初中数学特殊平行四边形的证明及详细答案模板
中考特殊平行四边形证明及计算经典习题及答案
中考特殊平行四边形证明及计算经典习题及答案金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一、解答题1、(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF 过点O,分别交AD,BC于点E,F、求证:AE=CF、(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I、求证:EI=FG、考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题)、分析:(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF、(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG、解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG、点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质、此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用、2、在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F、若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB、请直接应用上述信息解决下列问题:当点P分别在△ABC 内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明、考点:平行四边形的性质、专题:探究型、分析:在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF﹣PD=CF,即PF﹣PD+PE=AC=AB、解答:解:图2结论:PD+PE+PF=AB、证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM、∵四边形BDPM是平行四边形,∴MB=PD、∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB、图3结论:PE+PF﹣PD=AB、点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键、3、如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F、(1)若点D 是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由、考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质、专题:证明题、分析:(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC、解答:(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30,∵△AED是等边三角形,∴AD=AE,∠ADE=60,∴∠EDB=90﹣∠ADE=90﹣60=30,∵ED∥CF,∴∠FCB=∠EDB=30,∵∠ACB=60,∴∠ACF=∠ACB﹣∠FCB=30,∴∠ACF=∠BAD=30,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD、(2)解:△AEF和△ABC的面积比为:1:4;(3)解:成立、理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60+∠BCF,∠BDA=∠ADE+∠EDB=60+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF 中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC、点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握、此题涉及到的知识点较多,综合性较强,难度较大、4、如图,在菱形ABCD中,AB=10,∠BAD=60度、点M从点A 以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10)、(1)点N为BC边上任意一点,在点M 移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M 出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P、当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值、考点:菱形的性质;二次函数的最值;全等三角形的性质、专题:压轴题、分析:(1)菱形被分割成面积相等的两部分,那么分成的两个梯形的面积相等,而两个梯形的高相等,只需上下底的和相等即可、(2)易得菱形的高,那么用t表示出梯形的面积,用t的最值即可求得梯形的最大面积、(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可、解答:解:(1)设:BN=a,CN=10﹣a(0≤a≤10)因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)所以,AM=1t=t(0≤t≤10),MD=10﹣t (0≤t≤10)、所以,梯形AMNB的面积=(AM+BN)菱形高2=(t+a)菱形高2;梯形MNCD的面积=(MD+NC)菱形高2=[(10﹣t)+(10﹣a)]菱形高2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10,(0≤t≤10),(0≤a≤10)所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分、(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,因为AB=10,∠BAD=60,所以菱形高=5,AM=1t=t,BN=2t=2t、所以梯形ABNM的面积=(AM+BN)菱形高2=3t5=t(0≤t≤5)、所以当t=5时,梯形ABNM的面积最大,其数值为、(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25;因为要全等必有MN∥AC,∴N在C点外,所以不重合处面积为(at﹣10)2∴重合处为S=25﹣,当S=0时,即PM在CD上,∴a=2、点评:本题考查了菱形以及相应的三角函数的性质,注意使用两条平行线间的距离相等等条件、5、如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形、请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形)、(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系、考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理、分析:(1)①先证明是平行四边形,再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形,再根据对角线互相垂直证明是菱形;(2)先作一条对角线,在作出它的垂直平分线分别与矩形的边相交,连接四个交点即可、(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论、解答:解:(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵矩形ABCD,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90,∵E、F、G、H是中点,∴AE=BE=CG=DG,AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH 是菱形;若选(Ⅲ),证明如下∵EF垂直平分AC,∴FA=FC,EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴A F=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示:AH=CF,EG垂直平分对角线FH,四边形HEFG是菱形;(3)SABGH=a2 ,SEFGH=ab,S菱形AECF=,∵﹣a2==>0(b>a)∴S菱形AECF>SABGH、∵﹣ab===>0,∴S菱形AECF>SEFGH、∵a2 ﹣ab=a(a﹣b)∴当a>b,即0<b<2a时,S菱形ABGH>S菱形EFGH;当a=b,即b=2a 时,S菱形ABGH=S菱形EFGH;当a<b,即b>a时,S菱形ABGH<S菱形EFGH、综上所述:当O<b<2a时,SEFGH<SABGH<S菱形AECF、当b=2a时,SEFGH=SABGH<S菱形AECF、当b>2a时SABGH<SEFGH<S菱形AECF、点评:本题主要考查了菱形的判定与性质,三角形中位线定理,全等三角形的判定与性质以及矩形的性质等知识点、注意第(3)题需要分类讨论,以防错解、6、在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG、(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120,请直接写出∠BDG 的度数、考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质、分析:(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90可得到∠BDM的度数;(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形、由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案、解答:解:(1)证明:∵AF 平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形、(2)如图,连接BM,MC,∵∠ABC=90,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90,∴四边形ECFG为正方形、∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45,∴∠BEM=∠DCM=135,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME、∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90,∴△BMD是等腰直角三角形,∴∠BDM=45;(3)∠BDG=60,延长AB、FG交于H,连接HD、∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120,AF平分∠BAD,∴∠DAF=30,∠ADC=120,∠DFA=30,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD 为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60、点评:此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法、7、在△ABC中,∠BAC=90,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上,其他条件不变,写出∠AFC、∠ACB、∠DAC的关系,并结合图2给出证明;(2)若点D在CB 延长线上,其他条件不变,直接写出∠AFC、∠ACB、∠DAC的关系式、考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质、专题:几何综合题、分析:(1)∠AFC、∠ACB、∠DAC的关系为:∠AFC=∠ACB﹣∠DAC,理由为:由四边形ADEF为正方形,得到AD=AF,且∠FAD为直角,得到∠BAC=∠FAD,等式左右两边都加上∠CAD得到∠BAD=∠CAF,再由AB=AC,AD=AF,利用SAS可得出三角形ABD与三角形ACF全等,根据全等三角形的对应角相等可得出∠AFC=∠ADB,又∠ACB为三角形ACD的外角,利用外角的性质得到∠ACB=∠ADB+∠D AC,变形后等量代换即可得证;(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180,可以根据∠DAF=∠BAC=90,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180,等量代换可得证、解答:解:(1)关系:∠AFC=∠ACB﹣∠DAC,…(2分)证明:∵四边形ADEF为正方形,∴AD=AF,∠FAD=90,∵∠BAC=90,∠FAD=90,∴∠BAC+∠CAD=∠FAD+∠CAD,即∠BAD=∠CAF,…(3分)在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),…(4分)∴∠AFC=∠ADB,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADB+∠DAC,…(5分)∴∠ADB=∠ACB﹣∠DAC,∵∠ADB=∠AFC,∴∠AFC=∠ACB﹣∠DAC;…(6分)(2)∠AFC、∠ACB、∠DAC满足的关系式为:∠AFC+∠DAC+∠ACB=180,…(8分)证明:∵四边形ADEF为正方形,∴∠DAF=90,AD=AF,又∠BAC=90,∴∠DAF=∠BAC,∴∠DAF﹣∠BAF=∠BAC﹣∠BAF,即∠DAB=∠FAC,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,在△ADC中,∠ADB+∠ACB+∠DAC=180,则∠AFC+∠ACB+∠DAC=180、点评:此题考查了正方形的性质,全等三角形的判定与性质,三角形的内角和定理,以及三角形的外角性质,熟练掌握判定及性质是解本题的关键、8、已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON、(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系、考点:正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质、专题:代数几何综合题、分析:(1)根据正方形的性质得出DC=BC,∠DCB=∠CBN=90,求出∠CPD=∠DCN=∠CNB,证△DCP≌△C BN,求出CP=BN,证△OBN≌△OCP,推出ON=OP,∠BON=∠COP,求出∠PON=∠COB即可;(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可、解答:(1)证明:如图1,∵正方形ABCD,∴OC=OB,DC=BC,∠DCB=∠CBA=90,∠OCB=∠OBA=45,∠DOC=90,DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90,∴∠BCN+∠CPD=90,∠PCN+∠DCN=90,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中,∴△DCP≌△CBN,∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP,∴ON=OP,∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90,∴ON⊥OP,即ON=OP,ON⊥OP、(2)解:∵AB=4,四边形ABCD是正方形,∴O 到BC边的距离是2,图1中,S四边形OPBN=S△OBN+S△BOP,=(4﹣x)2+x2,=4(0<x<4),图2中,S四边形OBNP=S△POB+S△PBN=x2+(x﹣4)x=x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:、点评:本题考查了正方形性质,全等三角形的性质和判定,分段函数等知识点的应用,解(1)小题的关键是能运用性质进行推理,解(2)的关键是求出符合条件的所有情况,本题具有一定的代表性,是一道比较好的题目,注意:证明过程类似、9、如图,四边形ABCD是正方形,点E,K分别在BC,AB 上,点G在BA的延长线上,且CE=BK=AG、(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值、考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图、分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值、解答:(1)证明:∵四边形ABCD 是正方形,∴DC=DA,∠DCE=∠DAG=90、又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90,∴∠ADE+∠GDA=90∴DE⊥DG、(2)解:如图、(3)解:四边形CEFK为平行四边形、证明:设CK、DE相交于M点∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD 是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90,∴∠KME+∠DEF=180,∴CK∥EF,∴四边形CEFK为平行四边形、(4)解:∵,∴设CE=x,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,∵BC2=n2x2,∴==、点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂、10、如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点、(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由、考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质、分析:(1)根据点P 在线段AO上时,利用三角形的全等判定可以得出PE⊥P D,PE=PD;(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要证PE⊥PD;从三方面分析,当点E在线段BC上(E与B、C不重合)时,当点E与点C重合时,点P恰好在AC中点处,当点E在BC的延长线上时,分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案、解答:解:(1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴P E=PD,过点P做PM⊥CD,于点M,作PN⊥BC,于点N,∵PB=PE,PN⊥BE,∴BN=NE,∵BN=DM,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE,NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90,∴∠DPE=90,故PE⊥PD,PE与PD 的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD、(i)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD、(ii)当点E在BC的延长线上时,如图、∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90,∴PE⊥PD、综合(i)(ii),PE⊥PD;(3)同理即可得出:PE⊥PD,PD=PE、点评:此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识,此题涉及到分类讨论思想,这是数学中常用思想同学们应有意识的应用、巩固训练:1、如图,矩形ABCD的对角线交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,连接AF,CE、(1)求证:四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G,则△ACG 是等腰三角形吗?