高考理科数学(天津卷)试题及答案

合集下载

2022年天津市高考数学试卷(含解析)

2022年天津市高考数学试卷(含解析)

2022年天津市高考数学试卷一、选择题:本题共9小题,每小题5分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集{}2,1,0,1,2U =--,集合{}0,1,2A =,{}1,2B =-,则()U AC B =()A.{}0,1 B.{}0,1,2 C.{}1,1,2- D.{}0,1,1,2-2.“x 为整数”是“21x +为整数”的()条件A.充分而不必要B.必要而不充分C.充要条件 D.既不充分也不必要3.函数21()x f x x-=的图像为()ABCD4.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)1213,,[)1314,,[)1415,,[)1516,,[]1617,,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.18171615141312/kPa舒张压频率/组距0.360.080.160.245.0.72a =,0.71()3b =,21log 3c =,比较a ,b ,c 的大小()A.a c b>> B.b c a>> C.a b c>> D.c a b>>6.化简()()48392log 3log 3log 2log 2++的值为()A.1B.2C.4D.67.抛物线方程:2y =,1F 、2F 分别是双曲线方程:22221x y a b-=(0a >,0b >)的左、右焦点,抛物线的准线过双由线的左焦点1F ,准线与渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A.22110xy -= B.22116y x -= C.2214y x -= D.2214x y -=8.如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面形状为顶角为120,腰为3的等腰三角形,则该几何体的体积为()A.23 B.24 C.26 D.279.已知1()sin 22f x x =,关于该函数有下面四个说法:①()f x 的最小正周期为2π;②()f x 在[,]44ππ-上单调递增;③当[,]63x ππ∈-时,()f x 的取值范围为[;④()f x 的图象可由1g()sin(2)24x x π=+向左平移8π个单位长度得到.以上四个说法中,正确的个数有()A.1 B.2 C.3 D.4二、填空题:本题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分。

2019年天津市高考数学试卷(理科)以及答案解析

2019年天津市高考数学试卷(理科)以及答案解析

绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)理科数学答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 2.(5分)设变量x,y满足约束条件则目标函数z=﹣4x+y的最大值为()A.2B.3C.5D.63.(5分)设x∈R,则“x2﹣5x<0”是“|x﹣1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.5B.8C.24D.295.(5分)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线﹣=1(a>0,b >0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.6.(5分)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b7.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x).若g(x)的最小正周期为2π,且g()=,则f()=()A.﹣2B.﹣C.D.28.(5分)已知a∈R.设函数f(x)=若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,则||的值为.10.(5分)(2x﹣)8的展开式中的常数项为.11.(5分)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.12.(5分)设a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,则a的值为.13.(5分)设x>0,y>0,x+2y=5,则的最小值为.14.(5分)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则•=.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B =4a sin C.(Ⅰ)求cos B的值;(Ⅱ)求sin(2B+)的值.16.(13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.17.(13分)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC =2.(Ⅰ)求证:BF∥平面ADE;(Ⅱ)求直线CE与平面BDE所成角的正弦值;(Ⅲ)若二面角E﹣BD﹣F的余弦值为,求线段CF的长.18.(13分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.19.(14分)设{a n}是等差数列,{b n}是等比数列.已知a1=4,b1=6,b2=2a2﹣2,b3=2a3+4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{c n}满足c1=1,c n=其中k∈N*.(i)求数列{a(c﹣1)}的通项公式;(ii)求a i c i(n∈N*).20.(14分)设函数f(x)=e x cos x,g(x)为f(x)的导函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x∈[,]时,证明f(x)+g(x)(﹣x)≥0;(Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ+,2nπ+)内的零点,其中n∈N,证明2nπ+﹣x n<.2019年天津市高考数学(理科)答案解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;【解答】解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:联立,解得A(﹣1,1),化目标函数z=﹣4x+y为y=4x+z,由图可知,当直线y=4x+z过A时,z有最大值为5.故选:C.【点评】本题考查简单的线性规划知识,考查数形结合的解题思想方法,是中档题.3.【分析】充分、必要条件的定义结合不等式的解法可推结果【解答】解:∵x2﹣5x<0,∴0<x<5,∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要不充分条件,即x2﹣5x<0是|x﹣1|<1的必要不充分条件.故选:B.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:i=1,s=0;第一次执行第一个判断语句后,S=1,i=2,不满足条件;第二次执行第一个判断语句后,j=1,S=5,i=3,不满足条件;第三次执行第一个判断语句后,S=8,i=4,满足退出循环的条件;故输出S值为8,故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题5.【分析】推导出F(1,0),准线l的方程为x=﹣1,|AB|=,|OF|=1,从而b=2a,进而c==,由此能求出双曲线的离心率.【解答】解:∵抛物线y2=4x的焦点为F,准线为l.∴F(1,0),准线l的方程为x=﹣1,∵l与双曲线﹣=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),∴|AB|=,|OF|=1,∴,∴b=2a,∴c==,∴双曲线的离心率为e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查抛物线、双曲线的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.6.【分析】本题先将a、b、c的大小与1作个比较,发现b>1,a、c都小于1.再对a、c 的表达式进行变形,判断a、c之间的大小.【解答】解:由题意,可知:a=log52<1,b=log0.50.2===log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52=,c=0.50.2===.而log25>log24=2>,∴<.∴a<c,∴a<c<b.故选:A.【点评】本题主要考查对数、指数的大小比较,这里尽量借助于整数1作为中间量来比较.本题属基础题.7.【分析】根据条件求出φ和ω的值,结合函数变换关系求出g(x)的解析式,结合条件求出A的值,利用代入法进行求解即可.【解答】解:∵f(x)是奇函数,∴φ=0,则f(x)=A sin(ωx)将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).即g(x)=A sin(ωx)∵g(x)的最小正周期为2π,∴=2π,得ω=2,则g(x)=A sin x,f(x)=A sin2x,若g()=,则g()=A sin=A=,即A=2,则f(x)=2sin2x,则f()=2sin(2×=2sin=2×=,故选:C.【点评】本题主要考查三角函数的解析式的求解,结合条件求出A,ω和φ的值是解决本题的关键.8.【分析】分2段代解析式后,分离参数a,再构造函数求最值可得.【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a≥恒成立,令g(x)==﹣=﹣=﹣=﹣(1﹣x+﹣2)≤﹣(2﹣2)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a≤恒成立,令h(x)=,则h′(x)==,当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)=e,综上a的取值范围是[0,e].故选:C.【点评】本题考查了函数恒成立,属中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.【分析】本题可根据复数定义及模的概念及基本运算进行计算.【解答】解:由题意,可知:===2﹣3i,∴||=|2﹣3i|==.故答案为:.【点评】本题主要考查复数定义及模的概念及基本运算.本题属基础题.10.【分析】本题可根据二项式的展开式的通项进行计算,然后令x的指数为0即可得到r 的值,代入r的值即可算出常数项.【解答】解:由题意,可知:此二项式的展开式的通项为:T r+1=(2x)8﹣r=•28﹣r•(﹣)r•x8﹣r•()r=•(﹣1)r28﹣4r•x8﹣4r.∴当8﹣4r=0,即r=2时,T r+1为常数项.此时T2+1=•(﹣1)228﹣4×2=28.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.11.【分析】求出正四棱锥的底面对角线长度和正四棱锥的高度,根据题意得圆柱上底面的直径就在相对中点连线,有线段成比例求圆柱的直径和高,求出答案即可.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1=;故答案为:【点评】本题考查正四棱锥与圆柱内接的情况,考查立体几何的体积公式,属基础题.12.【分析】推导出圆心(2,1)到直线ax﹣y+2=0的距离:d==2=r,由此能求出a的值.【解答】解:∵a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,∴圆心(2,1)到直线ax﹣y+2=0的距离:d==2=r,解得a=.故答案为:.【点评】本题考查实数值的求法,考查直线与圆相切的性质、圆的参数方程等基础知识,考查运算求解能力,是基础题.13.【分析】利用基本不等式求最值.【解答】解:x>0,y>0,x+2y=5,则===2+;由基本不等式有:2+≥2=4;当且仅当2=时,即:xy=3,x+2y=5时,即:或时;等号成立,故的最小值为4;故答案为:4【点评】本题考查了基本不等式在求最值中的应用,属于中档题.14.【分析】利用和作为基底表示向量和,然后计算数量积即可.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•====﹣12+×5×2×﹣=﹣1故答案为:﹣1.【点评】本题考查了平面向量基本定理和平面向量的数量积,关键是选好基底,属中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.【分析】(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.【解答】解(Ⅰ)在三角形ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,即3b=4a.又因为b+c=2a,得b=,c=,由余弦定理可得cos B===﹣.(Ⅱ)由(Ⅰ)得sin B==,从而sin2B=2sin B cos B=﹣,cos2B=cos2B﹣sin2B=﹣,故sin(2B+)=sin2B cos+cos2B sin=﹣×﹣×=﹣.【点评】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.属中档题.16.【分析】(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(),可求分布列及期望;(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X =3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,利用相互对立事件的个概率公式可求【解答】解:(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(3,),从而P(X=k)=,k=0,1,2,3.所以,随机变量X的分布列为:X0123P随机变量X的期望E(X)=3×=2.(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X=3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,由(I)知,P(M)=P({X=3,Y=1}∪{X=2,Y=0}=P({X=3,Y=1}+P{X=2,Y =0}=P(X=3)P(Y=1)+P(X=2)P(Y=0)==【点评】本题主要考查了离散型随机变量的分布列与期望,互斥事件与相互独立事件的概率计算公式,考查运算概率公式解决实际问题的能力.17.【分析】(Ⅰ)以A为坐标原点,分别以,,所在直线为x,y,z轴建立空间直角坐标系,求得A,B,C,D,E的坐标,设CF=h(h>0),得F(1,2,h).可得是平面ADE的法向量,再求出,由,且直线BF⊄平面ADE,得BF∥平面ADE;(Ⅱ)求出,再求出平面BDE的法向量,利用数量积求夹角公式得直线CE与平面BDE所成角的余弦值,进一步得到直线CE与平面BDE所成角的正弦值;(Ⅲ)求出平面BDF的法向量,由两平面法向量所成角的余弦值为列式求线段CF的长.【解答】(Ⅰ)证明:以A为坐标原点,分别以,,所在直线为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).则是平面ADE的法向量,又,可得.又∵直线BF⊄平面ADE,∴BF∥平面ADE;(Ⅱ)解:依题意,,,.设为平面BDE的法向量,则,令z=1,得.∴cos<>=.∴直线CE与平面BDE所成角的正弦值为;(Ⅲ)解:设为平面BDF的法向量,则,取y=1,可得,由题意,|cos<>|=,解得h=.经检验,符合题意.∴线段CF的长为.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解线面角与二面角的大小,是中档题.18.【分析】(Ⅰ)由题意可得b=2,运用离心率公式和a,b,c的关系,可得a,c,进而得到所求椭圆方程;(Ⅱ)B(0,2),设PB的方程为y=kx+2,联立椭圆方程,求得P的坐标,M的坐标,由OP⊥MN,运用斜率之积为﹣1,解方程即可得到所求值.【解答】解:(Ⅰ)由题意可得2b=4,即b=2,e==,a2﹣b2=c2,解得a=,c=1,可得椭圆方程为+=1;(Ⅱ)B(0,2),设PB的方程为y=kx+2,代入椭圆方程4x2+5y2=20,可得(4+5k2)x2+20kx=0,解得x=﹣或x=0,即有P(﹣,),y=kx+2,令y=0,可得M(﹣,0),又N(0,﹣1),OP⊥MN,可得•=﹣1,解得k=±,可得PB的斜率为±.【点评】本题考查椭圆的方程和性质,考查直线和椭圆方程联立,求交点,考查化简运算能力,属于中档题.19.【分析】(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,利用等差数列、等比数列的通项公式列出方程组,能求出{a n}和{b n}的通项公式.(Ⅱ)(i)由a(c﹣1)=(b n﹣1),能求出数列{a(c﹣1)}的通项公式.(ii)a i c i=[a i+a i(c i﹣1)]=+=(×3)+,由此能求出结果.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,依题意有:,解得,∴a n=4+(n﹣1)×3=3n+1,b n=6×2n﹣1=3×2n.(Ⅱ)(i)∵数列{c n}满足c1=1,c n=其中k∈N*.∴a(c﹣1)=(b n﹣1)=(3×2n+1)(3×2n﹣1)=9×4n﹣1,∴数列{a(c﹣1)}的通项公式为:a(c﹣1)=9×4n﹣1.(ii)a i c i=[a i+a i(c i﹣1)]=+=(×3)+=(3×22n﹣1+5×2n﹣1)+9×﹣n=27×22n+1+5×2n﹣1﹣n﹣12.(n∈N*).【点评】本题考查等差数列、等比数列通项公式及前n项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.20.【分析】(Ⅰ)求出原函数的导函数,可得当x∈(,)(k∈Z)时,f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,f′(x)>0,f(x)单调递增;(Ⅱ)记h(x)=f(x)+g(x)(),依题意及(Ⅰ),得到g(x)=e x(cos x﹣sin x),由h′(x)<0,得h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0,从而得到当x∈[,]时,f(x)+g(x)(﹣x)≥0;(Ⅲ)依题意,u(x n)=f(x n)﹣1=0,即,记y n=x n﹣2nπ,则y n∈(),且f(y n)=e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g(x)在[,]上为减函数,有g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,得=<,从而证得2nπ+﹣x n<.【解答】(Ⅰ)解:由已知,f′(x)=e x(cos x﹣sin x),因此,当x∈(,)(k∈Z)时,有sin x>cos x,得f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,有sin x<cos x,得f′(x)>0,f(x)单调递增.∴f(x)的单调增区间为[,](k∈Z),单调减区间为[,](k∈Z);(Ⅱ)证明:记h(x)=f(x)+g(x)(),依题意及(Ⅰ),有g(x)=e x(cos x﹣sin x),从而h′(x)=f′(x)+g′(x)•()+g(x)•(﹣1)=g′(x)()<0.因此,h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0.∴当x∈[,]时,f(x)+g(x)(﹣x)≥0;(Ⅲ)证明:依题意,u(x n)=f(x n)﹣1=0,即.记y n=x n﹣2nπ,则y n∈(),且f(y n)==e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g′(x)<0,∴g(x)在[,]上为减函数,因此,g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,故=<.∴2nπ+﹣x n<.【点评】本题主要考查导数的运算,不等式的证明、运用导数研究函数的性质等基础知识和方法,考查函数思想和化归与转化思想,考查抽象概括能力、综合分析问题与解决问题的能力,属难题.。

