北师大课标版七年级数学上册《整式的加减1》习题2(精品习题)

合集下载

北师大版七上整式的加减单元测试题

北师大版七上整式的加减单元测试题

七(上)第三章-整式的加减一、填空题1.比a和b差的平方大9的数是2、细胞在分裂过程中, 一个细胞第一次分裂成两个, 第二次分裂成4个, 第三次分裂成8个, 那么第n次时细胞分裂的个数为个3.单项式的系数是,次数是4.整式是次项式, 三次项的系数是5、如果是三次三项式, 则=6.多项式按的升幂排列是7、单项式减去单项式的和, 结果是8、当时, 代数式-= , =9、写出一个关于x的二次三项式, 使得它的二次项系数为-5, 则这个二次三项式为10、已知: , 则代数式的值是11.张大伯从报社以每份0.4元的价格购进了份报纸, 以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社, 则张大伯卖报收入元12.-的相反数是, = , 最大的负整数是13.若多项式的值为10, 则多项式的值为14.若, =15.多项式是关于的三次三项式, 并且一次项系数为-7, 求16.十位数字是, 个位数字比小2, 百位数字是的一半, 则这个三位数是17、是关于x、y的一个单项式, 且系数是4, 次数是5, 则.18、一个多项式加上得到, 则这个多项式是19、在代数式中, 和是同类项, 合并后的结果是20、一个多项式A减去多项式, 马虎的同学将减号抄成加号, 运算结果得, 多项式A是二、选择题1.若, 则的值()A.等于4B.等于C.D.不能确定2.与是同类项的是()A. B. C. D.3、对去括号, 结果是()A. B. C. D.4.将合并同类项得()A. B. C. D.5、已知, 则的值为()A.80B.C.160D.606.若A= , B= , 则A与B的大小关系是…….()A. A>BB. A<BC. A=BD. 无法确定7、下列等式中正确的是()A. B.C.-D、8、下列说法正确的是()A.0不是单项式B. 没有系数C. 是多项式D、是单项式9、下列各式中,去括号或添括号正确的是( )A. B.C. D 、-10、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( )A.3B.4C.5D.611、若A 和B 都是4次多项式, 则A-B 一定是( )A.8次多项式 B 、4次多项式C.次数不高于4次的整式D.次数不低于4次的整式12、已知 是同类项, 则( )A. B. C. D.13.下列计算中正确的是( )A. B. C. D.14.已知:关于x 的多项式 ( )A.m=-5,n=-..B.m=5,n=..C.m=-5,n=..D.m=5,n=-1三、化简1. 2.3. 4.5. 6.-7、)(4)()(3222222y z z y y x ---+- 8、1}1]1)1([{2222-------x x x x9、)43(2)65(3n m n m -+- 10、)32(4)2(52222ab b a c c ab b a -+-+-四、解答题1.化简求值: , 其中31,51-=-=y x .2.化简求值: 其中: .3.化简求值: 其中: .4.已知: , 求 的值.5.若代数式 的值与字母 的取值无关, 求代数式 的值.6.已知: 是同类项, 求代数式: 的值.7、已知: A= , B= , 求(3A-2B )-(2A+B )的值.8、试说明: 不论 取何值代数式 的值是不会改变的.9、已知多项式3 +-8与多项式-+2 +7的差中, 不含有、, 求+的值.。

最新北师大版七年级数学上册《整式及其加减》综合检测题2套及答案(精品试题).docx

最新北师大版七年级数学上册《整式及其加减》综合检测题2套及答案(精品试题).docx

第三章《整式及其加减》单元检测试题(A )一、选择题(每小题3分,共30分)1.长方体的周长为10,它的长是a ,那么它的宽是( )A.10-2aB.10-aC.5-aD.5-2a2.下列说法正确的是( ) A.31πx 2的系数为31 B.21xy 2的系数为21x C.3(-x 2)的系数为3 D.3π(-x 2)的系数为-3π3.当2=x 时,代数式32-x 的值为( )A.1 B.1- C.5 D.34.一个长方形的周长为 6a +8b ,其中一边长为 2a +3b ,则另一边长为( )A 、4a +5bB 、a +7bC 、a +2bD 、a +b5.(2011云南红河州)如果的取值是和是同类项,则与n m y x y x m m n 31253--( )A .3和-2B .-3和2C .3和2D .-3和-26.(2012广东广州)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 7. 小马利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入… 1 2 3 4 5 … 输出 … 21 52 103 174 265 … 请问:当小马输入数据8时,输出的数据是( )A .618B .638C .658D .678等于( )A .x xy 22+B .y xy 22+C .xy 2D .xy 2-9.为了做一个试管架,在长为cm(6cm)a a >的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( )A.34a -cm B.34a +cm C.64a -cm D.64a +cm 10.(2012浙江省丽水) 如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是( ).A .2m+3B .2m+6C .m+3D .m+6二、填空题(每小题3分,共30分)11、单项式:-的系数是____,次数是____。