并说明理由、考点:平行四边形的判定;全等三角形的判定;等腰三角形的判定;矩形的性质、专题:证明题;几何综合题;探究型、分析:(1)根据矩形的性质可知:AB=CD,∠ABE=∠CDF,∠AEB=∠CFD=90,得到△ABE≌△CDF,所以AE∥CF,AE=CF,可证四边形AECF为平行四边形;(2)因为AE∥FG,得到∠G=∠GAE、利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO、所以∠CAG=∠G,可得△CAG是等腰三角形、解答:(1)证明:∵矩形ABCD,∴AB∥CD,AB=CD、∴∠ABE=∠CDF,又∠AEB=∠CFD=90,∴AE∥CF,∴△ABE≌△CDF,∴AE=CF、∴四边形AECF为平行四边形、(2)解:△ACG是等腰三角形、理由如下:∵AE∥FG,∴∠G=∠GAE、∵AG平分∠BAD,∴∠BAG=∠DAG、又OA=AC=BD=OD,∴∠ODA=∠DAO、∵∠BAE与∠ABE互余,∠ADB与∠ABD互余,∴∠BAE=∠ADE、∴∠BAE=∠DAO,∴∠EAG=∠CAG,∴∠CAG=∠G,∴△CAG是等腰三角形、点评:本题考查三角形全等的性质和判定方法以及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL、判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件、2、如图,在Rt△ABC中,∠BAC=90,E,F 分别是BC,AC的中点,延长BA到点D,使AD=AB、连接DE,DF、(1)求证:AF与DE互相平分;(2)若BC=4,求DF的长、考点:平行四边形的判定、专题:计算题;证明题、分析:(1)连接EF、AE,证四边形AEFD是平行四边形即可、(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可、解答:(1)证明:连接EF,AE、∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB、又∵AD=AB,∴EF=AD、又∵EF∥AD,∴四边形AEFD是平行四边形、∴AF与DE互相平分、(2)解:在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2、又∵四边形AEFD是平行四边形,∴DF=AE=2、点评:本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半、3、如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF、请回答下列问题:(1)求证:四边形ADEF是平行四边形;(2)当△ABC满足什么条件时,四边形ADEF 是矩形、考点:平行四边形的判定;等边三角形的性质;矩形的判定、专题:证明题;探究型、分析:1、本题可根据三角形全等证得DE=AF,AD=EF,即可知四边形ADEF是平行四边形2、要使四边形ADEF是矩形,必须让∠FAD=90,则∠BAC=360﹣90﹣60﹣60=150解答:证明:(1)∵等边△ABD、△BCE、△ACF,∴DB=AB,BE=BC、又∠DBE=60﹣∠EBA,∠ABC=60﹣∠EBA,∴∠DBE=∠ABC、∴△DBE≌△CBA、∴DE=AC、又∵AC=AF,∴AF=DE、同理可证:△ABC≌△FCE,证得EF=AD、∴四边形ADEF是平行四边形、(2)假设四边形ABCD是矩形,∵四边形ADEF是矩形,∴∠DAF=90、又∵等边△ABD、△BCE、△ACF,∴∠DAB=∠FAC=60、∴∠BAC=360﹣∠DAF﹣∠FAC﹣∠DAB=150、当△ABC满足∠BAC=150时,四边形ADEF是矩形、点评:此题主要考查了等边三角形的性质和平行四边形的判定、4、已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点、(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上、设BM与EF相交于点N,求证:四边形ANGM是菱形;(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP 的长、考点:菱形的判定;矩形的性质、专题:计算题;证明题、分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD∥EF∥BC、∴MO:ON=AO:OG=1:1,∴MO=NO;(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=,求得PA=、解答:(1)证明:设AG交MN于O,则∵A、G关于BM对称,∴AO=GO,AG⊥MN、∵E、F分别是矩形ABCD中AB、CD的中点,∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC、∴MO:ON=AO:OG=1:1、∴MO=NO、∴AG与MN互相平分且互相垂直、∴四边形ANGM是菱形、(2)解:连接AF,∵AD∥EF∥BC,∴∠PAF=∠AFE,∠EFB=∠FBC、又∵EF⊥AB,AE=BE,∴AF=BF,∴∠AFE=∠EFB、∴∠PAF=∠AFE=∠EFB=∠FBC、∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC、∴∠PFA=∠FBC=∠PAF、∴PA=PF、∴在Rt△P FD中,根据勾股定理得:PA=PF=,解得:PA=、点评:本题主要考查菱形和平行四边形的识别及推理论证能力、对角线互相垂直平分的四边形是菱形、5、如图1,在△ABC中,AB=BC=5,AC=6、△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE 相交于点O、(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R、四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积、考点:菱形的判定与性质、专题:动点型;数形结合、分析:(1)利用平移的知识可得四边形ABCE是平行四边形,进而根据AB=BC可得该四边形为菱形;(2)利用证明三角形全等可得四边形PQED的面积为三角形BED的面积,所以不会改变;进而利用三角形的面积公式求解即可、解答:解:(1)四边形ABCE是菱形,证明如下:∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,∴四边形ABCE是平行四边形,(2分)又∵AB=BC,∴四边形ABCE是菱形、(4分)(2)由菱形的对称性知,△PBO≌△QEO,∴S△PBO=S△QEO(7分)∵△ECD是由△ABC平移得到的,∴ED∥AC,ED=AC=6,又∵BE⊥AC,∴BE⊥ED,(8分)∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=BEED=86=24、(10分)点评:考查菱形的判定及相关性质;把不规则图形的面积转化为较简单的规则图形的面积是解决本题的关键、6、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点、(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由、考点:矩形的判定与性质;平行四边形的判定;菱形的判定、分析:(1)根据三角形的中位线的性质和平行四边形的判定定理可证明、(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值、(3)四边形PMEN是矩形的话,∠DPC必需为90,判断一下△DPC是不是直角三角形就行、解答:解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,∵PA=PB=5,AD=BC,∠A=∠B=90,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PMPD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)假设△DPC为直角三角形、设PA=x,PB=10﹣x,DP=,CP=、DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8、故当AP=2或AP=8时,能够构成直角三角形、点评:本题考查平行四边形的判定,菱形的判定定理,以及矩形的。
特殊平行四边形专题含答案
特殊平行四边形专题一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=______;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=_______;(2)求证:∠ADF=∠EDF;(3)求DE的长.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.特殊平行四边形专题参考答案与试题解析一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.解:∵四边形形ABCD是正方形,∴AB=AD=DC,∠BAD=∠D=90°,又∵DE=CF,∴AE=DF,∴在△BAE和△ADF中,,∴△BAE≌△ADF(SAS).∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AGB=90°,∴BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,又∵AE⊥BF,∴四边形ABEF是菱形;(2)解:∵菱形ABEF的周长为16,∴AB=BE=4,AB∥EF,∴∠ABE=180°﹣∠BEF=180°﹣120°=60°,∴△ABE是等边三角形,∴AE=AB=4.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FEB=∠FGD,∠FBE=∠FDG,∵F是BD的中点,∴BF=DF,在△BEF和△DGF中,,∴△BEF≌△DGF(AAS);(2)由(1)得:△BEF≌△DGF,∴BE=DG,∵BE∥DG,∴四边形DEBG是平行四边形,∵∠ADB=90°,E是AB的中点,∴DE=AB=BE,∴四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.解:(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.解:(1)证明:∵正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AF=DE,AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形不能是平行四边形.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵四边形ABCD为矩形,∴∠BAC=90°,∵AB=3,AD=4,∴BD=5,∵S△ABD=AB•AD=BD•AE,∴3×4=5AE,∴AE=,∵AC=BD=5,∴AO=AC=,∵AE⊥BD,∴OE===,∴△AEO的面积==.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=1,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=1,∴△OEC的面积=•EC•OF=.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵BO=DO,EF⊥BD,∴ED=EB,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥DC,∠ABC=90°,∵BC=BE,∴CE=BC,∵AB=BC,∴CD=CE,∴∠CDE=∠CED,∵AB∥CD,∴∠CDE=∠AED,∴∠AED=∠DEC,∴DE平分∠AEC;(2)∵BC=BE,∠CBE=90°,∴∠BCE=∠BEC=45°,∵CD∥AB,∴∠DCE=∠BEC=45°,∵DF⊥CE,∴∠CDF=45°,∴DF=CF,∴CD=DF,∵AB=CD,AB=,BC=BE,∴BE=DF=CF=BC,∵∠ADC=90°,∴∠FDG=45°,∴∠BEF=∠EDF,∵BC=CF,∠BCF=45°,∴∠CBF=∠CFB=67.5°,∴∠EBF=90°﹣67.5°=22.5°,∠DFG=180°﹣67.5°﹣90°=22.5°,∴∠EBF=∠DFG,在△DFG和△EBF中,∴△DFG≌△EBF(ASA),∴DG=EF,∵EF=CE﹣CF=AB﹣BC=,∴DG=2.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=5;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.解:(1)∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵DE=CD,∴DE=AB,∴四边形ABDE是平行四边形.(2)∵AD=DE=4,∠ADE=90°,∴AE=4,∴BD=AE=4.在Rt△BAD中,O为BD中点,∴AO=BD=2.∵AD=CD,∴矩形ABCD是正方形,∴∠EAO=∠OAD+∠DAE=45°+45°=90°,∴OE=2.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=3;(2)求证:∠ADF=∠EDF;(3)求DE的长.解:(1)∵AE⊥BC,∴∠AEB=90°,∵AD=6,F为AB边中点,∴EF=AB=AD=3.故答案为:3;(2)延长EF交DA于G,∵AD∥BC,∴∠G=∠FEB,∠GAB=∠B,∵AF=BF,∴△AGF≌△BEF(AAS),∴GF=EF,∵DF⊥EF,∴DG=DE,∴∠ADF=∠EDF;(3)设BE=x,则AG=x,则DE=DG=6+x,∵AE2=AB2﹣BE2=62﹣x2,AE2=DE2﹣AD2=(x+6)2﹣62,∴62﹣x2=(x+6)2﹣62,解得x=﹣3±3,∴BE=﹣3+3,∴DE═﹣3+3+6═3+3.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、点F分别是OB、OD的中点,∴OE=OB,OF=OD,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥AB,∠AOB=60°,∴∠ABO=30°,∴OA=OB=OE,∴AC=EF,∴四边形AECF为矩形;(2)解:由(1)得:OA=OE=OC=OF,∠AOB=60°,∠ABO=30°,∴△OAE是等边三角形,∠OF A=∠OAF=30°=∠ABO,∴AE=OA,AF=AB=3,∵AC⊥AB,∴∠OAB=90°,∴AE=OA=AB=,∴矩形AECF的面积=AF×AE=3.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.(1)证明:∵BD⊥AC于点D,CE⊥AB于点E,∴∠BDC=∠BEC=90°,∵BF=CF,∴DF=EF=BC.(2)解:∵FE=FB=FC=FD,∴∠FBE=∠FEB,∠FCD=∠FDC,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠DFC=180°﹣2∠ABC+180°﹣2∠ACB=120°,∴∠EFD=60°,∵EF=DF,∴△EFD是等边三角形,∵EF=BC=3,∴△DEF使得周长为9.(3)∵EC=BF,BF=CF,∴EC=BC,∴cos∠BCE=,∴∠ECB=45°,∵BC=6,∴EB=EC=3,∵∠A=60°,∠AEC=90°,∴AE=×3=,∴AB=BE+AE=3+,在Rt△ADB中,∵∠ABD=30°,∴AD=AB=,∴S四边形EFDA=S△EDF+S△ADE=×32+×××=3+.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.。
特殊平行四边形证明
特殊平行四边形证明
证明如下:
首先,我们假设有一个平行四边形ABCD,其中AB∥CD,并且AC与BD相交于O。
由于AB∥CD,所以有∠BAD=∠BCD(对应角)、∠ABD=∠ACD(同位角)。
又由于平行四边形的两组对角线互相平分,所以我们可以得到两个重要的等角关系:
∠BAO=∠DAO (1)
∠CAO=∠CDO (2)
然后,我们在平行四边形ABCD中作AO的垂线,垂足为O',并且连接CO'和DO'。
由于AO是ABCD的对角线,根据垂心定理,AO是CO'与DO'的公共垂线。
所以CO'和DO'垂直于AO,即∠CO'O=∠DO'O=90°。
又根据(1),∠BAO=∠DAO,我们可以得到三角形BAO和DAO是相似三角形。
同理可得三角形CAO和CDO是相似三角形。
由于相似三角形的性质,我们可以得到以下比例关系:
OA/OD=BA/AD (3)
OA/OC=DA/CA (4)
QA:QD=QO:OA=QO:OD (5)
PA:PB=PO:OA=PO:OC (6)
其中,P和Q是AO的中点。
根据三角形的相似比例关系,我们可以进一步得到:OA/OD=OB/OC,并且DA/CA=DB/CB。
由于BA∥CD,所以根据平行四边形的内角性质,我们可以得到
∠ADB=∠BCA(同位角)。
综上所述,我们证明了平行四边形ABCD的对角线互相平分,并且有直角相等,即一个特殊平行四边形。
证毕。
(人教版)八年级数学下册19.2特殊的平行四边形含答案
19.2特殊的平行四边形1.已知:AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加条件是___________________. 2.若四边形ABCD 为平行四边形,请补充条件 使得四边形ABCD 为菱形. 3.如图1,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB =2∠BOC , 若对角线 AC =6cm ,则周长= ,面积= 。
4.如图2,菱形ABCD 的边长为8cm ,∠BAD =120°,则AC= ,BD= , 面积= 。
5.如图3,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C重合)且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是图1 图2 图36. 已知:如图3,O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,∠AEO .7. 如图4,四边形ABCD 是菱形. 对角线AC=8㎝,DB=6㎝,DH ⊥AB 与H. DH= 。
8.如图5,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E ,若8AD cm ,则OE 的长为 cm .图3 图49.已知如图,菱形ABCD 中,∠ADC =120°,AC =123㎝, (1)求BD 的长;(2)求菱形ABCD 的面积, (3)写出A 、B 、C 、D 的坐标.10.如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且 DP =OC ,连结B A DCOA BCDABDCOH图5ABDCEABCODCP ,试判断四边形CODP 的形状.并证明。