精品解析:2024年天津高考数学真题(原卷版)(合并)

精品解析:2024年天津高考数学真题(原卷版)(合并)

2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.已知,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,线性相关性系数最大的是()A. B.C. D.4.下列函数是偶函数的为()A.22eexxxyx-=+B.22cos1x xyx-=+C.eexxxyx-=+D.2sin1x xyx-=+5.设0.20.2 4.24.2 4.2log0.2a b c-===,,,则a b c,,的大小关系为()A.a b c<< B.a c b<< C.c b a<< D.c a b<<6.已知,m n是两条直线,α是一个平面,下列命题正确的是()A.若//mα,m n⊥,则nα⊥ B.若,m m n⊥α⊥,则nα⊥C.若//,αα⊥m n,则m n⊥ D.若,m n⊥αα⊥,则m n⊥7.已知函数()()π3sin03f x xωω⎛⎫=+>⎪⎝⎭的最小正周期为π.则()f x在区间ππ,126⎡⎤-⎢⎥⎣⎦上的最小值是()A.2- B.32- C.0 D.328.双曲线22221()00ax ya bb>-=>,的左、右焦点分别为12,.F F点P在双曲线右支上,直线2PF的斜率为2.若12PF F是直角三角形,且面积为8,则双曲线的方程为()A.22128x y-= B.22148x y-= C.22182x y-= D.22184x y-=9.在如图五面体ABC DEF-中,棱,,AD BE CF互相平行,且两两之间距离均为1.若123AD BE CF ===,,.则该五面体的体积为()A.6B.142+ C.2D.142-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数))i 2i ⋅-=______.11.在62233x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.已知圆22(1)25-+=x y 的圆心与抛物线22y px =的焦点F 重合,且两曲线在第一象限的交点为A ,则原点到直线AF 的距离为______.13.某校组织学生参加农业实践活动,期间安排了劳动技能比赛,比赛共5个项目,分别为整地做畦、旱田播种、作物移栽、田间灌溉、藤架搭建,规定每人参加其中3个项目.假设每人参加每个项目的可能性相同,则甲同学参加“整地做畦”项目的概率为______;已知乙同学参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为______.14.已知正方形ABCD 的边长为1,2,DE EC = 若BE BA BC λμ=+,其中,λμ为实数,则λμ+=______;设F 是线段BE 上的动点,G 为线段AF 的中点,则AF DG ⋅的最小值为______.15.设R a ∈,函数()21f x ax =--+.若恰有一个零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC V 中,角,,A B C 所对的边分别为s s ,已知92cos 5163a Bbc ===,,.(1)求a 的值;(2)求sin A 的值;(3)求()cos 2B A -的值.17.如图,在四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,,//AB AD AB DC ⊥,12,1AB AA AD DC ====.,M N 分别为111,DD B C的中点,(1)求证:1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB C C 夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>的离心率为12.左顶点为A ,下顶点为B C ,是线段OB 的中点(O 为原点),ABC 的面积为332.(1)求椭圆的方程.(2)过点C 的动直线与椭圆相交于P Q ,两点.在y 轴上是否存在点T ,使得0TP TQ ⋅≤恒成立.若存在,求出点T 纵坐标的取值范围;若不存在,请说明理由.19.已知为公比大于0的等比数列,其前n 项和为n S ,且1231,1a S a ==-.(1)求的通项公式及n S ;(2)设数列{}n b 满足11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,其中*k ∈N .(ⅰ)求证:当()*1N ,1k n a k k +=∈>且时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.20.已知函数()ln f x x x =.(1)求曲线()y f x =在点1,1处的切线方程;(2)若()(f x a x ≥-对任意∈0,+∞成立,求实数a 的值;(3)若()12,0,1x x ∈,求证:()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B2.已知,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.下列图中,线性相关性系数最大的是()A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4.下列函数是偶函数的为()A.22e e x xx y x -=+ B.22cos 1x x y x -=+ C.e e x xxy x-=+ D.2sin 1x x y x -=+【答案】B 【解析】【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e e x x xf x x -=+,函数定义域为R ,但()11e 11e 1e 1e 1f -----==++,()e 11e 1f -=+,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x -=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -----===+-+,则()g x 为偶函数,故B 正确;对C ,设()e e x x x h x x -=+,()()11e 11e e 11,1e 11e e 1h h --++--===--+,()()11h h -≠,则()h x 不是偶函数,故C 错误;对D ,设()2sin 1x xx x ϕ-=+,函数定义域为R ,因为()()()()()22sin sin 11x x x xx x x x ϕϕ---+-===-+-+,且()x ϕ不恒为0,则()x ϕ不是偶函数,故D 错误.故选:B.5.设0.20.2 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c <<B.a c b<< C.c b a<< D.c a b<<【答案】D 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.200.2-<<,所以0.200.20 4.2 4.2 4.2-<<<,所以0.20.20 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+∞上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以c a b <<,故选:D6.已知,m n 是两条直线,α是一个平面,下列命题正确的是()A.若//m α,m n ⊥,则n α⊥B.若,m m n ⊥α⊥,则n α⊥C.若//,αα⊥m n ,则m n ⊥D.若,m n ⊥αα⊥,则m n⊥【答案】C 【解析】【分析】根据线面位置关系的判定与性质,逐项判断即可求解.【详解】对于A ,若//m α,m n ⊥,则,n α平行或相交,不一定垂直,故A 错误.对于B ,若,m m n α⊥⊥,则//n α或n ⊂α,故B 错误.对于C ,//,αα⊥m n ,过m 作平面β,使得s βα= ,因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D ,若,m n αα⊥⊥,则m ,故D 错误.故选:C .7.已知函数()()π3sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则()f x 在区间ππ,126⎡⎤-⎢⎥⎣⎦上的最小值是()A.2-B.32-C.0D.32【答案】D 【解析】【分析】结合周期公式求出ω,得()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭,再整体求出当ππ,126x ⎡⎤∈-⎢⎥⎣⎦时,π23x +的范围,结合正弦三角函数图象特征即可求解.【详解】因为函数()f x 的最小正周期为π,则2ππT ω==,所以2ω=,即()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭,当ππ,126x ⎡⎤∈-⎢⎥⎣⎦时,ππ2π2336,x ⎡⎤+∈⎢⎥⎣⎦,所以当26ππ3x +=,即π12x =-时,()min π33sin 62f x ==故选:D8.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12,.F F 点P 在双曲线右支上,直线2PF 的斜率为2.若12PF F 是直角三角形,且面积为8,则双曲线的方程为()A.22128x y -= B.22148x y -= C.22182x y -= D.22184x y -=【答案】A 【解析】【分析】可利用12PF F 三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin θ=121212::sin :sin :sin 902:1:PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =⋅=⋅= 得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:A9.在如图五面体ABC DEF -中,棱,,AD BE CF 互相平行,且两两之间距离均为1.若123AD BE CF ===,,.则该五面体的体积为()A.B.3142+ C.32D.33142-【答案】C 【解析】.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,21221111422ABC DEF ABC HIJ V V --==⨯⨯⨯=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i是虚数单位,复数))i 2i ⋅-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+⋅=+-+=-.故答案为:7.11.在62233x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为62233x x ⎛⎫+ ⎪⎝⎭的展开式的通项为626124626213C 3C ,0,1,,63rrr r r rr x T xr x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令1240r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12.已知圆22(1)25-+=x y 的圆心与抛物线22y px =的焦点F 重合,且两曲线在第一象限的交点为A ,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为1,0,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ,故直线()4:13AF y x =-即4340x y --=,故原点到直线AF 的距离为4455d ==,故答案为:4513.某校组织学生参加农业实践活动,期间安排了劳动技能比赛,比赛共5个项目,分别为整地做畦、旱田播种、作物移栽、田间灌溉、藤架搭建,规定每人参加其中3个项目.假设每人参加每个项目的可能性相同,则甲同学参加“整地做畦”项目的概率为______;已知乙同学参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为______.【答案】①.35②.12【解析】【分析】结合列举法或组合公式和概率公式可求解第一空;采用列举法或者条件概率公式可求第二空.【详解】解法一:列举法给这5个项目分别编号为,,,,,A B C D E F ,从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲参加“整地做畦”的概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选择D 有3种可能性:,,ABD ACD ADE ,故乙参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到D 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择D 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.已知正方形ABCD 的边长为1,2,DE EC = 若BE BA BC λμ=+,其中,λμ为实数,则λμ+=______;设F 是线段BE 上的动点,G 为线段AF 的中点,则AF DG ⋅的最小值为______.【答案】①.43②.518-【解析】【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅ 的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅ 的最小值.【详解】解法一:因为12CE DE =,即13CE BA = ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.15.设R a ∈,函数()21f x ax =--+.若恰有一个零点,则a 的取值范围为______.【答案】()(1-⋃【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩,则两函数图象有唯一交点,分0a =、0a >与a<0进行讨论,当0a >时,计算函数定义域可得x a ≥或0x ≤,计算可得(]0,2a ∈时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a ∈时,在y 轴右侧无交点的情况即可得;当a<0时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -≥,当0a =时,∈,有11=--=,则12x =±,不符合要求,舍去;当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点,由20x ax -≥,可得x a ≥或0x ≤,当0x ≤时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =时,即410x +=,即14=-x ,当()0,2a ∈,12x a =-+或102x a=>-(正值舍去),当()2,a ∞∈+时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a ∈时,210ax --+=在0x ≤时有唯一解,则当(]0,2a ∈时,210ax --+=在x a ≥时需无解,当(]0,2a ∈,且x a ≥时,由函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数ℎ在12,a a ⎛⎫⎪⎝⎭上单调递减,在23,a a ⎛⎫⎪⎝⎭上单调递增,令()g x y ==,即2222214a x y a a ⎛⎫- ⎪⎝⎭-=,故x a ≥时,()g x 图象为双曲线()222214x y a a -=右支的x 轴上方部分向右平移2a 所得,由()222214x y a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x ⎛⎫=-⎪⎝⎭,其斜率为2,又(]0,2a ∈,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a ∞+上单调递增,故有13a aa a ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<符合要求;当0a <时,则23,2121,ax x a ax ax x a ⎧-≤⎪⎪=--=⎨⎪->⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点,由20x ax -≥,可得0x ≥或x a ≤,当0x ≥时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =-时,即410x -=,即14x =,当()2,0a ∈-,102x a =-<+(负值舍去)或102x a=-,当(),2a ∞∈-时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a ∈-时,210ax --+=在0x ≥时有唯一解,则当[)2,0a ∈-时,210ax --+=在x a ≤时需无解,当[)2,0a ∈-,且x a ≤时,由函数()23,21,ax x ah x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数ℎ在21,a a ⎛⎫⎪⎝⎭上单调递减,在32,a a ⎛⎫⎪⎝⎭上单调递增,同理可得:x a ≤时,()g x 图象为双曲线()222214x y a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-,又[)2,0a ∈-,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a ∞-上单调递减,故有13a aa a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(1a ∈-⋃.故答案为:()(1-⋃.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC V 中,角,,A B C 所对的边分别为s s ,已知92cos 5163a Bbc ===,,.(1)求a 的值;(2)求sin A 的值;(3)求()cos 2B A -的值.【答案】(1)4(2)74(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以57sin 16B ===,再根据正弦定理得sin sin a b A B =,即4sin 5716A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则7sin 4A ==【小问3详解】法一:因为9cos 016B =>,且∈0,π,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin 16B =,因为a b <,则A B <,所以3cos 4A ==,则7337sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()91573757cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:7337sin 22sin cos 2448A A A ==⨯⨯=,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=17.如图,在四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,,//AB AD AB DC ⊥,12,1AB AA AD DC ====.,M N 分别为111,DD B C 的中点,(1)求证:1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB C 夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2)22211(3)21111【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系,有0,0,0、()2,0,0B 、()12,0,2B 、()0,1,1M 、1,1,0、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB =,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z =,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m = 、()1,1,0n =,则222cos ,11m nm n m n ⋅===⋅,故平面1CB M 与平面11BB CC 的夹角余弦值为22211;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =,则有121111BB m m ⋅==,即点B 到平面1CB M的距离为11.18.已知椭圆22221(0)x y a b a b+=>>的离心率为12.左顶点为A ,下顶点为B C ,是线段OB 的中点(O 为原点),ABC 的面积为332.(1)求椭圆的方程.(2)过点C 的动直线与椭圆相交于P Q ,两点.在y 轴上是否存在点T ,使得0TP TQ ⋅≤恒成立.若存在,求出点T 【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤ 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()32,0,0,,0,2A c B C ⎛⎫--⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△,故c =,所以a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫-⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()(1122,,,TP x y t TQ x y t =-=-,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122k x x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+,因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫-⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -≤≤,两者结合可得332t -≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19.已知为公比大于0的等比数列,其前n 项和为n S ,且1231,1a S a ==-.(1)求的通项公式及n S ;(2)设数列{}n b 满足11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,其中*k ∈N .(ⅰ)求证:当()*1N ,1k n a k k +=∈>且时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.【答案】(1)12,21n n n n a S -==-(2)①证明见详解;②()131419nn S ii n b=-+=∑【解析】【分析】(1)设等比数列的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121k n b k -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1212113143449k k i k k i b k k -=--⎡⎤∑=---⎣⎦,再结合裂项相消法分析求解.【小问1详解】设等比数列的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以1122,2112n n n n n a S --===--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k ∈≥,当124kk n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-,可得()()()()1112112122120kk k n k n b a b k k k k k k k ----⋅=--+=--≥--=-≥,当且仅当2k =时,等号成立,所以1n k n b a b -≥⋅;(ii )由(1)可知:1211nn S a +=-=-,若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=,当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211121221122431434429k k k k i k k k k ib k kk k k ---=-----⎡⎤∑=⋅+=⋅=---⎣⎦,所以()()()123213141115424845431434499n n i n n i S n b n n =--+⎡⎤∑=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦,且1n =,符合上式,综上所述:()131419n n i iS n b =-+∑=.【点睛】关键点点睛:1.分析可知当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1212113143449k k i k k i b k k -=--⎡⎤∑=---⎣⎦.20.已知函数()ln f x x x =.(1)求曲线()y f x =在点1,1处的切线方程;(2)若()(f x a x ≥-对任意∈0,+∞成立,求实数a 的值;(3)若()12,0,1x x ∈,求证:()()121212f x f x x x -≤-.【答案】(1)1y x =-(2)2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】由于()ln f x x x =,故()ln 1f x x '=+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t-'=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g ⎛⎫-=-=--=⋅ ⎪⎭⎝.当()0,x ∈+∞()0,∞+,所以命题等价于对任意()0,t ∈+∞,都有()0g t ≥.一方面,若对任意()0,t ∈+∞,都有()0g t ≥,则对()0,t ∈+∞有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭,取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ∈+∞都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的值是2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -≥,故lnln ln ln ln ln ln 1ln 1bb b a a a b a a a b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b⎛⎫--- ⎪--⎝⎭=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x '=+,可知当10e x <<时()0f x '<,当1e x >时()0f x '>.所以()f x 在10,e⎛⎤ ⎥⎝⎦上递减,在1,e ∞⎡⎫+⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<,结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=--()ln 1x x ϕ'=++由于()xϕ'单调递增,且有1111111ln1ln1110 2e2e ec cϕ⎛⎫⎪'=++++--+⎪⎝⎭,且当2124ln1x cc≥-⎛⎫-⎪⎝⎭,2cx>2ln1c≥-可知()2ln1ln1ln102cx xcϕ⎛⎫=++>++=-≥⎪⎝⎭'.所以()xϕ'在()0,c上存在零点x,再结合()xϕ'单调递增,即知0x x<<时()0xϕ'<,x x c<<时()0xϕ'>.故()xϕ在(]00,x上递减,在[]0,x c上递增.①当0x x c≤≤时,有()()0x cϕϕ≤=;②当00x x<<112221e ef fc⎛⎫=-≤-=<⎪⎝⎭,故我们可以取1,1qc⎫∈⎪⎭.从而当21cxq<<->()1ln ln ln ln0x x x c c c c c c qcϕ⎫=--<--<--=-<⎪⎭.再根据()xϕ在(]00,x上递减,即知对0x x<<都有()0xϕ<;综合①②可知对任意0x c<≤,都有()0xϕ≤,即()ln ln0x x x c cϕ=--.根据10,ec⎛⎤∈ ⎥⎝⎦和0x c<≤的任意性,取2c x=,1x x=,就得到1122ln ln0x x x x--.所以()()()()12121122ln lnf x f x f x f x x x x x-=-=-≤.情况三:当12101ex x<≤≤<时,根据情况一和情况二的讨论,可得()11ef x f⎛⎫-≤≤⎪⎝⎭()21e f f x ⎛⎫-≤≤ ⎪⎝⎭.而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.。

