ,切毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共20页) 数学试卷 第6页(共20页)线DE 交AC 于点E . (1)求证:A ADE ∠=∠.(2)若16AD =,10DE =,求BC 的长.23.(本题10分)如图1,在ABC △中,30A ∠= ,点P 从点A 出发以2cm/s 的速度沿折线A CB --运动,点Q 从点A 出发以(cm/s)a 的速度沿AB 运动.P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动,设运动时间为(s)x ,APQ △的面积为2(cm )y ,y 关于x 的函数图象由1C ,2C 两段组成,如图2所示.(1)求a 的值.(2)求图2中图象2C 段的函数表达式.(3)当点P 运动到线段BC 上某一段时APQ △的面积,大于当点P 在线段AC 上任意一点时APQ △的面积,求x 的取值范围.24.(本题12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF AF ⊥交AD 于点G ,设ADn AE=.(1)求证:AE GE =.(2)当点F 落在AC 上时,用含n 的代数式表示ADAB的值. (3)若4AD AB =,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.数学试卷 第7页(共20页) 数学试卷 第8页(共20页)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)有下面2种,则概率为63.1(2)作,则,如图,答:端点A到地面CD的距离约是1.1m.20010÷⨯数学试卷第11页(共20页)数学试卷第12页(共20页)数学试卷 第13页(共20页) 数学试卷 第14页(共20页)的函数表达式为t ..数学试卷 第15页(共20页) 数学试卷 第16页(共20页)∴∴2333.115∴.∴.n直角三角形.数学试卷第17页(共20页)数学试卷第18页(共20页)数学试卷第19页(共20页)数学试卷第20页(共20页)。
2017年浙江省丽水市中考数学试卷
2017年浙江省丽水市中考数学试卷、选择题(本大题共10小题,每小题3分,共30 分)1, 0,- 1, - 2中,取大的数疋()1. (3分)在数A . - 2B. - 1C. 0D. 12. (3分)计a2?a3的正确结果是()算5689A . a B. a C. a D. a3.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()主视方向A •俯视图与主视图相同B •左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4. (3分)根据PM2.5空气质量标准:24小时PM2.5均值在O s35 (微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5 一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930A . 21微克/立方米B . 20微克/立方米C. 19微克/立方米 D . 18微克/立方米5. (3分)化简——的结果是()A . x+1B . x- 1C . x2- 1D .6. (3分)若关于x的元一次方程x-m+2 = 0的解是负数,贝U m的取值范围是()A . m > 2B . m > 2C . m v 2D . m W 27. (3分)如图,在?ABCD中,连结AC, / ABC = Z CAD = 45°,AB= 2,贝U BC的长是( )A . -B . 2C . 2 ~D . 4& ( 3分)将函数y = x 2的图象用下列方法平移后,所得的图象不经过点A (1, 4)的方法是( )B .甲的速度是80千米/小时C •甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早一小时二、填空题(本大题共 6小题,每小题4分,共24分)211. (4分)分解因式: m +2m = _________A .向左平移1个单位C .向上平移3个单位9. ( 3分)如图,点 C 是以AB 为直径的半圆 积是()B .向右平移 3个单位 D .向下平移 1个单位O 的三等分点, AC = 2,则图中阴影部分的面C.—D.——10. (3分)在同一条A 地到B 地,乙车从B 地到A 地,乙先出发,图中的 y (千米)与行驶时间 x (小时)的函数关系的图象, B12. (4分)等腰三角形的一个内角为_ 100。
2017年浙江省丽水市中考数学试题及答案(word版)
数学
第I 卷(共30分)
、选择题:本大题共 10个小题,每小题3分,共30分在每小题给出的四个选项中,只有
项是
符合题目
要求的
1在数1, 0 , -1 , -2中,最大的数是( )
A . -2
B . -1
C . 0
D . 1
2•计算a 2 a 3的正确结果是(
)
八
5 4
小
8 9
A . a
B . a
C . a
D . a
3•如图是底面为正方形的长方体,则有关它的三个视图的说法正确的是(
)
主视方向
4.根据PM 2.5空气质量标准:24小时PM 2.5均值在0 ~ 35 (微克/立方米)的空气质量等 级为优•将环保部门对我市 PM 2.5 一周的检测数据制成如图统计表,这组 PM 2.5数据的
中位数是(
) 天数
3 1 1 1 1 PM 2.5
18
20
21
29
30
A . 21微克/立方米
B . 20微克/立方米
C . 19微克/立方米
D .18微克/立方米
x 2
1
5•化简一
——的结果是(
)
X —1 1 -X
2 ,
x 2 1
B . X -1
C . x -1
D .