如果题目中的矩形变为菱形(图一),结论应变为什么? 如果题目中的矩形变为正方形(图二),结论又应变为什么?10.以△ABC 的边AB 、AC 为边作等边△ABD 和 等边△ ACE ,四边形ADFE 是平行四边形.① 当∠BAC 等于 时, 四边形ADFE 是矩形;② 当∠BAC 等于 时, 平行四边形ADFE 不存在;③ 当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形、正方形.11.如图1:正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上的一点,连接EB ,过点A 作AM ⊥BE ,垂足M ,AM 交BD 于点F . ①求证OE =OF ;②如图2所示,若点E 在AC 的延长线上,AM ⊥EB 的延长线于点M ,交DB 的延长线于AODPB CPCDOBA图二B CAEF DA BD C OP 图一点F ,其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由ABC D O F EM图1ABC DFEM O图2。
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20【答案】C【解析】∵四边形ABCD是菱形,∴AB=AD,又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【解析】设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.20【答案】B【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.5.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.6.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.7.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个【答案】C【解析】先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC="90°" D.AG⊥BE【答案】C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.9.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C【解析】A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.10.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B【解析】由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.11.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形【答案】C【解析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.12.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_______度.【答案】65【解析】因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.13.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.14.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为_______.【答案】【解析】后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABCn On的面积为.15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【答案】AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.17.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.计算:∠PBA=∠PCQ=30°.【答案】解:∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.【解析】因为矩形的内角是直角,等边三角形的内角是60∘,所以根据这两个特殊角可以计算角的度数.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.19.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.【答案】解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB="AD" , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.【解析】(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC="CD" ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.20.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.。
特殊平行四边形的证明(讲义及答案)
特殊平行四边形的证明(讲义)➢知识点睛菱形已知条件中有某个特殊的四边形,往往从其性质着手考虑.要证明某个四边形是特殊的四边形,则需要考虑其判定或定义.在求解时,具体选择哪一条性质与判定,往往需要结合题目给出的条件进行分析.➢精讲精练1.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.DA EOB C F2.如图,在四边形ABCD中,AD∥BC,∠B=90°.AG∥CD,交BC于点G,E,F分别为AG,CD的中点,连接DE,FG,DG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形ABGD是矩形.A DFEB G C3.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,O为AB的中点,连接DO并延长至点E,使OE=DO,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形?请说明理由.O ED C BA4. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于点D ,交AB 于点E ,点F 在DE 上,且AF =CE =AE . (1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请说明理由.FED CBA5. 如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC的平行线交BE 的延长线于点F ,连接CF .若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.FEDCB6. 如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 边上,且AE =AF . (1)求证:BE =DF ;(2)连接AC ,交EF 于点O ,延长OC 至点M ,使OM =OA ,连接EM ,FM ,则四边形AEMF 是什么特殊四边形?请证明你的结论.MOFED C B A7. 如图,在△ABC 中,O 是AC 边上的一动点(不与点A ,C 重合),过点O作直线MN ∥BC ,直线MN 与∠BCA 的平分线相交于点E ,与∠DCA (△ABC 的外角)的平分线相交于点F .(1)当点O 运动到何处时,四边形AECF 是矩形?请证明你的结论. (2)在(1)的条件下,∠ACB 的大小为多少时,四边形AECF 为正方形(不要求说明理由)?ABCD E F NMOABC D8. 如图,□ABCD 的对角线AC ,BD 相交于点O ,BD =12 cm ,AC =6 cm ,点E在线段BO 上从点B 以1 cm/s 的速度运动,点F 在线段OD 上从点O 以2 cm/s 的速度运动.(1)若点E ,F 同时运动,设运动时间为t 秒,当t 为何值时,四边形AECF 是平行四边形;(2)在(1)的条件下,当AB为何值时,四边形AECF是菱形,为什么?9. 如图所示,在等边三角形ABC 中,BC =8 cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1 cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2 cm/s 的速度运动,设运动时间 为t (s ).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:四边形AFCE 是平行四边形; (2)填空:①当t 为_______s 时,四边形ACFE 是菱形;②当t 为_______s 时,△ACE 的面积是△ACF 的面积的2倍.GF E DCB A10. 如图所示,在△ABC 中,分别以AB ,AC ,BC 为边在BC 的同侧作等边△ABD ,等边△ACE ,等边△BCF ,连接DF ,EF . (1)求证:四边形DAEF 是平行四边形;(2)探究下列问题:(只填满足的条件,不需证明) ①当△ABC 满足____________条件时,四边形DAEF 是矩形; ②当△ABC 满足____________条件时,四边形DAEF 是菱形;③当△ABC 满足____________条件时,以D ,A ,E ,F 为顶点的四边形不存在.FEDCBA11. 顺次连接四边形各边中点,所得的四边形是_____________;顺次连接对角线__________的四边形的各边中点,所得的四边形是矩形;顺次连接对角线____________的四边形的各边中点,所得的四边形是菱形;顺次连接对角线______________的四边形的各边中点,所得的四边形是正方形.12. 如图,已知四边形ABCD 的两条对角线AC ,BD 互相垂直,四边形A 1B 1C 1D 1是中点四边形.若AC =3,BD =4,则四边形A 1B 1C 1D 1的面积为_______________.D 1C 1B 1A 1DC BA【参考答案】➢精讲精练1.(1)证明略.提示:先证AB=AD=BC,再证四边形ABCD是平行四边形,则四边形ABCD 是菱形.2.(1)证明略.提示:先证四边形AGCD是平行四边形,得到AG=CD,进而可得EG=DF,则四边形DEGF是平行四边形.(2)证明略.提示:先证明四边形ABGD是平行四边形,再结合∠B=90°,进而可得四边形ABGD是矩形.3.(1)证明略.提示:由OE=DO,AO=BO得,四边形AEBD是平行四边形;又因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC,进而得证四边形AEBD是矩形.(2)当△ABC是等腰直角三角形,即AB=AC,∠BAC=90°时,四边形AEBD 是正方形;理由略.4.(1)证明略.提示:先证AC∥EF,∠EAC=∠AEF,又AF=CE=AE,则∠EAF=∠AEC,AF∥CE,即证得四边形ACEF是平行四边形.(2)当∠B=30°时,四边形ACEF是菱形,理由略.5.四边形ADCF是菱形,证明略.6.(1)证明略.提示:证明△ABE≌△ADF.(2)四边形AEMF是菱形,证明略.7.(1)当点O运动到AC的中点时,四边形AECF是矩形,证明略;(2)当∠ACB=90°时,四边形AECF是正方形.8.(1)当t=2 s时,四边形AECF是平行四边形;(2)当AB=时,四边形AECF是菱形.9.(1)证明略;(2)①8;②165或163.10.(1)证明略;(2)①150°;②AB=AC≠BC;③∠BAC=60°.11.平行四边形;互相垂直;相等;互相垂直且相等12.3。
平行四边形证明题精选(初中数学)
平行四边形证明题精选(初中数学)1. 证明平行四边形的性质已知四边形ABCD,证明ABCD是平行四边形的方法有:- 证明对角线互相平分- 证明对边平行- 证明对边长度相等且对角线互相垂直证明对角线互相平分证明方法如下:1. 连接对角线AC和BD;2. 证明线段AC与线段BD的中点E重合,即AE=CE及BE=DE;3. 通过副诱导线的证明,得出结论:ABCD是平行四边形。
证明对边平行证明方法如下:1. 假设AB∥CD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。
证明对边长度相等且对角线互相垂直证明方法如下:1. 假设AB=CD且AC⊥BD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。
2. 平行四边形的性质应用在解决平行四边形证明题时,可以根据平行四边形的性质进行推导。
以下是一些常见的平行四边形证明题:证明1已知平行四边形ABCD,证明△ACF≌△EBD。
证明方法:1. 延长AC和BD相交于点F;2. 通过对角线互相平分的证明,得出△ACF≌△EBD。
证明2已知平行四边形ABCD,证明AF=CD。
证明方法:1. 连接AF;2. 通过对边平行的证明,得出AF≥CD;3. 通过对角线互相平分的证明,得出AF≤CD;4. 综合以上两个结论,得出AF=CD。
证明3已知平行四边形ABCD,证明∠DAB=∠BCD。
证明方法:1. 延长AD和BC相交于点E;2. 通过对角线互相平分的证明,得出∠DAB=∠BCD。
以上是初中数学中的一些平行四边形证明题示例及解题方法。
希望能对你的学习有所帮助!。
平行四边形经典证明题例题讲解
--经纬教育平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形AB CD 中,A B∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FAD CB连接∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.【关键词】多边形的内角和【答案】设xA=∠(度),则20+=∠xB,xC2=∠.根据四边形内角和定理得,360602)20(=++++xxx.解得,70=x.∴︒=∠70A,︒=∠90B,︒=∠140C.4.(如图,E F,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE==,,∥.ACAB CD∥DCABAC∠=∠B D AC CA∠=∠=,ABC△CDA△36AB CD BC AD====,ABCD183262=⨯+⨯=BDAB CD∥CDBABD∠=∠ABC CDA∠=∠ADBCBD∠=∠AD BC ABCD36AB CD BC AD====,ABCD183262=⨯+⨯=A DCBA DCB----求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=°12∠=∠ABDEFCADCBEBCE DA F PF90DAM ABE DA AB∠=∠==°,DAM ABE∴△≌△DM AE∴=AE EP=DM PE∴=∴四边形DMEP是平行四边形.解法②:在AB边上存在一点M,使四边形DMEP是平行四边形证明:在AB边上取一点M,使AM BE=,连接ME、MD、DP.90AD BA DAM ABE=∠=∠=,°Rt RtDAM ABE∴△≌△14DM AE∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM∴⊥AE EP⊥DM EP∴⊥∴四边形DMEP为平行四边形6.(2009年广州市)如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。
特殊平行四边形(讲义及答案)
特殊平行四边形(讲义)➢课前预习➢知识点睛1.菱形的定义:________________________________________.菱形的性质边:________________________________________________;对角线:____________________________________________;面积:______________________________________________.菱形的判定边:________________________________________________;对角线:____________________________________________.2.矩形的定义:________________________________________.矩形的性质角:________________________________________________;对角线:____________________________________________.矩形的判定角:________________________________________________;对角线:____________________________________________.3.正方形的定义:___________________________________________________.正方形的性质:________________________________________________________________________________________.正方形的判定:_________________________________________________________________________________________________________________________________________________________.➢精讲精练1.在菱形ABCD中,O是两条对角线的交点,已知BD=6,AC=8,则菱形ABCD的面积是_________,周长是_________.2.如图,菱形ABCD的对角线AC,BD相交于点O,OE⊥AB于点E.若∠ADC=130°,则∠AOE的度数为()A.75°B.65°C.55°D.50°EODC BAFED CBA第2题图第4题图3.若菱形的一个内角是60°,边长是8,则菱形的两条对角线的长分别为_______________.4.如图,在□ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线5.如图,在□ABCD中,对角线BD的垂直平分线与边AD,BC分别交于点E,F,连接BE,DF.求证:四边形BEDF是菱形.OFE DCBA6. 已知:矩形ABCD 的对角线AC ,BD 相交于点O ,∠AOB =60°,AB =4,则AC =______.7. 在矩形ABCD 中,若AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC =_________.8. 如图,O 是矩形ABCD 的对角线的交点,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 上的点,且AE =BF =CG =DH . 求证:四边形EFGH 是矩形.O HGF EDC BA9. 如图,在正方形ABCD 的外侧作等边三角形ADE ,则∠AEB =__________.ABECD10. 如图,在正方形ABCD 中,延长AB 至点E ,使BE =AC ,则∠E =___________.ECBA DF EDCB A第10题图 第11题图11. 如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,延长BE 交AD 于点F .当∠BED =126°时,∠EFD 的度数为___________.12. 下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤有一个角是直角的平行四边形是正方形. 其中正确的有( ) A .1个 B .2个 C .3个 D .4个【参考答案】➢课前预习1.证明略提示:由平行四边形ABCD得OB=OD,结合AB=AD,可得AC⊥BD.2.证明略提示:由平行四边形ABCD可得OB=OD;OA=OC=12AC,结合∠BAD=90°,得到AC=BD.➢知识点睛1.有一组邻边相等的平行四边形是菱形;菱形的四条边都相等;菱形的对角线互相垂直平分,每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半;四条边都相等的四边形是菱形;对角线互相垂直平分的四边形是菱形2.有一个角是直角的平行四边形是矩形;矩形的四个角都是直角;矩形的对角线相等且互相平分;有三个角是直角的四边形是矩形;对角线相等且互相平分的四边形是矩形3.有一组邻边相等且有一个角是直角的平行四边形是正方形;正方形的四条边都相等,四个角都是直角,对角线相等、垂直且互相平分,每条对角线都平分一组对角;①有一个角是直角的菱形是正方形,②有一组邻边相等的矩形是正方形,③对角线相等、垂直且互相平分的四边形是正方形➢精讲精练1.24;202. B3.8,4. C5.证明略提示:可证△EOD≌△FOB.6.87.75°8.证明略提示:由矩形ABCD得AO=BO=CO=DO,结合已知得EO=FO=GO=HO,所以四边形EFGH是矩形.9.15°10.22.5°11.108°12.A。