2019年天津市高考数学试卷(理科)(解析版)

2019年天津市高考数学试卷(理科)(解析版)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B ⋃=+. ·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D 【解析】 【分析】先求A B ⋂,再求()A C B 。

【详解】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D 。

【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为( ) A. 2 B. 3C. 5D. 6【答案】C 【解析】 【分析】画出可行域,用截距模型求最值。

【详解】已知不等式组表示的平面区域如图中的阴影部分。

目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值。

由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=。

故选C 。

高考天津卷数学理科试卷含答案

高考天津卷数学理科试卷含答案

普通高等学校招生全国统一考试数学(理工类)参考公式:·如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =·如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =··一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,32i 1i=-( ) A.1i +B. 1i -+C.1i -D.1i --2.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A.4B.11C.12D.143.“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件4.设双曲线22221(00)x y a b a b-=>>,,且它的一条准线与抛物线24y x=的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= 5.函数2log 2)(0)y x =>的反函数是( ) A.142(2)xx y x +=-> B.142(1)x x y x +=-> C.242(2)x x y x +=->D.242(1)xx y x +=->6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函数,则()f x ( )A.在区间[21]--,上是增函数,在区间[34],上是增函数 B.在区间[21]--,上是增函数,在区间[34],上是减函数 C.在区间[21]--,上是减函数,在区间[34],上是增函数8.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2B.4C.6D.89.设a b c ,,均为正数,且122log a a =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<10.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,中央电视台mλ的取值范围是( ) A.B.[48],C.D.普通高等学校招生全国统一考试数学(理工类)第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .13.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n n a n S →∞-= .14.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .15.如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则ADBC =· . 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.18.(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(Ⅰ)证明CD AE ⊥;(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小.AB DCABCDPE20.(本小题满分12分)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.21.(本小题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立.22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.2 12.14π 13.3 14.30x y +=15.83-16.390三、解答题17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭, 故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:间π3π84⎡⎤⎢⎥⎣⎦,由图象得函数()f x 在区3π14f ⎛⎫=-⎪⎝⎭. 18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件AB ,相互独立,且23241()2C P A C ==,24262()5C P B C ==. 故取出的4个球均为黑球的概率为121()()()255P A B P A P B ==⨯=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. (Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==, 13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==.xξ的分布列为ξ的数学期望012351510306E ξ=⨯+⨯+⨯+⨯=.19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故PA CD ⊥.AC CD PA AC A ⊥=,∵,CD ⊥∴平面PAC .而AE ⊂平面PAC ,CD AE ⊥∴.(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C =,所以AE ⊥平面PCD .而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A=∵,综上得PD⊥平面ABE .(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥. 因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a=,可得32PA a AD PD a AE a ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,则a PA AD AM PD===··. 在AEM Rt △中,sin 4AE AME AM ==. 所以二面角A PD C --的大小是arcsin4. 解法二:由题设PA ⊥底面ABCD ,PA ⊂平面PAD ,则平面PAD ⊥平面ACD ,交线为AD .过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD .过点F 作FM PD ⊥,垂足为M ,连结CM ,故CM PD ⊥.因此CMP ∠是二面角A PD C --的平面角. 由已知,可得30CAD ∠=°,设AC a =,ABCDPEM可得12PA a AD PD CF a FD =====,,,,. FMD PAD ∵△∽△,FM FDPA PD=∴.于是,14a aFD PA FM a PD ===··. 在CMF Rt △中,1tan aCFCMF FM ===所以二面角A PD C --的大小是.20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =, 又2222222(1)2222()(1)(1)x x x x f x x x +--'==++·,6(2)25f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--, 即62320x y +-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++. 由于0a ≠,以下分两种情况讨论. (1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数.ABCDPEF M函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭, 函数()f x 在21x a=处取得极大值()f a ,且()1f a =. (2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在21x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n nn a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n nn a n λ=-+. (Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+-, ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ②当1λ≠时,①式减去②式, 得212311(1)(1)(1)1n n n n n T n n λλλλλλλλλ+++--=+++--=---,21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---.这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--. 当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. (Ⅲ)证明:通过分析,推测数列1n n a a +⎧⎫⎨⎬⎩⎭的第一项21a a 最大,下面证明: 21214,22n n a a n a a λ++<=≥. ③ 由0λ>知0n a >,要使③式成立,只要212(4)(2)n n a a n λ+<+≥, 因为222(4)(4)(1)(1)2n nn a n λλλλ+=+-++124(1)424(1)2n n n n n n λλλ++>-+⨯=-+·1212222n n n n a n λ++++=,≥≥.所以③式成立.因此,存在1k =,使得1121n k n k a a aa a a ++=≤对任意n *∈N 均成立. 22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF,即23c =将222c a b =-代入上式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F A OF F A=.由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =.(Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD Q Q ⊥知,直线12Q Q 的斜率为0x y -,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,.将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,于是122412kmx x k +=-+,21222212m b x x k -=+.由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,. 所以120x x x ==,12y =,. 由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=. 综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD Q Q ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+.记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧ 由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=. 所以,点D 的轨迹方程为22223x y b +=.。