x —1
6•若关于x 的一元一次方程x - m ,2=0的解是负数,贝U m 的取值范围是(
)
A •俯视图与主视图相同 C .左视图与俯视图相同
B •左视图与主视图相同
D .三个视图都相同。
2017年浙江省丽水市中考数学试卷含答案
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前浙江省丽水市2017年初中毕业生学业考试数 学(总分120分,考试时间120分钟)一、选择题(本题有10小题,每小题3分,共30分) 1.在数1,0,1-,2-中,最大的数是( ) A .2- B .1-C .0D .12.计算23a a 的正确结果是( )A .5aB .6aC .8aD .9a 3.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4.根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是( )A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米5.化简2111x x x +--的结果是( )A .1x +B .1x -C .21x -D .211x x +-6.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是 ( )A .2m ≥B .2m >C .2m <D .2m ≤7.如图,在□ABCD 中,连结AC ,45ABC CAD ∠=∠=,2AB =,则BC 的长是( )AB .2C. D .48.将函数2y x =的图象用下列方法平移后,所得的图象不经过点(1,4)A 的方法是 ( ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移1个单位9.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC =,则图中阴影部分的面积是 ( )A.4π3- B.4π3-C.2π3- D.2π3- 10.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象.下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:22m m += .12.等腰三角形的一个内角为100,则顶角的度数是 . 13.已知21a a +=,则代数式23a a --的值为 .14.如图,由6个小正方形组成的23⨯网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是 .15.我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ AB ∥,则正方形EFGH 的边长为 .16.如图,在平面直角坐标系xOy 中,直线y x m =-+分别交x 轴,y 轴于A ,B 两点,已知点(2,0)C .(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 .(2)设点P 为线段OB 的中点,连结PA ,PC ,若CPA ABO ∠=∠,则m 的值是 . 三、解答题(本题有8小题,共66分.各小题都必须写出解答过程)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)17.(本题6分)计算:011(2017)()3---18.(本题6分)解方程:(3)(1)3x x --=.19.(本题6分)如图是某小区的一个健身器材,已知0.15m BC =, 2.70m AB =,70BOD ∠=,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin700.94≈,cos700.34≈,tan70 2.75≈)20.(本题8分)在全体丽水人民的努力下,我市剿灭劣V 类水“河道清淤”工程取得了阶段性成果.右下表是全市十个县(市、区)指标任务数的统计表;左下图是截止2017年3月31日和截至5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截至3月31日,完成进度(完成进度=累计完成数÷任务数100%⨯)最快、最慢的县(市、区)分别是哪一个?(2)求截至5月4日全市的完成进度.(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(本题8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v(1)根据表中的数据,求出平均速度(千米/小时)关于行驶时间t (小时)的函数表达式.(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由. (3)若汽车到达杭州市场的行驶时间t 满足3.54t ≤≤,求平均速度v 的取值范围.22.(本题10分)如图,在Rt ABC △中,Rt C ∠=∠,以BC 为直径的O 交AB 于点D ,切毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共20页) 数学试卷 第6页(共20页)线DE 交AC 于点E . (1)求证:A ADE ∠=∠.(2)若16AD =,10DE =,求BC 的长.23.(本题10分)如图1,在ABC △中,30A ∠=,点P 从点A 出发以2cm/s 的速度沿折线A CB --运动,点Q 从点A 出发以(cm/s)a 的速度沿AB 运动.P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动,设运动时间为(s)x ,APQ △的面积为2(cm )y ,y 关于x 的函数图象由1C ,2C 两段组成,如图2所示. (1)求a 的值.(2)求图2中图象2C 段的函数表达式.(3)当点P 运动到线段BC 上某一段时APQ △的面积,大于当点P 在线段AC 上任意一点时APQ △的面积,求x 的取值范围.24.(本题12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF AF ⊥交AD 于点G ,设ADn AE=. (1)求证:AE GE =.(2)当点F 落在AC 上时,用含n 的代数式表示ADAB的值. (3)若4AD AB =,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.2323a a +==【提示】由同底数幂的乘法法则,底数不变,指数相加,则可得2323a a +=,即可得答在ABCD中,==,AB2由平行四数学试卷第7页(共20页)数学试卷第8页(共20页)【解析】任选5个小正方形,有6种选法,是轴对称图形的有下面2种,则概率为63.Array1数学试卷第9页(共20页)数学试卷第10页(共20页)数学试卷 第11页(共20页) 数学试卷 第12页(共20页)(2)作,则,如图,答:端点A 到地面CD 的距离约是1.1m .数学试卷 第13页(共20页) 数学试卷 第14页(共20页)100%85.9%=300是O 的切线,90B +∠=︒是O 的直径,是O 的切线,∴10=,∴AC 22016=-x ,在Rt △数学试卷 第15页(共20页) 数学试卷 第16页(共20页)∴,解得,∴.是O 的切线,的值,211(102)33x x x -=-+3<1sin 3022PA xx ︒==,∴21122y AQ PD ax x ax ===.由图象得,当1x =时,12y =,则211122a =.sin (102)sin PB B x B =-,∴11(102)22y AQ PD x x sinB ==-.由图象得,当4x =时,43y =,∴144(108)sin 23B ⨯⨯=,,∴1sin 3B =. ∴2115(102)2333x x x -=-+.115(AQ AQ 上的高,由A ∠1s i n 3022P A x x ︒==,关于x 的解析式,代入点1,⎛ ⎝数学试卷 第17页(共20页) 数学试卷 第18页(共20页)2AD AE na a na ==,∵.nAB DC DG AE =,即4a Aa ⎝.8424-<(不合题意,舍去)∴当或时,以点F ,C ,G 为顶点的三角形是直角三角形.数学试卷 第19页(共20页) 数学试卷 第20页(共20页)个,90FCG ∠=︒,90CFG ∠=︒,90CGF ∠=︒;根据点F 在矩形ABCD 的内部就可排除90FCG ∠=︒,所以就以90CFG ∠=︒和90CGF ∠=︒进行分析解答. 【考点】矩形的性质,解直角三角形的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930 A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表县(市、区)任务数(万方)A25B25C20D12E13F25G16H25I11J28合计200(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.2.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.3.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930 A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.7.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.8.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)12.(4分)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:214.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.18.(6分)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表县(市、区)任务数(万方)A25B25C20D12E13F25G16H25I11J28合计200(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt △BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.。