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。
初中数学特殊平行四边形解题模型
1. 我们知道平行四边形的对边平行,因此可以利用相邻角的性质来解题。
2. 如题目给出平行四边形ABCD,我们要证明AD//BC。
3. 根据相邻角的性质,∠ABD和∠BCD是相邻角,因此它们的和为180°。
4. 又因为平行四边形的对边分别平行,所以∠ABD=∠BCD,即两个角相等。
5. 那么根据相等角的性质,∠ABD+∠BCD=180°,即AD//BC成立。
模型二:利用对角线的性质1. 对角线的性质是解决平行四边形问题的另一个重要方法。
2. 给定平行四边形ABCD,我们要证明对角线AC和BD相交于一点O。
3. 因为平行四边形的性质是,对角线互相平分,所以BO=OD,AO=OC。
4. 根据三角形的性质,两边相等且夹角相等,则两个三角形全等。
因此△BOA≌△COD。
5. 根据全等三角形的性质,可以知道∠BOA=∠COD,所以AC与BD 相交于一点O。
1. 辅助线是解决平行四边形问题常用的方法之一。
2. 给定平行四边形ABCD,我们要证明AB//CD。
3. 可以作线段AC的中线,即连接BD的中点M和连接BA的中点N。
4. 根据线段的中线定理,中线等分基底并平行于两个底部,即AM=MC,BN=ND,并且AM//CD,BN//CD。
5. 根据平行线的性质,AB//CD成立。
模型四:利用平移、旋转和对称的方法1. 平移、旋转和对称是解决平行四边形问题中比较灵活的方法。
2. 给定平行四边形ABCD,我们要证明ABCD是一个菱形。
3. 可以将平行四边形ABCD沿着AB向右平移,得到A'B'CD。
4. 然后我们发现A'B'CD是ABCD的旋转图形,它们是共外部定点的两个同圆的切线。
5. 根据旋转体的性质,AB=BC=CD=DA,所以ABCD是一个菱形。
结论:不同的解题模型可以让我们更灵活地应对不同类型的题目,并且提高解题的效率。
通过掌握这些解题模型,我们可以更加轻松地解决平行四边形的相关问题。
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°【答案】C【解析】首先根据菱形的菱形的每一条对角线平分一组对角可得∠BAD的度数,再根据菱形的性质可得AD∥BC,根据平行线的性质可得∠ABC+∠BAD=180°,再代入所求的∠BAD的度数即可算出答案.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm【答案】C【解析】由折叠可知,∠BAE=∠B1AE,∴∠BAE=∠B1AE=45°,又∵∠B=45°,∴∠AEB=45°,∴BE=AB=4,∴CE=BC-BE=8-6=2.故选C.4.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.5.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.6.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cm B.8cm C.9cm D.10cm【答案】D【解析】∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm).7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=5,则四边形CODE的周长是()A.5 B.7 C.9 D.10【答案】D【解析】根据矩形性质求出OC=OD,根据菱形判定得出四边形DECO是菱形,求出OD=OC=EC=DE=,即可求出答案.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B【解析】∵将△ABC沿BC方向平移得到△DCE,∴AB∥CD,且AB=CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【答案】D【解析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是______cm.【答案】4【解析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.11.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.12.如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.【答案】18【解析】求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是_______cm.【答案】48【解析】∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.16.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?【答案】解:(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BOC,∥GOC的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点时,四边形AECF是矩形,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.【解析】(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.17.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.【答案】(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.【解析】(1)由四边形ABCD为菱形,可以说明ΔNDE≌ΔMAE,得到ND=MA和ND∥AM,推出四边形AMND是平行四边形.(2)若四边形AMDN为矩形,则∠AMD为直角,此时AM=1.19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.【解析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.20.已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.。
平行四边形经典证明题例题讲解
经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
特殊平行四边形证明及解答题 困难 学生版
一.解答题(共30小题)1.(2012?威海)(1)如图①,?ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC 于点E,F.求证:AE=CF.(2)如图②,将?ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B 1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.为端点的线段中点坐标为.交AF,CE.(1)求证:四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G,则△ACG是等腰三角形吗?并说明理由.5.(2006?陕西)如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB.连接DE,DF.(1)求证:AF与DE互相平分;(2)若BC=4,求DF的长.6.如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF.请回答下列问题:(1(27.(点C(1(2(38.(.(1(29.(BG交AC 于F(1(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论还成立吗?10.(2001?河北)如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.11F,以EC、CF(1(2(312AE、AC和BE(1(2)于点Q,13.(DE.(1(214.(G在CD DEFG 沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.(1)根据题目所提供的信息,可求得b= 4 ,a= 5 ,m= 9 ;(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y 与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t 的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.15.(2005?淮安)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).(1)求证:四边形ABCD是矩形;(2)在四边形ABCD中,求的值.16的中点.(1(2(317(1(2(318.(形(12给出(219.(开始,沿射线BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.20.(2011?来宾)已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,(1)如果动点E、F满足BE=CF(如图1):①写出所有以点E或F为顶点的全等三角形(不得添加辅助线);②证明:AE⊥BF;(2)如果动点E、F满足BE=OF(如图2),问当AE⊥BF时,点E在什么位置,并证明你的结论.21.(2011?河北)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2);(3(422.(PB=PE,连接(1(2(3由.23.(F、G、H,(1)当当四边形ABCD的对角线满足AC⊥BD且AC=BD 时,四边形EFGH为正方形;(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明;(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?24.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE 于点H,BF的延长线交CH于点G.(1)求证:AF﹣BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.25.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.26.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂(1(2(327,ACHG,(1(2(3。
特殊平行四边形的证明与计算(解析版)
特殊平行四边形的证明与计算考点体系考点1:特殊平行四边形性质与判定的综合应用典例:(2020·北京密云初二期末)已知:如图,在矩形ABCD中,对角线AC的垂直平分线EF分别与AC、BC、AD交于点O、E、F,连接AE和CF.(1)求证:四边形AECF为菱形;(2)若AB,BC=3,求菱形AECF的边长.【答案】(1)见解析;(2)2【解析】(1)证明:∵AC的垂直平分线EF分别与AC、BC、AD交于点O、E、F,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠F AO=∠ECO,在△AOF和△COE中,∵∠F AO=∠ECO,OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)解:设AE=CE=x,则BE=3﹣x,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,2+(3﹣x)2=x2,解得:x=2,即AE=2,∴菱形AECF的边长是2.方法或规律点拨本题考查了线段垂直平分线的性质、菱形的判定和性质、全等三角形的性质和判定、矩形的性质以及勾股定理等知识,能综合运用以上知识进行推理是解此题的关键.巩固练习1.(2020·宁夏盐池初二期中)已知:如图,在菱形ABCD 中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.【答案】(1)证明见解析;(2)AB⊥BC时,四边形AEOF正方形.【解析】(1)∵四边形ABCD是菱形,点E,O,F分别是边AB,AC,AD的中点,∴AB=BC=CD=AD,∠B=∠D,∵点E、F分别是边AB、AD的中点,∴BE=12AB,DF=12AD,∴BE=DF,在△BCE和△DCF中,BE DFB D BC CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△DCF.(2)AB⊥BC,理由如下:∵四边形AEOF是正方形,∴∠AEO=90°,∵点E、O分别是边AB、AC的中点,∴OE为△ABC的中位线,∴OE//BC,∴∠B=∠AEO=90°,∴AB⊥BC.2.(2020·湖北潜江初二期末)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)在△ADE 与△CDE 中,AD CDDE DE EA EC=⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE ,∴∠ADE=∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE=∠CBD ,∴BC=CD ,∵AD=CD ,∴BC=AD ,∴四边形ABCD 为平行四边形,∵AD=CD ,∴四边形ABCD 是菱形;(2)∵BE=BC ,∴∠BCE=∠BEC ,∵∠CBE :∠BCE=2:3,∴∠CBE=180×2233++ =45°,∵四边形ABCD 是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD 是正方形.3.(2018·内蒙古杭锦后旗初二期中)(1)如图矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作//DP OC ,且DP OC =,连接CP ,判断四边形CODP 的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.【答案】(1)四边形CODP 的形状是菱形,理由见解析;(2)四边形CODP 的形状是矩形,理由见解析;(3)四边形CODP 的形状是正方形,理由见解析.【解析】(1)四边形CODP 的形状是菱形,理由是:∵四边形ABCD 是矩形,∴AC BD =,12OA OC AC ==,12OB OD BD ==, ∴OC OD =,∵//DP OC ,DP OC =,∴四边形CODP 是平行四边形,∵OC OD =,∴平行四边形CODP 是菱形;(2)四边形CODP 的形状是矩形,理由是:∵四边形ABCD 是菱形,∴AC BD ⊥,∴90DOC ∠=,∵//DP OC ,DP OC =,∴四边形CODP 是平行四边形,∵90DOC ∠=,∴平行四边形CODP 是矩形;(3)四边形CODP 的形状是正方形,理由是:∵四边形ABCD 是正方形,∴AC BD ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==, ∴90DOC ∠=,OD OC =,∵//DP OC ,DP OC =,∴四边形CODP 是平行四边形,∵90DOC ∠=,OD OC =∴平行四边形CODP 是正方形. 4.(2018·河南嵩县初二期末)如图,E ,F 是正方形ABCD 的对角线AC 上的两点,且AE =CF.(1)求证:四边形BEDF 是菱形;(2)若正方形ABCD 的边长为4,AE ,求菱形BEDF 的面积.【答案】(1)证明见解析(2)8【解析】(1)连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC.∵AE =CF ,∴OA -AE =OC -CF ,即OE =OF ,∴四边形BEDF 为平行四边形,又∵BD ⊥EF ,∴四边形BEDF 为菱形.(2)∵正方形ABCD 的边长为4,∴BD =AC=.∵AE =CF,∴EF =AC-∴S 菱形BEDF =12BD·EF =12×. 5.(2020·云南昭阳初二期中)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.【答案】(1)证明见解析(2)菱形【解析】证明:(1)∵四边形ABCD 是正方形,∴AB=AD ,∴∠ABD=∠ADB ,∴∠ABE=∠ADF ,在△ABE 与△ADF 中AB AD ABE ADF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ADF.(2)如图,连接AC ,四边形AECF是菱形.理由:在正方形ABCD中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.6.(2020·聊城市茌平区振兴街道中学初二月考)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【答案】(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.考点2:利用特殊四边形性质探究几何量典例:(2020·江苏鼓楼初二期末)已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.