2019年高考理科数学天津卷真题理数(附参考答案及详解)

2019年高考理科数学天津卷真题理数(附参考答案及详解)

文档说明绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,1,2,3,5}A=-,{2,3,4}B=,{|13}C x x=∈≤<R,则()A C B=I U()A.{2}B.{2,3}C.{1,2,3}- D.{1,2,3,4}2.设变量x y⋅满足约束条件20,20,1,1,x yx yxy+-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y=-+的最大值为()A.2B.3C.5D.63.设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读如图的程序框图,运行相应的程序,输出S 的值为( )A.5B.8C.24D.29 5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )C.26.已知52log a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( ) A.a c b << B.a b c << C.b c a << D.c a b <<7.已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( )A.2-B. D.28.已知a ∈R ,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤⎪=⎨->⎪⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e]第Ⅱ卷二、填空题:本题共6小题,每小题5分。

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

绝密 ★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷 注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945FED CBA (4)函数212log 4f x x 的单调递增区间是()(A )0, (B ),0(C )2,(D ),2(5)已知双曲线22221x y a b 0,0ab 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x yD ,交(6)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CEBE DE ;④AF BD AB BF .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a bR ,则|“a b ”是“a a b b ”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BE BC ,DFDC .若1AE AF ,23CE CF,则( )(A )12 (B )23 (C )56 (D )712第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2022年新高考天津数学高考真题文档版(含答案)

2022年新高考天津数学高考真题文档版(含答案)

2022年普通高等学校招生全国统一考试(天津卷)数学一、选择题(本题共9小题,每小题5分,共45分)1.设全集{2,1,0,1,2}U =--,集合{0,1,2},{1,2}A B ==-,则()U AB =( ) A .{0,1} B .{0,1,2}C .{1,1,2}-D .{0,1,1,2}-2.“x 为整数”是“21x +为整数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要3.函数21()x f x x -=的图象为( )A .B .C .D .4.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .185.已知0.70.72112,,log 33a b c ⎛⎫=== ⎪⎝⎭,则( ) A .a c b >> B .b c a >> C .a b c >> D .c a b >>6.化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .67.已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -= 8.如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .279.已知1()sin 22f x x =,关于该函数有下列四个说法: ①()f x 的最小正周期为2π;②()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ③当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的取值范围为33,44⎡-⎢⎣⎦; ④()f x 的图象可由1()sin 224g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移8π个单位长度得到. 以上四个说法中,正确的个数为( )A .1B .2C .3D .4二、填空题(本题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分)10.已知i 是虚数单位,化简113i 12i -+的结果为_______________. 11.523x x ⎫⎪⎭展开式中的常数项为_______________. 12.直线0(0)x y m m -+=>与圆22(1)(1)3x y -+-=相交所得的弦长为m ,则m =_______________.13.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为_______________;已知第一次抽到的是A ,则第二次抽取A 的概率为_______________.14.在ABC △中,,CA a CB b ==,D 是AC 的中点,2CB BE =,试用,a b 表示DE 为________﹔若AB DE ⊥,则ACB ∠的最大值为___________15.设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a --+-=.若()f x 至少有3个零点,则实数a 的取值范围为_________. 三、解答题(本题共5小题,共75分)16.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .已知16,2,cos 4a b c A ===-. (1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.17.直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证:EF ∥平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1A CD 与平面1CC D 所成二面角的余弦值.18.设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-﹔(3)求()211[1]n kk k k k a a b +=--∑.19.椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB =. (1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于点N (N 异于M ).记O 为坐标原点,若OM ON =,且OMN △3,求椭圆的标准方程.20.已知a b ∈R ,,函数()()e sin ,x f x a x g x b x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点;(i )当0a =时,求b 的取值范围;(ⅱ)求证:22e a b +>.2022年普通高等学校招生全国统一考试数学(天津卷)数学参考答案一、选择题1. A2. A3. A4. B5. C6. B7. C8. D9. A二、填空题10. 15i -##5i 1-+11. 1512. 213. ①.1221 ②. 117 14. ①. 3122b a - ②. 6π 15. 10a ≥三、解答题16.(1)1c =(2)sin 104B = (3)10sin(2)8A B -=17.(1)略(2)45(3)101018.(1)121,2n n n a n b -=-=19.(1)6e = (2)22162x y += 20.(1)(1)1=-+y a x(2)(i ))2e,b ∞⎡∈+⎣;(ii )略。

2023年天津高考数学试题真题(含答案详解)

2023年天津高考数学试题真题(含答案详解)

2023年天津高考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题A.()25e e2x xx−−+C.()25e e2x xx−++5.已知函数()f x的一条对称轴为直线x=A.花瓣长度和花萼长度没有相关性B.花瓣长度和花萼长度呈现负相关C.花瓣长度和花萼长度呈现正相关D.若从样本中抽取一部分,则这部分的相关系数一定是二、填空题三、双空题13.甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取.在ABC中,60,BC的中点,若设,AB a AC b==,则AE可用,a b_________;若13BF BC=,则AE AF⋅的最大值为四、填空题五、解答题.在ABC 中,角120.(1)求证:1A N //平面1C MA ;(2)求平面1C MA 与平面11ACC A (3)求点C 到平面1C MA 的距离.22x y2023年天津高考数学真题答案详解学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则∁U B ∪A ( )A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【答案】A【详解】由∁U B ={3,5},而{1,3}A =, 所以∁U B ∪A ={1,3,5}.故选:A 2.“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详解】由22a b =,则a b =±,当0a b =−≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b −=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B3.若0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .a b c >> D .b a c >> 【答案】D【详解】由 1.01x y =在R 上递增,则0.50.61.01 1.01a b =<=, 由0.5y x =在[0,)+∞上递增,则0.50.51.010.6a c =>=. 所以b a c >>.故选:D4.函数()f x 的图象如下图所示,则()f x 的解析式可能为( )A.花瓣长度和花萼长度没有相关性B.花瓣长度和花萼长度呈现负相关C.花瓣长度和花萼长度呈现正相关D.若从样本中抽取一部分,则这部分的相关系数一定是【答案】C【详解】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,PAM PAC S NN S BB ⋅⋅0)>的左、因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF ca b ==+设2POF θ∠=,则tan PF OPθ=二、填空题三、双空题13.甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取.在ABC 中,60,BC 的中点,若设,AB a AC b ==,则AE 可用,a b _________;若13BF BC =,则AE AF ⋅的最大值为【答案】1142a b + 1324【详解】空1:因为E 为CD 的中点,则0ED EC +=,可得AE ED ADAE EC AC ⎧+=⎪⎨+=⎪⎩,两式相加,可得到2AE AD AC =+, 122AE a b =+,则1142AE a b =+;:因为13BF BC =,则20FB FC +=,可得AF FC AC AF FB AB⎧+=⎪⎨+=⎪⎩, 得到()22AF FC AF FB AC AB +++=+, 32AF a b =+,即2133AF a b =+. 于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭. 记,AB x AC y ==,则()()222211125225cos 602121212A x a a b b xy y E AF ⎛+⋅+=++= ⋅⎝=在ABC 中,根据余弦定理:222222cos60BC x y xy x y =+−=+−于是1512212212AE xy xy AF ⎛⎫⎛++= ⎪ ⎝⎭=⎝⋅221+−=x y xy 和基本不等式,2x y xy +−=1xy ≤,当且仅当1y ==时,AE AF ⋅有最大值1142a b +;1324.四、填空题15.若函数()22f x ax x =−【答案】()()(,00,1∞−⋃⋃五、解答题.在ABC中,角120.2sin120sin =24c +−5sin120sin =,cos 39226−(1)求证:1A N //平面1C MA ;(2)求平面1C MA 与平面11ACC A (3)求点C 到平面1C MA 的距离.【答案】(1)证明见解析(2)2).由,M N 分别是,BC BA 的中点,根据中位线性质,11AC //AC ,于是MN //11AC ,由1C MA ,1MC ⊂平面1C MA ,于是ME AC ⊥,垂足为E ,过E 作Rt MEF 中,90,3MF(3)[方法一:几何法]过1C 作1C P AC ⊥,垂足为P ,作由题干数据可得,11C A C C ==由1C P ⊥平面AMC ,AM ⊂平面11Q C P C =Q AM Q =⊂平面1C 1Rt C PQ 中,2CA PA =,故点1MA 的距离的两倍,辅助线同方法一.设点C 到平面1C MA 的距离为111133C AMC AMC V C P S −=⨯⨯=111133C C MA AMC V h S −=⨯⨯=⨯2MA h ⇔=221(y b=211122122A QA A PQ A A P A PF A A P S S S S S =+=+得2Q y 得到答案.【详解】由题意得31a c a c +=⎧⎨−=⎩,解得a 所以椭圆的方程为2243x y +=(2)由题意得,直线2A P 斜率存在,由椭圆的方程为设直线2A P 的方程为(y k x =22x y ⎧21A QA S=2A PF S =12A A P S =211122122A QA A PQ A A P A PF A A P S S S S S =+=+,3Q P y y =,即21222334k k k −=−+, 62=±,所以直线2A P 的方程为(62y =±(21n ++−14n −.21k n ≤−时,112k −+=+。

2021年天津市高考数学试卷(理科)

2021年天津市高考数学试卷(理科)

2021年天津市高考数学试卷(理科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1} B.{x|0<x<1} C.{x|1≤x<2} D.{x|0<x<2}2.(5.00分)设变量x,y知足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.44.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而没必要要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5.00分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右核心且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离别离为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A. B.C.D.3二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=.10.(5.00分)在(x﹣)5的展开式中,x2的系数为.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心别离为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.三.解答题:本大题共6小题,共80分.解承诺写出文字说明,证明进程或演算步骤.15.(13.00分)在△ABC中,内角A,B,C所对的边别离为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数别离为24,16,16.现采用分层抽样的方式从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中别离抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充沛,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的散布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充沛的员工,也有睡眠不足的员工”,求事件A发生的概率.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP 的长.18.(13.00分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).19.(14.00分)设椭圆+=1(a>b>0)的左核心为F,上极点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.20.(14.00分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g (x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g (x)的切线.2021年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【分析】按照补集、交集的概念即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(5.00分)设变量x,y知足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易患目标函数z=3x+5y的最大值.【解答】解:由变量x,y知足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y通过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.【点评】在解决线性计划的小题时,常常利用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标一一代入目标函数⇒④验证,求出最优解.也可以利用目标函数的几何意义求解最优解,求解最值.3.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【分析】按照程序框图进行模拟计算即可.【解答】解:若输入N=20,则i=2,T=0,==10是整数,知足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不知足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,知足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.【点评】本题主要考查程序框图的识别和判断,按照条件进行模拟计算是解决本题的关键.4.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而没必要要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再按照充分条件和必要条件的概念即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分没必要要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.5.(5.00分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【分析】按照对数函数的单调性即可比较.【解答】解:a=log2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.【点评】本题考查了对数函数的图象和性质,属于基础题,6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【分析】将函数y=sin(2x+)的图象向右平移个单位长度,取得的函数为:y=sin2x,增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k ∈Z,由此能求出结果.【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,取得的函数为:y=sin2x,增区间知足:﹣+2kπ≤2x≤,k∈Z,减区间知足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.【点评】本题考查三角函数的单调区间的肯定,考查三角函数的图象与性质、平移等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右核心且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离别离为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】画出图形,利用已知条件,列出方程组转化求解即可.【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.8.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【分析】如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,求出A,B,C的坐标,按照向量的数量积和二次函数的性质即可求出.【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=4﹣i.【分析】按照复数的运算法则计算即可.【解答】解:====4﹣i,故答案为:4﹣i【点评】本题考查了复数的运算法则,属于基础题.10.(5.00分)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心别离为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【分析】求出四棱锥中的底面的面积,求出棱锥的高,然后利用体积公式求解即可.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力和计算能力.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【分析】把圆的方程化为标准方程,写出圆心与半径;直线的参数方程化为普通方程,求出圆心到直线的距离,计算弦长|AB|,利用三角形面积公式求出△ABC的面积.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.【点评】本题考查了直线与圆的位置关系应用问题,也考查了参数方程应用问题,是基础题.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【分析】化简所求表达式,利用大体不等式转化求解即可.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.【点评】本题考查函数的最值的求法,大体不等式的应用,也可以利用换元法,求解函数的最值.考查计算能力.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是(4,8).【分析】别离讨论当x≤0和x>0时,利用参数分离法进行求解即可.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)【点评】本题主要考查函数与方程的应用,利用参数分离法结合函数的极值和导数之间的关系和数形结合是解决本题的关键.三.解答题:本大题共6小题,共80分.解承诺写出文字说明,证明进程或演算步骤.15.(13.00分)在△ABC中,内角A,B,C所对的边别离为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【分析】(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣).由此能求出B.(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B).【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数别离为24,16,16.现采用分层抽样的方式从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中别离抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充沛,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的散布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充沛的员工,也有睡眠不足的员工”,求事件A发生的概率.【分析】(Ⅰ)利用分层抽样,通过抽样比求解应从甲、乙、丙三个部门的员工中别离抽取人数;(Ⅱ)若(i)用X表示抽取的3人中睡眠不足的员工人数,的可能值,求出概率,取得随机变量X的散布列,然后求解数学期望;(ii)利用互斥事件的概率求解即可.【解答】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数别离为24,16,16.人数比为:3:2:2,从中抽取7人现,应从甲、乙、丙三个部门的员工中别离抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充沛,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,随机变量X的取值为:0,1,2,3,,k=0,1,2,3.所以随机变量的散布列为:X0123P随机变量X的数学期望E(X)==;(ii)设A为事件“抽取的3人中,既有睡眠充沛的员工,也有睡眠不足的员工”,设事件B为:抽取的3人中,睡眠充沛的员工有1人,睡眠不足的员工有2人,事件C为抽取的3人中,睡眠充沛的员工有2人,睡眠不足的员工有1人,则:A=B∪C,且P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以事件A发生的概率:.【点评】本题考查分层抽样,考查对立事件的概率,考查离散型随机变量的散布列与期望,肯定X的可能取值,求出相应的概率是关键.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP 的长.【分析】(Ⅰ)依题意,以D为坐标原点,别离以、、的方向为x轴,y 轴,z轴的正方向成立空间直角坐标系.求出对应点的坐标,求出平面CDE的法向量及,由,结合直线MN⊄平面CDE,可得MN∥平面CDE;(Ⅱ)别离求出平面BCE与平面平面BCF的一个法向量,由两法向量所成角的余弦值可得二面角E﹣BC﹣F的正弦值;(Ⅲ)设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),求出,而为平面ADGE的一个法向量,由直线BP与平面ADGE所成的角为60°,可得线段DP的长.【解答】(Ⅰ)证明:依题意,以D为坐标原点,别离以、、的方向为x 轴,y轴,z轴的正方向成立空间直角坐标系.可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).设为平面CDE的法向量,则,不妨令z=﹣1,可得;又,可得.又∵直线MN⊄平面CDE,∴MN∥平面CDE;(Ⅱ)解:依题意,可得,,.设为平面BCE的法向量,则,不妨令z=1,可得.设为平面BCF的法向量,则,不妨令z=1,可得.因此有cos<>=,于是sin<>=.∴二面角E﹣BC﹣F的正弦值为;(Ⅲ)解:设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),可得,而为平面ADGE的一个法向量,故|cos<>|=.由题意,可得,解得h=∈[0,2].∴线段DP的长为.【点评】本题考查直线与平面平行的判定,考查空间角的求法,训练了利用空间向量求解空间角,是中档题.18.(13.00分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【分析】(Ⅰ)设等比数列{a n}的公比为q,由已知列式求得q,则数列{a n}的通项公式可求;等差数列{b n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,可得等差数列的通项公式;(Ⅱ)(i)由等比数列的前n项和公式求得S n,再由分组求和及等比数列的前n 项和求得数列{S n}的前n项和为T n;(ii)化简整理,再由裂项相消法证明结论.【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.【点评】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的大体方式及运算能力,是中档题.19.(14.00分)设椭圆+=1(a>b>0)的左核心为F,上极点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.【分析】(Ⅰ)设椭圆的焦距为2c,按照椭圆的几何性质与已知条件,求出a、b的值,再写出椭圆的方程;(Ⅱ)设出点P、Q的坐标,由题意利用方程思想,求得直线AB的方程和k的值.【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,由椭圆的离心率为e=,∴=;又a2=b2+c2,∴2a=3b,由|FB|=a,|AB|=b,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2,∴椭圆的方程为+=1;(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;∴|PQ|sin∠AOQ=y1﹣y2;又|AQ|=,且∠OAB=,∴|AQ|=y2,由=sin∠AOQ,可得5y1=9y2;由方程组,消去x,可得y1=,∴直线AB的方程为x+y﹣2=0;由方程组,消去x,可得y2=;由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2﹣50k+11=0,解得k=或k=;∴k的值为或.【点评】本题主要考查了椭圆的标准方程与几何性质、直线方程等知识的应用问题,也考查了利用代数方式求研究圆锥曲线的性质应用问题,考查了运算求解能力与运用方程思想解决问题的能力.20.(14.00分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g (x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g (x)的切线.【分析】(Ⅰ)把f(x)的解析式代入函数h(x)=f(x)﹣xlna,求其导函数,由导函数的零点对概念域分段,由导函数在各区间段内的符号可得原函数的单调区间;(Ⅱ)别离求出函数y=f(x)在点(x1,f(x1))处与y=g(x)在点(x2,g(x2))处的切线的斜率,由斜率相等,两边取对数可得结论;(Ⅲ)别离求出曲线y=f(x)在点()处的切线与曲线y=g(x)在点(x2,log a x2)处的切线方程,把问题转化为证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,进一步转化为证明当a≥时,方程存在实数解.然后利用导数证明即可.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x转变时,h′(x),h(x)的转变情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=﹣;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【点评】本题考查导数的运算,导数的几何意义,运用导数研究指数函数与对数公式的性质等基础知识和方式,考查函数与方程思想,化归思想,考查抽象归纳能力,综合分析问题和解决问题的能力,是难题.。

2024年天津市高考数学试卷[含答案]

2024年天津市高考数学试卷[含答案]

2024年普通高等学校招生全国统一考试(天津卷)数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件互斥,那么.A B ,()()()P A B P A P B =+ ·如果事件相互独立,那么.A B ,()()()P AB P A P B = 球的体积公式,其中表示球的半径.34π3V R =R · 圆锥的体积公式,其中表示圆锥的底面面积,表示圆锥的高.13V Sh=S h 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合,2,3,,,3,4,,则 {1A =4}{2B =5}(A B = )A .,2,3,B .,3,C .,D .{14}{24}{24}{1}2.设,,则“”是“”的 a b R ∈33a b =33a b =()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列图中,相关性系数最大的是 ()A.B .C .D .4.下列函数是偶函数的是 ()A .B .221x e x x -+22cos 1x x x ++C .D .1x e x x -+||sin 4x x x e +5.若,,,则,,的大小关系为 0.34.2a -=0.34.2b = 4.2log 0.3c =a b c ()A .B .C .D .a b c>>b a c>>c a b>>b c a>>6.若,为两条直线,为一个平面,则下列结论中正确的是 m n α()A .若,,则B .若,,则//m αn α⊂//m n //m α//n α//m n C .若,,则D .若,,则与相交//m αn α⊥m n ⊥//m αn α⊥m n 7.已知函数的最小正周期为.则函数在的最小值是 ()3sin(0)3f x x πωω=+>π[,]126ππ-()A .B .C .0D .32-328.双曲线的左、右焦点分别为、.是双曲线右支上一点,且直线的斜22221(0,0)x y a b a b-=>>1F 2F P 2PF 率为2,△是面积为8的直角三角形,则双曲线的方程为 12PF F ()A .B .C .D .22182x y -=22148x y -=22128x y -=22184x y -=9.一个五面体.已知,且两两之间距离为1.并已知,,ABC DEF -////AD BE CF 1AD =2BE =.则该五面体的体积为 3CF =()A B C D 12+12-二、填空题:本大题共6小题,每小题5分,共30分。

天津市高考数学试卷(理科)及答案(Word版)

天津市高考数学试卷(理科)及答案(Word版)

2021年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第一卷〔选择题〕和第二卷(非选择题)两局部, 共150分. 考试用时120分钟. 第一卷1至2页, 第二卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第一卷考前须知:1. 每题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每题给出的四个选项中,只有一项为哪一项符合题目要求的. (1) 集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 那么A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩那么目标函数z= y -2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 假设输入x 的值为1, 那么输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 以下三个命题:①假设一个球的半径缩小到原来的12, 那么其体积缩小到原来的18; ②假设两组数据的平均数相等, 那么它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 假设双曲线的离心率为2, △AOB 的面积为3, 那么p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===那么sin BAC ∠ = (A) 1010 (B) 105 (C) 31010 (D) 55(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 假设11,22A ⎡⎤-⊆⎢⎥⎣⎦, 那么实数a 的取值范围是(A) 15,02⎛⎫- ⎪ ⎪⎝⎭ (B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ 2021年普通高等学校招生全国统一考试(天津卷)理 科 数 学第二卷考前须知:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每题5分, 共30分.(9) a , b ∈R , i 是虚数单位. 假设(a + i )(1 + i ) = bi , 那么a + bi = .(10) 61x x ⎛⎫- ⎪⎝⎭ 的二项展开式中的常数项为 . (11) 圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 那么|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 假设·1AD BE =, 那么AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 假设AB =AC , AE = 6, BD = 5, 那么线段CF 的长为 .(14) 设a + b = 2, b >0, 那么当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解容许写出文字说明, 证明过程或演算步骤.(15) (本小题总分值13分)函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题总分值13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题总分值13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题总分值13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 假设··8AC DB AD CB +=, 求k 的值.(19) (本小题总分值14分)首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题总分值14分)函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2024年天津市高考数学试卷含答案解析