【答案】(1)DE;(2)在情况1与情况2下都相同,详见解析;(3)AF+CF DF或|AF-CF|DF【解析】解:(1)∵四边形ABCD是正方形,∴CD=CB,∠BCD=90°,∴△BCD是等腰直角三角形,∴CB,当点E、F与点B重合时,则,故答案为:CF;(2)在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD是正方形,∴CD=CB=AD=AB=AE,∠BCD=∠DAB=∠ABC=90°,过点C作CG⊥CF,交DF于G,如图②所示:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF ,设BC 交DF 于P ,∵BF ⊥DE ,∴∠BFD=∠BCD=90°,∵∠DPC=∠FPB ,∴∠CDP=∠FBP ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α, ∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所示:∵∠GCF=∠BCD=90°,∴∠DCG=∠BCF ,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴,设∠CDG=α,则∠CBF=α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA -∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴,DH=DF ,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC DA DC ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴CF=HA ,DF=HF=HA+AF=CF+AF ,即DF ;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,如图⑤所示:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB ,∴∠CNB=∠CBN=12(180°-∠NCB )=12(180°-90°+2α)=45°+α, ∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN 是等腰直角三角形,∴BF=NF ,在△CNF 和△CBF 中,CN CB CF CF NF BF ⎧⎪⎨⎪⎩===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°, ∴△DFH 是等腰直角三角形,∴,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF -AH=AF -CF ,∴AF -DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所示:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直角三角形,∴EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴∠DFH=∠EFA=45°,∴△HDF 是等腰直角三角形,∴DH=DF ,HF=DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH -AF=CF -AF=HF ,∴CF -DF ,综上所述,线段AF 、CF 、DF 三者之间的数量关系:或|AF -DF ,故答案为:或|AF -DF .方法或规律点拨本题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的判定与性质是解题的关键.巩固练习1.(2020·安徽肥东初二期末)如图,矩形ABCD 的对角线AC 、BD 交于点O ,点P 在边AD 上从点A 到点D 运动,过点P 作PE ⊥AC 于点E ,作PF ⊥BD 于点F ,已知AB=3,AD=4,随着点P 的运动,关于PE+PF的值,下面说法正确的是( )A .先增大,后减小B .先减小,后增大C .始终等于2.4D .始终等于3【答案】C【解析】解:连接PO ,如下图:∵在矩形ABCD 中,AB=3,AD=4,∴12ABCD S AB BC ==矩形,AO OC =,OB OD =,AC BD =,5AC , ∴1112344AOD ABCD S S ==⨯=矩形, 52OA OD ==, 11115()()322222AOD AOP DOP S S S OA PE OD PF OA PE PF PE PF =+=+=+=⨯+=, ∴12 2.45PE PF +==; 故选C .2.(2020·山东德州初二期末)以四边形ABCD 的边AB 、AD 为边分别向外侧作等边三角形ABF 和ADE ,连接EB 、FD ,交点为G .(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.【答案】(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.【解析】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,AF AEFAD BAE AD AB=⎧⎪∠=∠⎨⎪=⎩,∴△AFD ≌△ABE ,∴EB=FD ;(2)EB=FD .证:∵△AFB 为等边三角形 ∴AF=AB ,∠FAB=60° ∵△ADE 为等边三角形, ∴AD=AE ,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD , 即∠FAD=∠BAE∴△FAD ≌△BAE∴EB=FD ;(3)解:同(2)易证:△FAD ≌△BAE , ∴∠AEB=∠ADF ,设∠AEB 为x°,则∠ADF 也为x°于是有∠BED 为(60﹣x )°,∠EDF 为(60+x )°,∴∠EGD=180°﹣∠BED ﹣∠EDF=180°﹣(60﹣x )°﹣(60+x )°=60°.3.(2020·四川龙泉驿初一期末)(1)如图1,在四边形ABCD 中,AB =AD ,∠BAD =100°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =50°.探究图中线段EF ,BE ,FD 之间的数量关系. 小明同学探究的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论是 (直接写结论,不需证明);(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且2∠EAF =∠BAD ,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD 是边长为7的正方形,∠EBF =45°,直接写出△DEF 的周长.【答案】(1)EF =BE +DF ;(2)成立,理由详见解析;(3)14.【解析】证明:(1)延长FD 到点G .使DG =BE .连结AG ,在△ABE 和△ADG 中,90AB AD ABE ADG BE DG ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠BAD =100°,∠EAF =50°,∴∠BAE +∠F AD =∠DAG +∠F AD =50°,∴∠EAF =∠F AG =50°,在△EAF 和△GAF 中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△GAF (SAS ),∴EF =FG =DF +DG ,∴EF =BE +DF ,故答案为:EF =BE +DF ;(2)结论仍然成立,理由如下:如图2,延长EB 到G ,使BG =DF ,连接AG ,∵∠ABC +∠D =180°,∠ABG +∠ABC =180°,∴∠ABG =∠D ,∵在△ABG 与△ADF 中,AB=AD ABG=D BG=DF ⎧⎪∠∠⎨⎪⎩,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵2∠EAF =∠BAD ,∴∠DAF +∠BAE =∠BAG +∠BAE =12∠BAD =∠EAF , ∴∠GAE =∠EAF ,又AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF .∵EG =BE +BG .∴EF =BE +FD ;(3)如图,延长EA 到H ,使AH =CF ,连接BH ,∵四边形ABCD 是正方形,∴AB =BC =7=AD =CD ,∠BAD =∠BCD =90°,∴∠BAH =∠BCF =90°,又∵AH =CF ,AB =BC ,∴△ABH ≌△CBF (SAS ),∴BH =BF ,∠ABH =∠CBF ,∵∠EBF =45°,∴∠CBF +∠ABE =45°=∠HBA +∠ABE =∠EBF ,∴∠EBH =∠EBF ,又∵BH =BF ,BE =BE ,∴△EBH ≌△EBF (SAS ),∴EF =EH ,∴EF =EH =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD =14.4.(2020·甘肃麦积初二期末)如图1,ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且 点G 在□ABCD 内部.将BG 延长交DC 于点F .(1)猜想并填空:GF ________DF (填“>”、“<”、“=”);(2)请证明你的猜想;(3)如图2,当90A ∠=,设BG a =,GF b =,EG c =,证明:2c ab =.【答案】(1)=;(2)见解析;(3)见解析【解析】解:(1)GF=DF,故答案为:=;(2)理由是:连接DG,由折叠得:AE=EG,∠A=∠BGE,∵E在AD的中点,∴AE=ED,∴ED=EG,∴∠EGD=∠EDG,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠BGE+∠EGF=180°,∴∠EDF=∠EGF,∴∠EDF-∠EDG=∠EGF-∠EGD,即∠GDF=∠DGF,∴GF=DF;(3)证明:如图2,由(2)得:DF=GF=b,由图可得:BF=BG+GF=a+b,由折叠可得:AB=BG=a,AE=EG=c,在ABCD中,BC=AD=2AE=2c,CD=AB=a,∴CF=CD-DF=a-b,∵∠A=90°,∴ABCD 是矩形,∴∠C=90°,在Rt △BCF 中,由勾股定理得,BC 2+CF 2=BF 2,∴(2c)2+(a -b)2=(a+b)2,整理得:c 2=ab .5.(2020·山东济南初二期末)如图1,在菱形ABCD 中,AC =2,BD =,AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.【答案】(1)2;(2)60︒ ;(3)见详解【解析】解:(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,∴△AOB 为直角三角形,且111,22OA AC OB BD ====∴2AB ===;(2)∵四边形ABCD 是菱形,∴AB=BC ,由(1)得:AB=AC=BC=2,∴△ABC 为等边三角形,∠BAC=60°;(3)△AEF 是等边三角形,∵由(1)知,菱形ABCD 的边长是2,AC=2,∴△ABC 和△ACD 是等边三角形,∴∠BAC=∠BAE+∠CAE=60°,∵∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF ,在△ABE 和△ACF 中,BAE CAF AB ACEBA FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACF (ASA ),∴AE=AF ,∵∠EAF=60°,∴△AEF 是等边三角形.6.(2020·黑龙江鹤岗中考真题)以Rt ABC ∆的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG ,连接EG ,过点A 作AM BC ⊥于M ,延长MA 交EG 于点N .(1)如图1,若90BAC ∠=︒,AB AC =,易证:EN GN =;(2)如图2,90BAC ∠=︒;如图3,90BAC ∠≠︒,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【答案】(1)见解析;(2)90BAC ∠=︒时,(1)中结论成立,证明见解析;90BAC ∠≠︒时,(1)中结论成立,证明见解析.【解析】(1)证明:∵90BAC ∠=︒,AB AC =,∴45ACB ∠=︒,∵AM BC ⊥,∴45MAC ∠=︒,∴45EAN MAC ∠=∠=︒,同理45NAG ∠=︒,∴EAN NAG ∠=∠,∵四边形ABDE 和四边形ACFG 为正方形,∴AE AB AC AG ===,∴EN GN =.(2)如图1,90BAC ∠=︒时,(1)中结论成立.理由:过点E 作EP AN ⊥交AN 的延长线于P ,过点G 作GQ AM ⊥于Q ,∵四边形ABDE 是正方形,∴AB AE =,90BAE ∠=︒,∴1809090EAP BAM ∠+∠=︒-︒=︒,∵AM BC ⊥,∴90ABM BAM ,∴ABM EAP ∠=∠,在ABM ∆和EAP ∆中,90ABM EAPAMB P AB AE∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴()AAS ABM EAP ∆∆≌,∴EP AM =,同理可得:GQ AM =,∴EP GQ =,在EPN ∆和GQN ∆中,P NQGENP GNQ EP GQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS EPN GQN ∆∆≌,∴EN NG =.如图2,90BAC ∠≠︒时,(1)中结论成立.理由:过点E 作EP AN ⊥交AN 的延长线于P ,过点G 作GQ AM ⊥于Q ,∵四边形ABDE 是正方形,∴AB AE =,90BAE ∠=︒,∴1809090EAP BAM ∠+∠=︒-︒=︒,∵AM BC ⊥,∴90ABM BAM ,∴ABM EAP ∠=∠,在ABM ∆和EAP ∆中,90ABM EAPAMB P AB AE∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴()AAS ABM EAP ∆∆≌,∴EP AM =,同理可得:GQ AM =,∴EP GQ =,在EPN ∆和GQN ∆中,P NQG ENP GNQ EP GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS EPN GQN ∆∆≌,∴EN NG =.7.(2020·湖南醴陵初二期末)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且CE=CF . (1)求证:BE=DF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?【答案】(1)证明见解析;(2)成立,理由见解析.【解析】(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA=90°,∵F 是AD 延长线上一点,∴∠CDF=180˚-∠CDA=90°.在Rt △CBE 和Rt △CDF 中,CE CF BC CD=⎧⎨=⎩, ∴Rt △CBE ≌Rt △CDF (HL ),∴BE=DF .(2)成立,理由如下:∵△CBE ≌△CDF ,∴∠BCE=∠DCF.又∵∠BCD=∠BCE+∠DCE=90°,∴∠ECF=∠DCF+∠DCE=90°.∵∠GCE=45°,∴∠GCF=∠ECF -∠GCE=45°.在△ECG 和△FCG 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△ECG ≌△FCG (SAS ),∴GE=GF=DF+DG.又∵BE=DF ,∴GE=BE+DG.8.(2020·河南焦作初二期末)如图,在菱形ABCD 中,60,ABC E ∠=︒是对角线AC 上一点,F 是线段BC 延长线上一点,且,CF AE =连接BE .(1)发现问题如图①,若E 是线段AC 的中点.连接,EF 其他条件不变,填空:线段BE 与EF 的数量关系是 ;(2)探究问题如图②,若E 是线段AC 上任意一点,连接,EF 其他条件不变,猜想线段BE 与EF 的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E 是线段AC 延长线上任意一点,其他条件不变,且30,1EBC AB ∠==,请直接写出AF 的长度.【答案】(1)BE EF =;(2)猜想线段BE 与EF 的数量关系为:BE EF =;证明见解析.(3.【解析】(1)BE EF =,证明:∵四边形ABCD 是菱形∴AB =BC∵60ABC ∠=︒∴ABC 是等边三角形∴60BCA ∠=︒∵E 是AC 中点∴30CBE ABE ∠=∠=︒,AE =CE∵CF AE =∴CE =CF ∴1302F CEF BCA ∠=∠=∠=︒ ∴30CBE F ∠=∠=︒∴BE EF =;(2)BE EF =,证明:如下图,过点E 作//EG BC 交AB 于点G∵四边形为ABCD 菱形,60ABC ∠=︒∴AB BC =,120BCD ∠=︒,//AB CD ,ABC 与ACD △都是等边三角形∵AC 是菱形ABCD 的对角线 ∴1602ACD BCD ∠=∠=︒ ∴60DCF ABC ∠=∠=︒,AB AC =∴120ECF ∠=︒又∵//EG BC∴60AGE ABC ∠=∠=︒又∵60BAC ∠=︒∴AGE 是等边三角形∴AG AE GE ==∴BG CE =,120BGE ECF ∠=︒=∠又∵CF AE =∴CE CF =在BGE △和CEF △中BG EC BGE ECF GE CF =⎧⎪∠=∠⎨⎪=⎩∴()BGE ECF SAS ≌∴BE EF =;(3)AF =证明:如下图,连接EF ,过点E 作//EG BC 交AB 延长线于点G∵四边形ABCD 是菱形,60ABC ∠=︒∴AB =BC ,ABC 是等边三角形∴60ACB ∠=︒∴60ECF ∠=︒又∵//EG BC∴60AGE ABC ∠=∠=︒又∵60BAC ∠=︒∴AGE 是等边三角形∴AG =AE =GE∴BG =CE ,BGE ECF ∠=∠又∵AE =CF∴GE =CF在BGE △和CEF △中BG CE BGE ECF GE CF =⎧⎪∠=∠⎨⎪=⎩∴()BGE ECF SAS ≌∴BE =EF∵60ABC ∠=︒,30EBC ∠=︒∴603090ABE ABC EBC ∠=∠+∠=︒+︒=︒∵ABC 是等边三角形∴60BAC ∠=︒∴180180906030BEA ABE BAC ∠=︒-∠-∠=︒-︒-︒=︒∵1AB =∴2212AE AB ==⨯=,tan 303AB BE ===︒∵BE =EF∴EF =30EBC EFB ∠=∠=︒∴1803030120BEF ∠=︒-︒-︒=︒∴1203090AEF BEF BEA ∠=∠-∠=︒-︒=︒∴AF ===.9.(2019·河南栾川初二期末)问题背景:在正方形ABCD 的外侧,作△ADE 和△DCF ,连结AF 、BE . (1)特例探究:如图①,若△ADE 与△DCF 均为等边三角形,试判断线段AF 与BE 的数量关系和位置关系,并说明理由;(2)拓展应用:如图②,在△ADE 与△DCF 中,AE=DF ,ED=FC ,且BE=4,则四边形ABFE 的面积为 .【答案】(1)特例探究:AF=BE ,AF ⊥BE ;理由见解析;(2)拓展应用:8【解析】解:(1)特例探究:AF=BE ,AF ⊥BE .∵四边形ABCD 为正方形,△ADE 与△DCF 均为等边三角形,∴AB=AD=CD ,∠BAD=∠ADC ,AE=AD=CD=DF ,∠DAE=∠CDF ,∴∠BAD+∠DAE=∠ADC+∠CDF ,即∠BAE=∠ADF ,在△ABE 与△DAF 中,{AB ADBAE ADF AE DF=∠=∠=,∴△ABE ≌△DAF (SAS ),∴AF=BE ,∠ABE=∠DAF ,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF ⊥BE ;(2)拓展应用:在△ADE 与△CDF 中,∵{AD CDAE DF CF DE===,∴△ADE ≌△CDF (SSS ),∴∠DAE=∠CDF ,∠ADF=∠ADC+∠CDF=90°+∠CDF ,∠BAE=∠BAD+∠EAD=90°+∠EAD , ∴∠ADF=∠BAE ,在△ABE 与△DAF 中,{AB ADBAE ADF AE DF=∠=∠=,∴△ABE ≌△DAF (SAS ),∴AF=BE ,∠ABE=∠DAF ,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF ⊥BE ,∴S 四边形ABFE =1·2AF BE =12×4×4=8. 10.(2020·河南三门峡初二期末)在菱形ABCD 中,60B ∠=︒,点E 和点F 分别是射线BA 和射线AD 上的点(不与A ,B 重合),且60ECF ∠=︒.(1)问题初现如图1,当点E 和点F 分别在线段BA 和线段AD 上(不与端点重合)时,线段BC ,BE ,DF 之间的数量关系是_________;(2)深入探究如图2,当点E 和点F 分别在线段BA 和线段AD 的延长线上(不与端点重合)时,线段BC ,BE ,DF 之间有怎样的数量关系?请说明理由;(3)拓展应用在(2)的条件下,若BC CE ⊥,且4BC =,则DF =_________.【答案】(1)BE+DF=BC ;(2)BE=BC+DF ;理由见解析;(3)DF=4【解析】解:(1)BE+DF=BC .理由:连接AC ,∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形,∴AB=AC=BC ,∠ACB=∠BAC=60°,即∠BCE+∠ACE=60°,∴∠FAC=60°.∵∠ECF=60°,即∠ACE+∠ACF=60°,∴∠BCE=∠ACF ,在△ACF 与△BCE 中,B FACBC AC BCE ACF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACF ≌△BCE (ASA ),∴BE=AF ,∴BC=AD=AF+DF=BE+DF ;(2)BE=BC+DF .理由如下:连接AC ,∵四边形ABCD 为菱形,∠B=60°,∴AB=BC=CD=AD ,∠B=∠ADC=60°,∴△ABC 和△ACD 为等边三角形,.∴∠BAC=∠ADC=60°,∴∠EAC=∠FDC=120°,又∵∠ACD=∠ECF=60°∴∠ACE=∠DCF ,在△EAC 和△FDC 中EAC FDC AC DCACE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EAC ≌△FDC∴DF=AE ,又∵BE=AB+AE ,∴BE=BC+DF(3)DF=4,理由:∵90,60,BCE B ∠=︒∠=︒BC=AB=4,∴30BEC ∠=︒,∴BE=8,∴AE=BE -AB=8-4=4.考点3:与特殊平行四边形有关的最值探究典例:(2020·山东济南初二期末)如图①,四边形ABCD 和四边形CEFG 都是正方形,且2BC =,CE =ABCD 固定,将正方形CEFG 绕点C 顺时针旋转α角(0360α︒<<︒).(1)如图②,连接BG 、DE ,相交于点H ,请判断BG 和DE 是否相等?并说明理由;(2)如图②,连接AC ,在旋转过程中,当ACG ∆为直角三角形时,请直接写出旋转角α的度数; (3)如图③,点P 为边EF 的中点,连接PB 、PD 、BD ,在正方形CEFG 的旋转过程中,BDP ∆的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.【答案】(1)相等,理由见解析;(2)45α=︒和225α=︒;(3)存在,最大值为2+.【解析】(1)证明:相等∵四边形ABCD 和四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD GCE ∠=∠=︒,∴BCD DCG GCE DCG ∠+∠=∠+∠,即BCG DCE ∠=∠,∴()BCG DCE SAS ∆∆≌;∴BG=DE(2)如图1,∠ACG=90°时,旋转角45DCG α=∠=︒;如图2,当∠ACG=90°时,旋转角360225DCG α=︒-∠=︒;综上所述,旋转角α的度数为45°或225°;(3)存在∵如图3,在正方形ABCD 中,2BC =,∴BD ==∴当点P 到BD 的距离最远时,BDP ∆的面积最大,作PH BD ⊥,连接CH ,CP ,则PH CH CP ≤+当,,P C H 三点共线时,PH 最大,此时BDP ∆的面积最大.∵CE =P 为EF 的中点,∴EP =此时12CH BD ==CP =∴11222BDP S BD PH ∆=⋅=⨯=+方法或规律点拨本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.巩固练习1.(2020·山东福山初三期中)如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .ABB .DEC .BD D .AF【答案】D 【解析】解:过点E 作关于BD 的对称点E′,连接AE′,交BD 于点P .∴PA+PE 的最小值AE′;∵E 为AD 的中点,∴E′为CD 的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.2.(2020·江苏淮阴初二期中)如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15B.16C.19D.20【答案】A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选A.3.(2020·安徽和县初二期末)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C【解析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.4.(2020·江苏泰州中学附属初中初二期末)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=√2,连接AE、AF,则AE+AF 的最小值为()A.2√5B.3√2C.92D.225【答案】A【解析】解:如图作AH∥BD,使得AH=EF=√2,连接CH交BD于F,则AE+AF的值最小.∵AH=EF,AH∥EF,∴四边形EFHA是平行四边形,∴EA=FH,∵FA=FC,∴AE+AF=FH+CF=CH,∵四边形ABCD是正方形,∴AC⊥BD,∵AH∥DB,∴AC⊥AH,∴∠CAH=90°,在Rt△CAH中,CH=√AC2+AH2=2√5,∴AE+AF的最小值2√5,故选:A.5.(2020·山东无棣初二期末)如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC 上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为()A.B.4C.2D.4+【答案】C【解析】如下图,过点E作AC的对称点F,连接FB,FE,过点B作FE的垂线,交FE的延长线于点G∵菱形ABCD的边长为4,点E是BC的中点∴BE=2∵∠DAB=60°,∴∠FCE=60°∵点F是点E关于AC的对称点∴根据菱形的对称性可知,点F在DC的中点上则CF=CE=2∴△CFE是等边三角形,∴∠FEC=60°,EF=2∴∠BEG=60°∴在Rt△BEG中,EG=1,∴FG=1+2=3∴在Rt△BFG中,根据分析可知,BF=PB+PE∴△PBE的周长2故选:C6.(2020·四川遂宁初二期末)如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为_____.【答案】12 5【解析】证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=12BC•AB=12AC•CP,即12×4×3=12×5•CP,解得CP=125.故答案为:125.7.(2020·江苏淮安初三三模)如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.【答案】【解析】如图作CH ∥BD ,使得CH =EF =,连接AH 交BD 由F ,则△CEF 的周长最小.∵CH =EF ,CH ∥EF ,∴四边形EFHC 是平行四边形,∴EC =FH ,∵FA =FC ,∴EC+CF =FH+AF =AH ,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵CH ∥DB ,∴AC ⊥CH ,∴∠ACH =90°,在Rt △ACH 中,AH∴△EFC 的周长的最小值=故答案为:8.(2020·江苏仪征初三二模)如图,在矩形ABCD 中,24==AD AB ,点E 是AD 的中点,点M 是BE 上一动点,取CM 的中点为N ,则AN 的最小值是__________.【答案】【解析】取BC的中点F,由题意知点N在直线DF上,∴AN的最小值就是点A到直线DF的距离,连接AF,在矩形ABCD中,AD=BC=2AB=4,∴AB=BF=CF=CD=2,∠ABC=∠BCD=90︒,∴△ABF和△FCD都是等腰直角三角形,∴∠AFB=∠DFC=45︒,∴∠AFD=45︒,∴AF⊥FD,∴AN的最小值是AF的长,即AF=AB=故答案为:9.(2020·陕西碑林西北工业大学附属中学初一期末)问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC 边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.【答案】(1)20;(2)5;(3)S△BCD=16;∠BCD=45°【解析】解:(1)∵∠ABC=90°,AB=12,BC=16,∴20AC==,故答案为:20;(2)∵DA=DB,∴∠A=∠DBA,∵∠ABC=90°∴∠A+∠C=90°,∠ABD+∠DBC=90°,∴∠DBC=∠C,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.考点4:与特殊平行四边形有关的动点问题典例:(2020·山东平阴初二期末)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.【答案】(1)证明过程见解析;(2)①边长为53cm ,②225cm S 9cm 3≤≤. 【解析】解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形;(2)①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°,∵点B 与点E 关于PQ 对称,∴CE =BC =5cm ,在Rt △CDE 中,DE 4cm ,∴AE =AD ﹣DE =5cm -4cm =1cm ;在Rt △APE 中,AE =1,AP =3-PB =3﹣PE ,∴222EP =1(3-EP)+,解得:EP =53cm ,∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ,BP=53cm , 2BFEP 5S =BP AE=cm 3⋅四边形,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm ,2ABQE BFEP S =S =9cm 正方形四边形, ∴菱形的面积范围:225cm S 9cm 3≤≤.方法或规律点拨本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE 是本题的关键.巩固练习1.(2020·河北景县初二期中)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变【答案】D【解析】连接DE,∵S△CDE=12S四边形CEGF,S△CDE=12S正方形ABCD,∴矩形ECFG与正方形ABCD的面积相等.故选D.2.(2020·江苏省泰兴市济川中学初二期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB 向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【解析】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.3.(2020·山东中区济南外国语学校初二期末)如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm。
特殊的平行四边形的性质与判定及答案
15.4 特殊的平行四边形的性质与判定一、选择题(共15小题;共75分)1. 矩形具有而平行四边形不一定具有的性质是 ( )A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分2. 下列正方形的性质中,菱形(非正方形)不具有的性质是 ( )A. 四边相等B. 对角线相等C. 对角线平分一组对角D. 对角线互相平分且垂直3. 如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为 ( )A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km4. 在正方形ABCD中,O是对角线的交点,AB=12,则△OAB的周长是 ( )A. 12+12√2B. 12+6√2C. 12+√3D. 24+5√25. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是 ( )A. 测量对角线是否相互平分B. 测量两组对边是否分别相等C. 测量一组对角是否都为直角D. 测量四边形的三个内角是否都为直角6. 如图,在Rt△ABC中,∠ACB=90∘,AB=10,CD是AB边上的中线,则CD的长是 ( )A. 20B. 10C. 5D. 527. 如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,√3),则点C的坐标为 ( )A. (√3,1)B. (−1,√3)C. (−√3,1)D. (−√3,−1)8. 在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是 ( )A. AB∥DCB. AC=BDC. AC⊥BDD. OA= OC9. 下列关于矩形的说法,正确的是 ( )A. 对角线相等的四边形是矩形B. 对角线互相平分的四边形是矩形C. 矩形的对角线互相垂直且平分D. 矩形的对角线相等且互相平分10. 不能判定四边形是正方形的是 ( )A. 对角线互相垂直且相等的四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分且相等的四边形11. 菱形不具有的性质是 ( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线平分每组对角12. 如图,在Rt△ABC中,∠ACB=90∘,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是 ( )A. 60∘B. 45∘C. 30∘D. 75∘13. 如图,已知菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,AE⊥BC于点E,则AE的长是 ( )A. 5√3 cmB. 2√5 cmC. 485 cm D. 245cm14. 若矩形的一条对角线与一边的夹角是40∘,则两条对角线相交所成的锐角是 ( )A. 20∘B. 40∘C. 80∘D. 100∘15. 如图,在△ABC中,∠ACB=90∘,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是 ( )A. BC=ACB. CF⊥BFC. BD=DFD. AC= BF二、填空题(共15小题;共75分)16. 要使一个菱形成为正方形,则需增加的条件是 (填上一个正确的条件即可).17. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.18. 如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,DE⊥AB,若AC=2√3,则DE的长为.19. 如图 1,将长为20 cm,宽为2 cm的长方形白纸条,折成图 2 所示的图形并在其一面着色,则着色部分的面积为cm2.20. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如: (填一条即可).21. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.22. 在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE=.23. 如图,四边形ABCD为矩形,添加一个条件:,可使它成为正方形.24. 如果菱形的两条对角线长分别为6和8,那么该菱形的面积为.25. 工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;(2)摆放成如图(2)的四边形,则这时窗框的形状是,根据的数学道理是;(3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是,根据的数学道理是.26. 如图,在Rt△ABC中,∠ACB=90∘,若CA=8,BC=6,点E是AB的中点,则CE= .27. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90∘,BE⊥AD于点E,如果四边形ABCD的面积为8,那么BE的长为.28. 如图,分别以正方形ABCD的四条边为边,向其内部作等边三角形,得到△ABE、△BCF、△CDG、△DAH,连接EF、FG、GH、HE.若AB=2,则四边形EFGH的面积为.29. 如图,菱形ABCD的边长是2 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为cm2.30. 如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4 cm,矩形ABCD的周长为32 cm,则AE的长为cm.三、解答题(共2小题;共26分)31. 已知:如图,在△ABC中,∠ACB=90∘,点E为AB的中点,过点E作ED⊥BC于D,F在DE的延长线上,且AF=CE,若AB=6,AC=2,求四边形ACEF的面积.32. 如图,已知平行四边形ABCD,E,F是对角线BD上的两点,且BE=DF.(1) 求证:四边形AECF是平行四边形;(2) 当AE垂直平分BC且四边形AECF为菱形时,直接写出AE:AB的值.答案第一部分1. C2. B3. D4. A5. D6. C7. C8. B9. D 10. A11. C 12. C 13. D 14. C 15. D第二部分16. 有一个角是直角或对角线相等17. 2018. √319. 3620. 对角线互相平分(答案不唯一)21. 2022. 423. AB=BC等(答案不唯一)24. 2425. (2)平行四边形;两组对边分别相等的四边形是平行四边形(3)矩形;有一个角是直角的平行四边形是矩形26. 527. 2√228. 8−4√329. 2√330. 6第三部分31. 过点E作EH⊥AC于H.∵∠ACB=90∘,AE=BE,∴AE=BE=CE.∴∠EAC=∠ECA.∵AF=CE,∴AE=AF,∴∠F=∠FEA.∵ED⊥BC,∴∠BDF=90∘,BD=DC.∴∠BDF=∠ACB=90∘.∴FD∥AC.∴∠FEA=∠EAC.∴∠F=∠ECA.∵AE=EA,∴△AEF≌△EAC.∴EF=AC,∴四边形FACE是平行四边形.∵EH⊥AC,∴∠EHA=90∘.∵∠BCA=90∘,∠EHA=∠BCA.∴BC=4√2,EH∥BC.∴AH=HC.BC=2√2.∴EH=12=AC⋅EH=2×2√2=4√2.∴S平行四边形ACEF32. (1) 如图,连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵点E,F是对角线BD上的两点,且BE=DF,∴OB−BE=OD−DF,即OE=OF.∴四边形AECF是平行四边形..(2) √33友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。
特殊平行四边形:证明题