2024年天津市高考数学试卷含答案解析

绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。

2019年天津卷理数高考试题(含答案)

2019年天津卷理数高考试题(含答案)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B .·如果事件A 、B 相互独立,那么()()()P AB P A P B .·圆柱的体积公式V Sh ,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13VSh ,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C xx R ,,则()A C BA.2 B.2,3C.1,2,3 D.1,2,3,42.设变量,x y 满足约束条件20,20,1,1,xy xyx y ……则目标函数4z x y 的最大值为A.2B.3C.5D.63.设xR ,则“250xx”是“|1|1x ”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出S 的值为A.5B.8C.24D.295.已知抛物线24yx 的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b ab的两条渐近线分别交于点A 和点B ,且||4||AB OF (O 为原点),则双曲线的离心率为A.2B.3C.2D.56.已知5log 2a ,0.5og 2.l 0b,0.20.5c,则,,a b c 的大小关系为A.a c bB.ab cC.bc aD.c a b7.已知函数()sin()(0,0,||)f x A x A 是奇函数,将y f x 的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为g x .若g x 的最小正周期为2π,且24g ,则38fA.2B.2C.2 D.28.已知a R ,设函数222,1,()ln ,1,x ax a x f x xa x x ,若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A.0,1B.0,2C.0,eD.1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2022年新高考天津数学高考真题(解析版)

2022年新高考天津数学高考真题(解析版)
【答案】
【解析】
【分析】设 , ,分析可知函数 至少有一个零点,可得出 ,求出 的取值范围,然后对实数 的取值范围进行分类讨论,根据题意可得出关于实数 的不等式,综合可求得实数 的取值范围.
【详解】设 , ,由 可得 .
要使得函数 至少有 个零点,则函数 至少有一个零点,则 ,
解得 或 .
①当 时, ,作出函数 、 的图象如下图所示:
【详解】该几何体由直三棱柱 及直三棱柱 组成,作 于M,如图,
因为 ,所以 ,
因为重叠后的底面为正方形,所以 ,
在直棱柱 中, 平面BHC,则 ,
由 可得 平面 ,
设重叠后的EG与 交点为

则该几何体的体积为 .
故选:D.
9.已知 ,关于该函数有下列四个说法:
① 的最小正周期为 ;
② 在 上单调递增;
A.充分不必要B.必要不充分
C.充分必要D.既不允分也不必要
【答案】A
【解析】
【分析】依据充分不必要条件的定义去判定“ 为整数”与“ 为整数”的逻辑关系即可.
【详解】由题意,若 为整数,则 为整数,故充分性成立;
当 时, 为整数,但 不为整数,故必要性不成立;
所以“ 为整数”是“ 为整数”的充分不必要条件.
2022年普通高等学校招生全国统一考试数学(天津卷)
一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集 ,集合 ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】先求出 ,再根据交集的定义可求 .
【详解】 ,故 ,
故选:A.
2.“ 为整数”是“ 为整数”的()