适用标准文案基础篇特别平行四边形之证明题题型一:菱形的证明 1 、如图,在三角形 ABC 中, AB > AC , D 、 E 分别是 AB 、 AC 上的点,△ ADE 沿线段 DE 翻折,使点 A 落在边 BC 上,记为 A .若四边形 ADA E 是菱形,则以下说法正确的选项是 ( ) A. DE 是△ ABC 的中位线B. AA 是 BC 边上的中线C.AA 是 BC 边上的高D.AA 是△ ABC 的角均分线2.已知:如图,在Y ABCD 中, AE 是 BC 边上的高,将 △ ABE 沿 BC 方向平移,使点E 与点 C 重合,得 △GFC .( 1)求证: BEDG ;( 2)若B 60°,当 AB 与 BC 知足什么数目关系时,四边形ABFG 是菱形?证明你的结论.AGD3、将平行四边形纸片 ABCD 按如图方式折叠, 使点 C 与 A 重合,点 D 落到 D ′处,BE F C折痕为 EF .D ′(1 )求证:△ABE ≌△AD ′F ;(2 )连结 CF ,判断四边形 AECF 是什么特别四边形?证明你的结论.A F DBEC4.如图,△ ABC 中, AC 的垂直均分线 MN 交 AB 于点 D ,交 AC 于点 O , ∥交MN 于 ,连结、CE ABEAECD .( 1)求证: AD =CE ;( 2)填空:四边形 ADCE 的形状是AMDO ENB C5 如图,在△ ABC 中, AB = AC ,D 是 BC 的中点,连结 AD ,在 AD 的延伸线上取一点 E ,连结 BE ,CE .( 1 )求证:△ ABE ≌△ACE( 2 )当 AE 与 AD 知足什么数目关系时,四边形 ABEC 是菱形?并说明原因 .6 如图,将矩形ABCD 沿对角线 AC 剪开,再把 △ ACD 沿 CA 方向平移获得 △ A C D .( 1)证明 △ A AD ≌△CC B ;( 2 )若 ACB 30° C 在线段 AC 上的什么地点时,四边形ABC D 是菱形,并请,试问当点 说明原因.D D7 在菱形 ABCD 中,对角线 AC 与 BD 订交于点 O , AB 5, AC6.点D 作DE ∥AC 交BC 的延伸线于点 E .( 1 )求 △ BDE 的周长;AACC( 2 )点 P 为线段 BC 上的点,连结PO 并延伸交 AD 于点 Q .求证: BP DQ .BA Q D(第 19OBPCE8 .如图,在△ABC 中,∠A 、∠B 的均分线交于点 D ,DE ∥AC 交 BC 于点 E , DF ∥BC 交 AC 于点 F . (1 )点 D 是△ABC 的心;(2 )求证:四边形 DECF 为菱形.9 、如图 , 已知 :在四边形 ABFC 中, ACB =90 , BC 的垂直均分线 EF 交 BC 于点 D,交 AB 于点 E,且 CF=AE(1) 尝试究 ,四边形 BECF 是什么特别的四边形 ;(2) 当A 的大小知足什么条件时 ,四边形 BECF 是正方形 ?请回答并证明你的结论 .(特别提示 :表示角最好用数字 )10 、如图,矩形 ABCD 中, O 是 AC 与 BD 的交点,过 O 点的直线 EF 与 AB , CD 的延伸线分别交于E ,F .( 1)求证: △ BOE ≌△ DOF ; (2 )当 EF 与 AC 知足什么关系时,以 A ,E ,C ,F 为极点的四边形是菱形?证明你的结论.FA DOB CE型二:正方形的证明题1、四边形ABCD、 DEFG 都是正方形,连结AE、 CG.( 1)求证:AE= CG;( 2)察看图形,猜想AE 与 CG 之间的地点关系,并证明你的猜想2、把正方形ABCD绕着点A,按顺时针方向旋转获得正方形AEFG ,边 FG 与 BC D C交于点 H (如图).试问线段 HG 与线段 HB 相等吗?请先察看猜想,而后再证明你的猜G想.HFA BE( 2)4 、如图 12 , B、 C、E 是同向来线上的三个点,四边形ABCD 与四边形CEFG 是都是正方形.连结 BG、 DE. (1)察看猜想BG 与 DE 之间的大小关系,并证明你的结论.(2 )在图中能否存在经过旋转可以相互重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明原因 .A DG FBC E图 125.如图①,四边形ABCD 是正方形,点 G 是 BC 上随意一点, DE⊥ AG 于点 E,BF⊥AG 于点 F.(1)求证: DE-BF = EF.(2) 当点 G 为 BC 边中点时,尝试究线段 EF与 GF 之间的数目关系,并说明原因.(3) 若点 G 为 CB 延伸线上一点,其他条件不变.请你在图②中画出图形,写出此时DE、BF、 EF 之间的数目关系(不需要证明).7、已知:如图,在正方形ABCD 中, G 是 CD 上一点,延伸BC 到 E,使 CE= CG,连结 BG 并延伸交 DE 于 F.(1)求证:△BCG ≌△DCE;(2)将△DCE 绕点 D 顺时针旋转 90 °获得△DAE ′,判断四边形 E′BGD 是什么特别四边形?并说明原因.A DEG FBEC9.如图:已知在△ABC中,AB AC ,D 为 BC 边的中点,过点 D 作 DE ⊥ AB,DF ⊥ AC ,垂足分别为 E,F .(1)求证:△BED≌△CFD;( 2)若 A 90°,求证:四边形DFAE 是正方形.AE FB CD题型五:矩形的证明题1.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过 A 点作 BC 的平行线交CE 的延伸线于点F,且 AF= BD,连结 BF。
初中数学特殊平行四边形的证明及详细答案模板
初中数学特殊平行四边形的证明及详细答案模板初中数学特殊平行四边形的证明一.解答题(共30小题)1.(2015?泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.2.(2015?福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.3.(2015?深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.4.(2015?济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.5.(2015?临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少?6.(2015春?宿城区校级月考)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.求证:BD=BE.7.(2014?雅安)如图:在?ABCD中,AC为其对角线,过点D 作AC的平行线与BC 的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.8.(2014?贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.9.(2014?遂宁)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10.(2014?宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD 是矩形.11.(2014?钦州)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.12.(2014?贵港)如图,在正方形ABCD中,点E是对角线AC 上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.13.(2014?吴中区一模)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,∠BAF=∠DAE.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.14.(2014?新乡一模)小明设计了一个如图的风筝,其中,四边形ABCD与四边形AEFG 都是菱形,点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,AE=100cm,求菱形ABCD的边长.15.(2014?槐荫区三模)如图,菱形ABCD的边长为1,∠D=120°.求对角线AC的长.16.(2014?历城区一模)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,求AE的长.17.(2014?湖南校级模拟)如图,AE=AF,点B、D分别在AE、AF上,四边形ABCD 是菱形,连接EC、FC(1)求证:EC=FC;(2)若AE=2,∠A=60°,求△AEF的周长.18.(2014?清河区一模)如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.19.(2014春?防城区期末)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.20.(2014?通州区一模)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.21.(2014?顺义区二模)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.22.(2014?祁阳县校级模拟)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.23.(2014?荔湾区校级一模)已知点E是矩形ABCD的边AD 延长线上的一点,且AD=DE,连结BE交CD于点O,求证:△AOD≌△BOC.24.(2014?东海县二模)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.25.(2014?玉溪模拟)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.求证:BE=DG.26.(2014?工业园区一模)已知:如图正方形ABCD中,E为CD边上一点,F为BC 延长线上一点,且CE=CF(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.27.(2014?深圳模拟)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.28.(2014?碑林区校级模拟)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.求证:∠BEC=∠DEC.29.(2014?温州一模)如图,AB是CD的垂直平分线,交CD 于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.30.(2014?湖里区模拟)已知:如图,△ABC中,∠ABC=90°,BD是∠A BC的平分线,DE⊥AB于点E,DF⊥BC于点F.求证:四边形DEBF是正方形.初中数学特殊平行四边形的证明参考答案与试题解析一.解答题(共30小题)1.(2015?泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.考点:菱形的判定;线段垂直平分线的性质;平行四边形的判定.专题:证明题.分析:(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解答:解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2.(2015?福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.考点:菱形的判定.专题:证明题.分析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又EF=BE,∴四边形BCFE是菱形.解答:解:∵BE=2DE,EF=BE,∴EF=2DE.(1分)∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC.(2分)∴EF=BC.(3分)又EF∥BC,∴四边形BCFE是平行四边形.(4分)又EF=BE,∴四边形BCFE是菱形.(5分)点评:此题主要考查菱形的判定,综合利用了平行四边形的性质和判定.3.(2015?深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:菱形的判定与性质.专题:几何图形问题.分析:(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB 为直角即可.解答:解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定与性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4.(2015?济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.考点:矩形的性质;全等三角形的判定与性质.专题:证明题.分析:利用矩形的性质结合全等三角形的判定与性质得出△ABE≌△DCE(SAS),即可得出答案.解答:证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.点评:此题主要考查了全等三角形的判定与性质以及矩形的性质,得出△ABE≌△DCE是解题关键.5.(2015?临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少?考点:矩形的性质.分析:根据等角的余角相等,得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答:解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠EAD=∠ACB,∵在△ABC与△AED中,∵DE⊥AC于E,∠ABC=90°∴∠BAC=∠ADE=α.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学特殊平行四边形的证明一.解答题(共30小题)1.(2015•泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.2.(2015•福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.3.(2015•深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.4.(2015•济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.5.(2015•临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少?6.(2015春•宿城区校级月考)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.求证:BD=BE.7.(2014•雅安)如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC 的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.8.(2014•贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.9.(2014•遂宁)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.11.(2014•钦州)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.12.(2014•贵港)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.13.(2014•吴中区一模)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,∠BAF=∠DAE.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.14.(2014•新乡一模)小明设计了一个如图的风筝,其中,四边形ABCD与四边形AEFG 都是菱形,点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,AE=100cm,求菱形ABCD的边长.15.(2014•槐荫区三模)如图,菱形ABCD的边长为1,∠D=120°.求对角线AC的长.16.(2014•历城区一模)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,求AE的长.17.(2014•湖南校级模拟)如图,AE=AF,点B、D分别在AE、AF上,四边形ABCD 是菱形,连接EC、FC(1)求证:EC=FC;(2)若AE=2,∠A=60°,求△AEF的周长.18.(2014•清河区一模)如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.19.(2014春•防城区期末)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.20.(2014•通州区一模)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.21.(2014•顺义区二模)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.22.(2014•祁阳县校级模拟)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.23.(2014•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,求证:△AOD≌△BOC.24.(2014•东海县二模)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.25.(2014•玉溪模拟)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.求证:BE=DG.26.(2014•工业园区一模)已知:如图正方形ABCD中,E为CD边上一点,F为BC 延长线上一点,且CE=CF(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.27.(2014•深圳模拟)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.28.(2014•碑林区校级模拟)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.求证:∠BEC=∠DEC.29.(2014•温州一模)如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.30.(2014•湖里区模拟)已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F.求证:四边形DEBF是正方形.初中数学特殊平行四边形的证明参考答案与试题解析一.解答题(共30小题)1.(2015•泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.考点:菱形的判定;线段垂直平分线的性质;平行四边形的判定.专题:证明题.分析:(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解答:解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2.(2015•福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.考点:菱形的判定.专题:证明题.分析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又EF=BE,∴四边形BCFE是菱形.解答:解:∵BE=2DE,EF=BE,∴EF=2DE.(1分)∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC.(2分)∴EF=BC.(3分)又EF∥BC,∴四边形BCFE是平行四边形.(4分)又EF=BE,∴四边形BCFE是菱形.(5分)点评:此题主要考查菱形的判定,综合利用了平行四边形的性质和判定.3.(2015•深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:菱形的判定与性质.专题:几何图形问题.分析:(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB 为直角即可.解答:解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定与性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4.