2022年新高考天津数学高考真题含答案解析

2022年新高考天津数学高考真题含答案解析

2022年普通高等学校招生全国统一考试数学(天津卷)2022.06.一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}2,1,0,1,2U =--,集合{}{}0,1,21,2A =-,B =,则()U A B =ð( )A. {}01,B. {}0,1,2C. {}1,1,2- D. {}0,1,1,2-【答案】A 【解析】【分析】先求出U B ð,再根据交集的定义可求()U A B ∩ð.【详解】{}2,0,1U B =-ð,故(){}0,1U A B = ð,故选:A.2. “x 为整数”是“21x +为整数”的( )A. 充分不必要 B. 必要不充分C. 充分必要 D. 既不充分也不必要【答案】A 【解析】【分析】依据充分不必要条件的定义去判定“x 为整数”与“21x +为整数”的逻辑关系即可.【详解】由题意,若x 为整数,则21x +为整数,故充分性成立;当12x =时,21x +整数,但x 不为整数,故必要性不成立;所以“x 为整数”是“21x +为整数”的充分不必要条件.故选:A.3. 函数()21x f x x-=的图像为( )A. B.为C. D.【答案】D 【解析】【分析】分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项.【详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.4. 为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A. 8B. 12C. 16D. 18【答案】B 【解析】【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为20(0.240.16)1+⨯=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.故选:B.5. 已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A. a c b >> B. b c a >> C. a b c>> D. c a b>>【答案】C 【解析】【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.6. 化简()()48392log 3log 3log 2log 2++的值为( )A. 1B. 2C. 4D. 6【答案】B 【解析】【分析】根据对数的性质可求代数式的值.详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=,故选:B7.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A. 22110x y -= B. 22116y x -=C. 2214y x -= D. 2214x y -=【答案】C 【解析】【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线2y =的准线方程为x =c =,则()1F、)2F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x cbc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,2222ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得12a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.8. 如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )【A. 23B. 24C. 26D. 27【答案】D 【解析】【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I则13271381,=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.9. 已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 最小正周期为2π;②()f x 在ππ[,]44-上单调递增;③当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,()f x的取值范围为⎡⎢⎣;④()f x 的图象可由1πg()sin(224x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】因为1()sin 22f x x =,所以()f x 的最小正周期为2ππ2T ==,①不正确;令ππ2,22t x ⎡⎤=∈-⎢⎥⎣⎦,而1sin 2y t =在ππ,22⎡⎤-⎢⎥⎣⎦上递增,所以()f x 在ππ[,]44-上单调递增,②正确;因为π2π2,33t x ⎡⎤=∈-⎢⎥⎣⎦,sin t ⎡⎤∈⎢⎥⎣⎦,所以()12f x ⎡⎤∈⎢⎥⎣⎦,③不正确;由于1π1πg()sin(2)sin 22428x x x ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的图象可由1πg()sin(2)24x x =+的图象向右平移π8个单位长度得到,④不正确.故选:A .第II 卷二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.的10. 已知i 是虚数单位,化简113i1+2i-的结果为_______.【答案】15i -##5i 1-+【解析】【分析】根据复数代数形式的运算法则即可解出.【详解】()()()()113i 12i 113i 11625i15i 1+2i 1+2i 12i 5-----===--.故答案为:15i -.11. 523x ⎫+⎪⎭的展开式中的常数项为______.【答案】15【解析】【分析】由题意结合二项式定理可得523x ⎫⎪⎭的展开式的通项为552153r r r r T C x -+=⋅⋅,令5502r -=,代入即可得解.【详解】由题意523x ⎫+⎪⎭的展开式的通项为5552155233rrrrr rr T C C x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,令5502r -=即1r =,则1553315r r C C ⋅=⋅=,所以523x ⎫+⎪⎭的展开式中的常数项为15.故答案为:15.【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.12. 若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =_____.【答案】2【解析】【分析】计算出圆心到直线的距离,利用勾股定理可得出关于m 的等式,即可解得m 的值.【详解】圆()()22113x y -+-=的圆心坐标为()1,1圆心到直线()00x y m m -+=>由勾股定理可得2232m ⎛⎫+= ⎪⎝⎭,因为0m >,解得2m =.故答案为:2.13. 52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为____________;已知第一次抽到的是A ,则第二次抽取A 的概率为____________【答案】 ①.1221 ②. 117【解析】【分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C ,则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======.故答案为:1221;117.14. 在ABC V 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为___________,若AB DE ⊥,则ACB ∠的最大值为____________【答案】 ①. 3122b a - ②.6π【解析】【分析】法一:根据向量的减法以及向量的数乘即可表示出DE,以{},a b 为基底,表示出,A B D E ,由AB DE ⊥可得2234b a b a +=⋅,再根据向量夹角公式以及基本不等式即可求出.法二:以点E 为原点建立平面直角坐标系,设(0,0),(1,0),(3,0),(,)E B C A x y ,由AB DE ⊥可得点A 的轨迹为以(1,0)M -为圆心,以2r =为半径的圆,方程为22(1)4x y ++=,即可根据几何性质可知,当且仅当CA 与M e 相切时,C ∠最大,即求出.【详解】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-=,2234b a a b +=⋅223cos 4a b b a ACB a b a b ⋅+⇒∠==≥,当且仅当a = 0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,(1,)22x y DE AB x y +=--=--,23()(1)022x y DE AB x +⊥⇒-+= 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M e 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.15. 设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 取值范围为______.【答案】10a ≥【解析】【分析】设()235g x x ax a =-+-,()2h x x =-,分析可知函数()g x 至少有一个零点,可得出0∆≥,求出a 的取值范围,然后对实数a 的取值范围进行分类讨论,根据题意可得出关于实数a 的不等式,综合可求得实数a 的取值范围.【详解】设()235g x x ax a =-+-,()2h x x =-,由20x -=可得2x =±.要使得函数()f x 至少有3个零点,则函数()g x 至少有一个零点,则212200a a ∆=-+≥,解得2a ≤或10a ≥.①当2a =时,()221g x x x =-+,作出函数()g x 、()h x 的图象如下图所示:此时函数()f x 只有两个零点,不合乎题意;②当2a <时,设函数()g x 的两个零点分别为1x 、()212x x x <,要使得函数()f x 至少有3个零点,则22x ≤-,所以,()2224550ag a ⎧<-⎪⎨⎪-=+-≥⎩,解得a ∈∅;③当10a =时,()21025g x x x =-+,作出函数()g x 、()h x 的图象如下图所示:的由图可知,函数()f x 的零点个数为3,合乎题意;④当10a >时,设函数()g x 的两个零点分别为3x 、()434x x x <,要使得函数()f x 至少有3个零点,则32x ≥,可得()222450a g a ⎧>⎪⎨⎪=+-≥⎩,解得4a >,此时10a >.综上所述,实数a 的取值范围是[)10,+∞.故答案为:[)10,+∞.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.16. 在ABC V 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.【答案】(1)1c =(2)sin B =(3)sin(2)A B -=【解析】【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出;(2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【小问1详解】因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.【小问2详解】由(1)可求出2b =,而0πA <<,所以sin A ==,又sin sin a b A B =,所以sin sin b A B a ===.【小问3详解】因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A ==所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =,所以cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-== ⎝.17. 直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.【答案】(1)证明见解析(2)45(3【解析】【分析】(1)以点1A 为坐标原点,1A A 、11A B 、11A C 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)利用空间向量法可求得直线BE 与平面1CC D 夹角的正弦值;(3)利用空间向量法可求得平面1ACD 与平面1CC D 夹角的余弦值.【小问1详解】证明:在直三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,且AC AB ⊥,则1111A C AB ⊥以点1A 为坐标原点,1A A 、11A B 、11AC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()2,2,0B 、()2,0,2C 、()10,0,0A 、()10,0,2B 、()10,0,2C 、()0,1,0D 、()1,0,0E 、11,,12F ⎛⎫ ⎪⎝⎭,则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为()1,0,0m = ,则0EF m ⋅= ,故EF m ⊥ ,EF ⊄ 平面ABC ,故//EF 平面ABC .【小问2详解】解:()12,0,0C C = ,()10,1,2C D =- ,()1,2,0EB = ,设平面1CC D 的法向量为()111,,u x y z = ,则111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,取12y =,可得()0,2,1u = ,4cos ,5EB u EB u EB u ⋅<>==⋅ .因此,直线BE 与平面1CC D 夹角的正弦值为45.【小问3详解】解:()12,0,2A C = ,()10,1,0A D = ,设平面1ACD 的法向量为()222,,v x y z = ,则122122200v A C x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩,取21x =,可得()1,0,1v =-,则cos ,u v u v u v⋅<>===⋅ ,因此,平面1ACD 与平面1CC D18. 设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)n k k k k k aa b +=⎡⎤--⎣⎦∑.【答案】(1)121,2n n n a n b -=-=(2)证明见解析 (3)1(62)489n n +-+【解析】【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解;(2)由等比数列的性质及通项与前n 项和的关系结合分析法即可得证;(3)先求得212221212122(1)(1)k k k k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦,进而由并项求和可得114nk n k T k +==⋅∑,再结合错位相减法可得解.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ,则11(1),n n n a n d b q -=+-=,由22331a b a b -=-=可得2112121d q d q d q +-=⎧⇒==⎨+-=⎩(0d q ==舍去),所以121,2n n n a n b -=-=;【小问2详解】证明:因为120,n n b b +=≠所以要证1111()n n n n n n n S a b S b S b +++++=-,即证111()2n n n n n n n S a b S b S b ++++=⋅-,即证1112n n n n S a S S ++++=-,即证11n n n a S S ++=-,而11n n n a S S ++=-显然成立,所以1111()n n n n n n n S a b S b S b +++++=⋅-⋅;【小问3详解】因为212221212122(1)(1)k k k k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦2221(4143)2[41(41)]224k k k k k k k k --=-+-⨯++--⨯=⋅,所以211(1)n k k k k k a a b +=⎡⎤--⎣⎦∑2122212121221[((1))((1))]n k k k k k k k k k a a b a a b ---+==--+--∑124n k k k ==⋅∑,设124n kn k T k ==⋅∑所以2324446424n n T n =⨯+⨯+⨯+⋅⋅⋅+⨯,则2341244446424n n n T +⨯+⨯+⨯+⋅⋅⋅+⨯=,作差得()2341124(14)3244444242414n n n n n T n n ++⨯--=++++⋅⋅⋅+-⋅=-⨯-()126483n n +--=,所以1(62)489n n n T +-+=,所以211(1)n kk k k k a a b +=⎡⎤--=⎣⎦∑1(62)489n n +-+.19. 椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB =.(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN V【答案】(1)e = (2)22162x y +=【解析】【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M的坐标,利用三角形的面积公式以及已知条件可求得2a的值,即可得出椭圆的方程.【小问1详解】解:()22222433 BFa b a a bAB===⇒=+⇒=,离心率为cea===.【小问2详解】解:由(1)可知椭圆的方程为2223x y a+=,易知直线l的斜率存在,设直线l的方程为y kx m=+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a+++-=,由()()()222222223641330313k m k m a m a k∆=-+-=⇒=+,①2331Mkmxk=-+,213M Mmy kx mk=+=+,由=OM ON可得()()222229131m kmk+=+,②由OMNS=V可得231213kmmk⋅=+联立①②③可得213k=,24m=,26a=,故椭圆的标准方程为22162x y+=.20. 已知a b∈R,,函数()()sin,xf x e a xg x=-=(1)求函数()y f x=在()()0,0f处的切线方程;(2)若()y f x=和()y g x=有公共点,(i)当0a=时,求b的取值范围;(ii)求证:22ea b+>.【答案】(1)(1)1=-+y a x(2)(i))b∞∈+;(ii)证明见解析【解析】【分析】(1)求出(0)f '可求切线方程;(2)(i )当0a =时,曲线()y f x =和()y g x =有公共点即为()2e ,0t s t bt t =-≥在[)0,+∞上有零点,求导后分类讨论结合零点存在定理可求)b ∈+∞.(ii )曲线()y f x =和()y g x =有公共点即00sin e 0x a x +=,利用点到直线的距离得到≥,利用导数可证22e >e sin x x x +,从而可得不等式成立.【小问1详解】()e cos x f x a x '=-,故(0)1f a '=-,而(0)1f =,曲线()f x 在点(0,(0))f 处的切线方程为()()101y a x =--+即()11y a x =-+.