(2015•济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.考点:矩形的性质;全等三角形的判定与性质.专题:证明题.分析:利用矩形的性质结合全等三角形的判定与性质得出△ABE≌△DCE(SAS),即可得出答案.解答:证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.点评:此题主要考查了全等三角形的判定与性质以及矩形的性质,得出△ABE≌△DCE是解题关键.5.(2015•临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少?考点:矩形的性质.分析:根据等角的余角相等,得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答:解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠EAD=∠ACB,∵在△ABC与△AED中,∵DE⊥AC于E,∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα=,∴AC==.点评:此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.6.(2015春•宿城区校级月考)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC 交DC的延长线于点E.求证:BD=BE.考点:矩形的性质;平行四边形的判定与性质.专题:证明题.分析:根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证.解答:证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.点评:本题考查了矩形的性质,平行四边形的判定与性质,熟记各性质并求出四边形ABEC是平行四边形是解题的关键.7.(2014•雅安)如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC与△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评:本题考查了菱形的判定等知识,解题的关键是熟练掌握菱形的判定定理,难度不大.8.(2014•贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.考点:菱形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.解答:(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.点评:此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形.9.(2014•遂宁)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.考点:矩形的性质;全等三角形的判定与性质;菱形的判定.专题:证明题.分析:(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答:证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中,OC=OD,∴四边形ODFC是菱形.点评:本题考查了矩形的性质,全等三角形的判定与性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.10.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:矩形的判定.专题:证明题.分析:先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.解答:证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.点评:本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.11.(2014•钦州)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质可得AB=BC=CD,∠B=∠BCD=90°,然后求出BE=CF,再利用“边角边”证明△BCE和△CDF全等,根据全等三角形对应边相等证明即可.解答:证明:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°,∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.点评:本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.12.(2014•贵港)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E 作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.考点:正方形的性质;角平分线的性质;勾股定理.分析:(1)连接CF,根据“HL”证明Rt△CDF和Rt△CEF全等,根据全等三角形对应边相等可得DF=EF,根据正方形的对角线平分一组对角可得∠EAF=45°,求出△AEF是等腰直角三角形,再根据等腰直角三角形的性质可得AE=EF,然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB 于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.解答:(1)证明:如图,连接CF,在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解:∵AB=2,∴AC=AB=2,∵CE=CD,∴AE=2﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH=AE=×(2﹣2)=2﹣,∴BH=2﹣(2﹣)=,在Rt△BEH中,BE2=BH2+EH2=()2+(2﹣)2=8﹣4.点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形和直角三角形是解题的关键.13.(2014•吴中区一模)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,∠BAF=∠DAE.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定.专题:证明题.分析:(1)首先利用菱形的性质得出AB=AD,∠B=∠D,进而得出△ABE≌△ADF(ASA),即可得出答案;(2)利用垂直平分线的性质得出△ABC和△ACD都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF为等边三角形.解答:(1)证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解:连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评:此题主要考查了等边三角形的判定与性质以及全等三角形的判定与性质等知识,熟练掌握全等三角形的判定方法是解题关键.14.(2014•新乡一模)小明设计了一个如图的风筝,其中,四边形ABCD与四边形AEFG都是菱形,点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,AE=100cm,求菱形ABCD的边长.考点:菱形的性质.分析:根据菱形的性质可得出∠BAE=30°,∠B=45°,过点E作EM⊥AB于点M,设EM=x,则可得出AB、AE的长度,继而可得出的值,求出AB即可.解答:解:∵∠BAD=135°,∠EAG=75°,四边形ABCD与四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°,∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M,设EM=x,在Rt△AEM中,AE=2EM=2x,AM=x,在Rt△BEM中,BM=x,则==,∵AE=100cm,∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评:本题考查了菱形的性质及解直角三角形的知识,属于基础题,关键是掌握菱形的对角线平分一组对角.15.(2014•槐荫区三模)如图,菱形ABCD的边长为1,∠D=120°.求对角线AC的长.考点:菱形的性质.分析:连接BD与AC交于点O,根据菱形的性质可得AB=AD,AC=2AO,∠ADB=∠ADC,AC⊥BD,然后判断出△ABD是等边三角形,根据等边三角形的性质求出AO,再根据AC=2AO计算即可得解.解答:解:如图,连接BD与AC交于点O,∵四边形ABCD是菱形,∴AB=AD,AC=2AO,∠ADB=∠ADC,AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB=,∴AC=2AO=.点评:本题考查了菱形的性质,等边三角形的判定与性质,熟记性质并作辅助线构造出等边三角形是解题的关键.16.(2014•历城区一模)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC 于点E,求AE的长.考点:菱形的性质;勾股定理.分析:根据菱形的对角线互相垂直平分求出CO、BO,再利用勾股定理列式求出BC,然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC===5cm,∴S菱形ABCD==BC•AE,即×6×8=5•AE,解得AE=cm.答:AE的长是cm.点评:本题考查了菱形的性质,勾股定理,熟记菱形的对角线互相垂直平分是解题的关键,难点在于利用菱形的面积列出方程.17.(2014•湖南校级模拟)如图,AE=AF,点B、D分别在AE、AF上,四边形ABCD是菱形,连接EC、FC(1)求证:EC=FC;(2)若AE=2,∠A=60°,求△AEF的周长.考点:菱形的性质;全等三角形的判定与性质.分析:(1)连接AC,根据菱形的对角线平分一组对角可得∠CAE=∠CAF,然后利用“边角边”证明△ACE和△ACF全等,根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答:(1)证明:如图,连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解:连接EF,∵AE=AF,∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评:本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,熟记各性质并作出辅助线是解题的关键.18.(2014•清河区一模)如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.考点:菱形的判定;三角形中位线定理.专题:证明题.分析:利用三角形中位线的性质得出DE AC,EF AB,进而得出四边形ADEF为平行四边形.,再利用DE=EF即可得出答案.解答:证明:∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.点评:此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识,熟练掌握菱形判定定理是解题关键.19.(2014春•防城区期末)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:首先利用已知条件和平行四边形的性质判定△ADE≌△CDF,再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答:证明:在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.点评:本题考查了平行四边形的性质,全等三角形的判定和性质以及菱形的判定方法,解题的关键是熟练掌握各种图形的判定和性质.20.(2014•通州区一模)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.考点:菱形的判定与性质;正方形的判定与性质;中点四边形.分析:(1)利用三角形的中位线定理可以证得四边形EGFH的四边相等,即可证得;(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH是正方形,利用三角形的中位线定理求得GE的长,则正方形的面积可以求得.解答:(1)证明:∵四边形ABCD中,E、F、G、H分别是AD、BC、BD、AC的中点,∴FG=CD,HE=CD,FH=AB,GE=AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG=AB=.∴正方形EGFH的面积=()2=.点评:本题考查了三角形的中位线定理,菱形的判定以及正方形的判定,理解三角形的中位线定理是关键.21.(2014•顺义区二模)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C 作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.考点:菱形的判定与性质.分析:(1)由题意易得,EF与BC平行且相等,故四边形BCFE是平行四边形.又麟边EF=BE,则四边形BCFE是菱形;(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE,BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解:连结BF,交CE于点O.∵四边形BCFE是菱形,∠BCF=120°,∴∠BCE=∠FCE=60°,BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评:此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.22.(2014•祁阳县校级模拟)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:矩形的性质;菱形的判定.分析:(1)根据矩形性质求出OC=OD,根据平行四边形的判定得出四边形OCED是平行四边形,根据菱形判定推出即可;(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答:(1)证明:∵四边形ABCD是矩形,∴AC=2OC,BD=2OD,AC=BD,∴OD=OC,∵DE∥AC,CE∥BD,∴四边形OCED是菱形.(2)解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6,BC=8,∴在Rt△ABC中,由勾股定理得:AC=10,即OC=AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.点评:本题考查了勾股定理,平行四边形的判定,菱形的判定和性质,矩形的性质的应用,主要考查学生的推理能力.23.(2014•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,求证:△AOD≌△BOC.考点:矩形的性质;全等三角形的判定与性质.专题:证明题.分析:根据矩形的对边相等可得AD=BC,根据矩形的对边平行可得AD∥BC,根据两直线平行,内错角相等可得∠E=∠OBC,再求出BC=DE,然后利用“角角边”证明△AOD和△BOC 全等即可.解答:证明:在矩形ABCD中,AD=BC,AD∥BC,∴∠E=∠OBC,∵AD=DE,∴BC=DE,在△AOD和△BOC中,,∴△AOD≌△BOC(AAS).点评:本题考查了矩形的性质,全等三角形的判定,熟练掌握矩形的对边平行且相等找出三角形全等的条件是解题的关键.24.(2014•东海县二模)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.考点:正方形的性质;菱形的判定与性质.分析:(1)根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果;(2)根据正方形的边长、对角线,可得直角三角形,根据勾股定理,可得AC、EF的长,根据菱形的面积公式,可得答案.解答:(1)证明:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABF=∠CBF=∠CDE=∠ADE=45°.∵BF=DE,∴△ABF≌△CBF≌△DCE≌△DAE(SAS).AF=CF=CE=AE∴四边形AECF是菱形;(2)解:在Rt△ABD中,由勾股定理,得AD=,BC=AD=2,EF=BC﹣BF﹣DE=2﹣1﹣1,四边形AECF的面积=AD•EF÷2=2=4﹣2.点评:本题考查了正方形的性质,(1)先证明四个三角形全等,再证明四边相等的四边形是菱形;(2)先求出菱形的对角线的长,再求出菱形的面积.25.(2014•玉溪模拟)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.求证:BE=DG.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质得出CD=CB,CG=CE,∠BCE=∠DCG=90°,再利用全等三角形的判定定理“SAS”,即可得出△BCE≌△DCG,进而得出BE=DG.解答:证明:∵四边形ABCD和四边形ECGF都是正方形,∴在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG.点评:此题主要考查了正方形的性质以及全等三角形的判定与性质,正方形性质的考查经常与三角形的全等相结合综合考查,同学们分析问题时应多从这个角度思考.26.(2014•工业园区一模)已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的四条边都相等,四个角都是直角,BC=CD、∠BCE=∠DCF=90°,又CE=CF,根据边角边定理即可证明△BCE和△DCF全等;(2)由(1)可知△BCE≌△DCF得∠EBC=∠FDC=30°,可得∠BEC=60°,从而可求∠BEF 的度数.解答:证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°∵F为BC延长线上的点,∴∠DCF=90°,∴∠BCD=∠DCF,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)∵△BCE≌△DCF,∴∠EBC=∠FDC=30°,∴∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠FEC=45°,∴∠BEF=∠BEC+∠FEC=60°+45°=105°.点评:本题主要考查正方形的四条边都相等和四个角都是直角的性质以及三角形全等的判定和全等三角形对应边相等的性质和等腰三角形的性质,题目比较简单.27.(2014•深圳模拟)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解答:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50.点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质以及勾股定理等知识点.28.(2014•碑林区校级模拟)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.求证:∠BEC=∠DEC.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS即可证出△BEC≌△DEC,再根据全等三角形的性质即可求解.解答:证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA,在△BEC与△DEC中,。