【小问2详解】(i )当0a =时,因为曲线()y f x =和()y g x =有公共点,故e x =设t =,故2x t =,故2e t bt =在[)0,+∞上有解,设()2e ,0t s t bt t =-≥,故()s t 在[)0,+∞上有零点,而()22e ,0t s t t b t '=->,若0b =,则()2e 0t s t =>恒成立,此时()s t 在[)0,+∞上无零点,若0b <,则()0s t '>在()0,+∞上恒成立,故()s t 在[)0,+∞上为增函数,而()010s =>,()()01s t s ≥=,故()s t 在[)0,+∞上无零点,故0b >,设()22e ,0t u t t b t =->,则()()2224e 0t u t t '=+>,故()u t 在()0,+∞上为增函数,而()00u b =-<,()()22e 10b u b b =->,故()u t 在()0,+∞上存在唯一零点0t ,且00t t <<时,()0u t <;0t t >时,()0u t >;故00t t <<时,()0s t '<;0t t >时,()0s t '>;所以()s t 在()00,t 上为减函数,在()0,t +∞上为增函数,故()()0min s t s t =,因为()s t 在[)0,+∞上有零点,故()00s t ≤,故200e 0t bt -≤,而2002e 0t t b -=,故220020e 2e 0t t t -≤即0t ≥设()22e ,0t v t t t =>,则()()2224e 0t v t t '=+>,故()v t 在()0,+∞上为增函数,而2002e t b t =,故122e b ≥=.(ii )因为曲线()y f x =和()y g x =有公共点,所以e sin x a x -=有解0x ,其中00x ≥,若00x =,则100a b -⨯=⨯,该式不成立,故00x >.故00sin e 0x a x +-=,考虑直线00sin e 0x a x +-=,表示原点与直线00sin e 0x a x +-=上的动点(),a b 之间的距离,≥0222200e sin x a b x x +≥+,下证:对任意0x >,总有sin x x <,证明:当2x π≥时,有sin 12x x π≤<≤,故sin x x <成立.当02x π<<时,即证sin x x <,设()sin p x x x =-,则()cos 10p x x '=-≤(不恒为零),故()sin p x x x =-在[)0,+∞上减函数,故()()00p x p <=即sin x <成立.综上,sin x x <成立.下证:当0x >时,e 1x x >+恒成立,()e 1,0x q x x x =-->,则()e 10x q x '=->,为故()q x 在()0,+∞上为增函数,故()()00q x q >=即e 1x x >+恒成立.下证:22e >e sin xx x+在()0,+∞上恒成立,即证:212e sin x x x ->+,即证:2211sin x x x -+≥+,即证:2sin x x ≥,而2sin sin x x x >≥,故2sin x x ≥成立.e >,即22e a b +>成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学天津卷试题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分, 考试用时120分钟第Ⅰ卷1至2页, 第Ⅱ卷3至10页考试结束后, 将本试卷和答题卡一并交回祝各位考生考试顺利!第Ⅰ卷(选择题 共50分)注意事项:1. 答第Ⅰ卷前, 考生务必将自己的姓名、准考号、科目涂写在答题卡上, 并在规定位置粘贴考试用条形码2. 每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号涂黑如需改动, 用橡皮擦干净后, 再选涂其他答案标号答在试卷上的无效 参考公式:如果事件A 、B 互斥, 那么 球的体积公式)()()(B P A P B A P +=+ 334R V π=球 如果事件A 、B 相互独立, 那么 其中R 表示球的半径)(B A P ⋅=)()(B P A P ⋅ 柱体(棱柱、圆柱)的体积公式如果事件A 在一次试验中发生的概率 V 柱体=Sh是P , 那么n 次独立重复试验中恰好发 其中S 表示柱体的底面积, 生k 次的概率 h 表示柱体的高P n (k )=C n P k (1-P)n-k一、选择题:本大题共10小题, 每小题5分, 共50分, 在每小题给出的四个选项中, 只有一项是最符合题目要求的(1)设集合},914{R x x x A ∈≥-=, },03{R x x xx B ∈≥+=, 则=B A I ( )(A)]2,3(-- (B) ]25,0[]2,3(⋃--(C) ),25[]3,(+∞⋃--∞ (D) ),25[)3,(+∞⋃--∞(2)若复数iia 213++(R a ∈, i 为虚数单位位)是纯虚数, 则实数a 的值为( )(A )-2 (B)4 (C) -6 (D)6(3)给出下列三个命题:①若1->≥b a ,则bba a +≥+11;②若正整数m 和n 满足n m ≤,则2)(n m n m ≤-;③设),(11y x P 为圆9:221=+y x O 上任一点, 圆2O 以),(b a Q 为圆心且半径为1.当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切其中假命题的个数为( )(A) 0 (B) 1(C) 2(D)3(4)设γβα、、为平面, l n m 、、为直线, 则β⊥m 的一个充分条件是( )(A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,(D) αβα⊥⊥⊥m n n ,,(5)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点, 其准线过椭圆的焦点, 则双曲线的渐近线的斜率为( )(A)2±(B)34±(C)21±(D)43±(6)从集合}11,,3,2,1{Λ中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n ,则能组成落在矩形区域,11|||),{(<=x y x B 且}9||<y 内的椭圆个数为( )(A)43 (B) 72 (C) 86 (D) 90(7)某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()(A)12581(B)12554(C)12536(D)12527 (8)要得到函数x y cos 2=的图象, 只需将函数)42sin(2π+=x y 的图象上所有的点的( )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 (B)横坐标缩短到原来的21倍(纵坐标不变), 再向右平行移动4π个单位长度(C)横坐标伸长到原来的2倍(纵坐标不变), 再向左平行移动4π个单位长度(D)横坐标伸长到原来的2倍(纵坐标不变), 再向右平行移动8π个单位长度(9)设)(1x f -是函数)1( )(21)(>-=-a a a x f xx 的反函数, 则使1)(1>-x f 成立的x的取值范围为( )(A)),21(2+∞-a a (B) )21,(2a a --∞ (C) ),21(2a aa - (D) ),[+∞a (10)若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增, 则a 的取值范围是( )(A))1,41[(B) )1,43[(C)),49(+∞(D))49,1(第Ⅱ卷(非选择题 共100分)注意事项:1答卷前将密封线内的项目填写清楚 2用钢笔或圆珠笔直接答在试卷上二、填空题:本大题共6小题, 每小题4分, 共24分, 把答案填在题中横线上(11)设*∈N n ,则=++++-12321666n n n n n n C C C C Λ .(12)如图, PA ⊥平面ABC , ∠ACB=90°且PA=AC=BC=a 则异面直线PB 与AC 所成角的正切值等于________.(13)在数列{a n }中,a 1=1,a 2=2,且)( )1(12*+∈-+=-N n a a n n n 则100S =_____.(14)在直角坐标系xOy 中, 已知点A(0,1)和点B(-3,4), 若点C 在∠AOB 的平分线上且| |=2,则= .(15)某公司有5万元资金用于投资开发项目, 如果成功, 一年后可获利12%, 一旦失败, 一年后将丧失全部资金的50%, 下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是___________(元)(16)设)(x f 是定义在R 上的奇函数, 且)(x f y =的图象关于直线21=x 对称, 则)5()4()3()2()1(f f f f f ++++=________________.三、解答题:本大题共6小题, 共76分, 解答应写出文字说明, 证明过程或演算步骤(17)(本小题满分12分)在ABC ∆中, C B A ∠∠∠、、所对的边长分别为c b a 、、, 设c b a 、、满足条件222a bc cb =-+和321+=b c , 求A ∠和B tan 的值 (18)(本小题满分12分)已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n Λ(Ⅰ)当b a =时, 求数列{}n u 的前n 项和n S (Ⅱ)求1lim -∞→n nn u u(19)(本小题满分12分)如图, 在斜三棱柱111C B A ABC -中,a B A A A AC AB AC A AB A ===∠=∠1111,,, 侧面11BCC B 与底面ABC 所成的二面角为ο120, E 、F 分别是棱A A C B 111、的中点 (Ⅰ)求A A 1与底面ABC 所成的角 (Ⅱ)证明E A 1∥平面FC B 1(Ⅲ)求经过C B A A 、、、1四点的球的体积(20)(本小题满分12)某人在一山坡P 处观看对面山项上的一座铁塔, 如图所示, 塔高BC=80(米), 塔所在的山高OB=220(米), OA=200(米), 图中所示的山坡可视为直线l 且点P 在直线l 上, l 与水平地面的夹角为α ,tan α=1/2试问此人距水平地面多高时, 观看塔的视角∠BPC 最大(不计此人的身高)C 1B 1A 1ABCF E(21)(本小题满分14分)抛物线C 的方程为)0(2<=a ax y , 过抛物线C 上一点P(x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A(x 1,y 1)B(x 2,y 2)两点(P,A,B 三点互不相同), 且满足10(012-≠≠=+λλλ且k k(Ⅰ)求抛物线C 的焦点坐标和准线方程(Ⅱ)设直线AB 上一点M , 满足BM λ=, 证明线段PM 的中点在y 轴上 (Ⅲ)当λ=1时, 若点P 的坐标为(1, -1), 求∠PAB 为钝角时点A 的纵坐标1y 的取值范围(22)(本小题满分14分) 设函数)( sin )(R x x x x f ∈=.(Ⅰ)证明x k x f k x f sin 2)()2(ππ=-+,其中为k 为整数;(Ⅱ)设0x 为)(x f 的一个极值点, 证明240201)]([x x x f +=;(Ⅲ)设)(x f 在(0,+∞)内的全部极值点按从小到大的顺序排列ΛΛ,,,,21n a a a , 证明),2,1( 21Λ=<-<+n a a n n ππ2005天津卷试题及答案参考答案一、选择题(每小题5分, 共50分)二、填空题(每小题4分, 共24分) (11))17(61-n; (12)2;(13)2600;(14))5103,510(-;(15)4760; (16)0.解法:∵f(x)是定义在R 上的奇函数, ∴f(x)=-f(-x) ①又∵y=f(x)的图象关于直线x=1/2对称, ∴f(1-x)=f(x) ② ∴f(1)=f(1-0)=f(0)=0 由①②得 f(1-x)=-f(-x)∴ f(1-x)+f(-x)=0 即 f(1+n)+f(n)=0 ∴ f(3)+f(2)=0,f(5)+f(4)=0 ∴f(1)+f(2)+f(3)+f(4)+f(5)=0三、解答题(共76分, 以下各题为累计得分, 其他解法请相应给分)(17)解:由余弦定理212cos 222=-+=bc a c b A , 因此ο60=∠A . 在ABC ∆中, B B A C ∠-=∠-∠-=∠οο120180.由已知条件, 应用正弦定理21cot 23sin sin 120cos cos 120sin sin )120sin(sin sin 321+=-=-===+B B B B B B B C b c οοο, 解得2cot =B ,从而21tan =B . (18)解:(Ⅰ)当b a =时, nn a n u )1(+=.这时数列}{n u 的前n 项和n n n a n na a a a S )1(432132++++++=-Λ. ①①式两边同乘以a , 得1432)1(432+++++++=n n n a n na a a a aS Λ ② ①式减去②式, 得132)1(2)1(++-++++=-n n n a n a a a a S a Λ若1≠a ,aa n aa a S a n n n ++---=-+1)1(1)1()1(,221212)1(2)2()1(1)1()1()1(a aa a n a n a a n a a a a S n n n n n -+-+-+=-+-+--=+++ 若1=a , 2)3()1(32+=+++++=n n n n S n Λ (Ⅱ)由(Ⅰ), 当b a =时, nn a n u )1(+=,则a n n a na a n u u n n n n n n n =+=+=∞→-∞→-∞→)1(lim )1(lim lim 11. 当b a ≠时,)(11)(1)()(1[111211+++----=--=++++=++++=n n n n n n n n n n n b a b a ab a ba ab a b a b a b ab b a a u ΛΛ此时, nnn n n n ba b a u u --=++-111. 若0>>b a , a aba b b a b a b a u u nnn nn n n n n n n =--=--=∞→++∞→-∞→)(1)(limlim lim111. 若0>>a b , b ba b b aa u u nn n n nn =--==∞→-∞→1)()(lim lim1.(19)解:(Ⅰ)过1A 作⊥H A 1平面ABC , 垂足为H .连结AH , 并延长交BC 于G , 于是AH A 1∠为A A 1与底面ABC 所成的角.∵AC A AB A 11∠=∠, ∴AG 为BAC ∠的平分线. 又∵AC AB =, ∴BC AG ⊥, 且G 为BC 的中点.因此, 由三垂线定理BC A A ⊥1.∵B B A A 11//, 且B B EG 1//, ∴BC EG ⊥. 于是AGE ∠为二面角E BC A --的平面角, 即ο120=∠AGE .由于四边形AGE A 1为平行四边形, 得ο601=∠AG A .(Ⅱ)证明:设EG 与C B 1的交点为P , 则点P 为EG 的中点.连结PF . 在平行四边形1AGEA 中, 因F 为A A 1的中点, 故FP E A //1. 而⊂FP 平面FC B 1, ⊄E A 1平面FC B 1, 所以//1E A 平面FC B 1.(Ⅲ)连结C A 1.在AC A 1∆和AB A 1∆中, 由于AB AC =, AC A AB A 11∠=∠,A A A A 11=, 则AC A 1∆≌AB A 1∆, 故B A C A 11=.由已知得a C A B A A A ===111.又∵⊥H A 1平面ABC , ∴H 为ABC ∆的外心.设所求球的球心为O , 则H A O 1∈, 且球心O 与A A 1中点的连线A A OF 1⊥.在FO A Rt 1∆中, 3330cos 21cos 111a aH AA F A O A ===ο.故所求球的半径a R 33=, 球的体积33273434a R V ππ==. (20)解:如图所示, 建立平面直角坐标系, 则)0,200(A , )220,0(B , )300,0(C . 直线l 的方程为αtan )200(-=x y , 即2200-=x y . 设点P 的坐标为),(y x , 则)2200,(-x x P (200>x ) 由经过两点的直线的斜率公式1x x x x k PC 28003002200-=--=, xx x x k PB 26402202200-=--=. 由直线PC 到直线PB 的角的公式得6401602886426402800121601tan 2⨯+-=-⋅-+=+-=x x x xx x x x k k k k BPC PCPB PC PB 28864016064-⨯+=xx (200>x )要使BPC tan 达到最大, 只须288640160-⨯+xx 达到最小. 由均值不等式2886401602288640160-⨯≥-⨯+x x .当且仅当xx 640160⨯=时上式取等号.故当320=x 时BPC tan 最大.这时, 点P 的纵坐标y 为602200320=-=y .由此实际问题知, 20π<∠<BPC , 所以BPC tan 最大时, BPC ∠最大.故当此人距水平地面60米高时, 观看铁塔的视角BPC ∠最大.(21)解:(Ⅰ)由抛物线C 的方程2ax y =(0<a )得, 焦点坐标为)41,0(a, 准线方程为ay 41-=. (Ⅱ)证明:设直线PA 的方程为)(010x x k y y -=-, 直线PB 的方程为)(020x x k y y -=-.点),(00y x P 和点),(11y x A 的坐标是方程组0102()y y k x x y ax -=-⎧⎨=⎩①② 的解. 将②式代入①式得000112=-+-y x k x k ax ,于是a k x x 101=+, 故011x akx -= ③ 又点),(00y x P 和点),(22y x B 的坐标是方程组0102()y y k x x y ax -=-⎧⎨=⎩④⑤的解.将⑤式代入④式得000222=-+-y x k x k ax .于是ak x x 202=+, 故022x ak x -=. 由已知得, 12k k λ-=, 则012x k ax --=λ. ⑥设点M 的坐标为),(M M y x , 由λ-, 则λλ++=112x x x M .将③式和⑥式代入上式得0001x x x x M -=+--=λλ,即00=+x x M .所以线段PM 的中点在y 轴上.(Ⅲ)因为点)1,1(-P 在抛物线2ax y =上, 所以1-=a , 抛物线方程为2x y -=. 由③式知111--=k x , 代入2x y -=得211)1(+-=k y .将1=λ代入⑥式得112-=k x , 代入2x y -=得222)1(+-=k y .因此, 直线PA 、PB 分别与抛物线C 的交点A 、B 的坐标为)12,1(1211-----k k k A , )12,1(1211-+--k k k B .于是)2,2(1211k k k ++=, )4,2(11k k =,)12)(2(2)2(4)2(2111121111++=+++=⋅k k k k k k k k .因PAB ∠为钝角且P 、A 、B 三点互不相同, 故必有0<⋅. 求得1k 的取值范围是21-<k 或0211<<-k . 又点A 的纵坐标1y 满足211)1(+-=k y , 故 当21-<k 时, 11-<y ;当0211<<-k 时, 4111-<<-y . 即)41,1()1,(1----∞∈Y y(22)解:(Ⅰ)证明:由函数)(x f 的定义, 对任意整数k , 有(2)()(2)sin(2)sin f x k f x x k x k x x πππ+-=++-(2)sin sin 2sin x k x x x k x ππ=+-=.(Ⅱ)证明:函数)(x f 在定义域R 上可导, x x x x f cos sin )(+=' ① 令0)(='x f , 得0cos sin =+x x x .显然, 对于满足上述方程的x 有0cos ≠x ,上述方程化简为x x tan -=.此方程一定有解.)(x f 的极值点0x 一定满足00tan x x -=. 由x x x x x x 222222tan 1tan cos sin sin sin +=+=, 得020202tan 1tan sin x x x +=. 因此, 20400220201sin )]([x x x x x f +==.(Ⅲ)证明:设00>x 是0)(='x f 的任意正实数根, 即00tan x x -=, 则存在一个非负整数k , 使),2(0ππππk k x ++∈, 即0x 在第二或第四象限内.由①式, )(tan cos )(x x x x f +='在第二或第四象限中的符号可列表如下:所以满足0)(='x f 的正根0x 都为)(x f 的极值点.由题设条件, 1a , 2a , …, n a , …为方程x x tan -=的全部正实数根且满足 ΛΛ<<<<n a a a 21,那么对于Λ,2,1=n ,)tan()tan tan 1()tan (tan 1111n n n n n n n n a a a a a a a a -⋅+-=--=-++++. ② 由于ππππ)1()1(2-+<<-+n a n n , ππππn a n n +<<++12, 则2321ππ<-<+n n a a , 由于0tan tan 1>⋅+n n a a , 由②式知0)tan(1<-+n n a a .由此可知n n a a -+1必在第二象限, 即π<-+n n a a 1. 综上, ππ<-<+n n a a 12.。

相关文档
最新文档