(精选)北师大版七年级数学上册《整式的加减(1)》基础练习

(精选)北师大版七年级数学上册《整式的加减(1)》基础练习

3.4 整式的加减(1)
一、填空题
1.3x与-5x的和是__________,3x与-5x的差是__________.
2.a-b,b-c,c-a三个多项式的和是 .
3.x+y-z+z-y+x-x+y+z=________.
二、选择题
1.计算-2a2+a2的结果为( )
A.3a
B.-a
C.-3a2
D.-a2
2.若长方形长是2a+3b,宽为a+b,则其周长是( )
A.6a+8b
B.12a+16b
C.3a+8b
D.6a+4b
3.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,
则m等于( )
A.2
B.-2
C.-4
D.-8
三、解答题
1.小明计划三天看完一本书,于是预计第一天看x页,第二天看的页数比第一天
看的页数多50页,第三天看的页数比第二天看的页数的1
5
还少5页.求这本书的
页数.
2.已知小明的年龄是m岁,小红的年龄比小明年龄的2倍少4岁,小华的年龄比小红年龄多1岁,这三个人的年龄之和是多少?
参考答案
一、1.-2x 8x 2. 0 3. x+y+z
二、1.D 2. A 3. C
三、1.(2.2x+55)页 2. (4m-5)岁。

七年级数学上册整式的加减同步训练附详解北师大版

七年级数学上册整式的加减同步训练附详解北师大版

合用优选文件资料分享七年级数学上册整式的加减同步训练(附详解北师大版)七年级数学上册整式的加减同步训练(附详解北师大版)1.同类项定义所含字母同样,并且同样字母的指数也同样的项,叫做同类项.谈重点同类项的理解“两个同样”:①所含字母同样;②同样字母的指数也同样.“两个没关”:①同类项只与项中的字母相关,与系数没关;②同类项与项中字母的排列次序无关.“一个特别”:特别地,几个常数项也是同类项.如5与-8是同类项.为便于记忆,我们将其总结为:“同类项、同类项,两个条件不能够忘,字母要同样,指数要同样.”【例 1】以下各组代数式中,属于同类项的有 ( ) 组.①0.5a2b3 与 0.5a3b2 ;②xy 与 xz;③mn与 0.3mn;④ xy2 与 12xy2;⑤3与- 6. A.5 B.4 C.3 D.1 解析:① × 同样字母的指数不同样② × 含有的字母不同样③ √ 含有同样的字母 ( ③m,n;④ x,y) 且同样字母的指数也同样④ √ ⑤√几个数也是同类项答案: C 2.归并同类项及法例 (1) 归并同类项把同类项归并成一项叫做归并同类项.如: 2a-a 中, 2a 与- a是同类项,能够归并为 a. (2) 归并同类项的法例把同类项的系数相加,字母和字母的指数不变.如:2xy+3xy=(2 +3)xy =5xy. 谈重点归并同类项归并同类项时,只把同类项的系数相加,字母及其指数都不变.为便于记忆,我们将其总结为:“归并同类项,法例不能忘;只求系数和,字母、指数不变样.” 【例 2】以下归并同类项,正确的选项是 ( ) . A .3a+2b=5ab B .7ab-7ba=0 C.3x2+2x3=5x5 D.4x2y-5y2x=-xy 剖析:只有同类项才能够归并,而选项A,C,D中前后两项都不是同类项,不能以归并.答案: B 3.去括号法例法例:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.谈重点去括号的技巧①去括号时应将括号前的符号连同括号一同去掉;②要注意括号前的符号,它是去括号后括号内各项可否变号的依照;③要注意括号前面是“-”号时,不论括号前可否有系数,去掉括号后,括号内的各项都要改变符号,不能够只改变括号内第一项或前几项的符号,而忘记改变其余项的符号;④当括号里的第一项为哪一项省略“+”合用优选文件资料分享号的正数时,去掉括号和它前面的“+”号后要补上本来省略的“+”号;⑤括号内原有几项,去括号后仍有几项,不能够丢项.去括号口诀:去括号,看符号;是“+”号,不变号;是“-”号,全变号.【例3】以下去括号正确的选项是 ( ) . A .3a+(2b - c) =3a+2b+c B.3a-(2b +c) =3a-2b+c C .3a-(2b +c) =3a+2b+c D .3a-(2b +c)=3a-2b-c 剖析:依照去括号法例判断.选项 A 中去括号时,-c 变成了+ c,因此是错误的;选项 B 中去括号时,括号内 c 未变号;选项C中去括号时,括号内各项都没有变号;只有选项D符合去括号法例,故应选 D. 答案: D 4.根据同类项的见解求字母的值同类项具备两个条件:①含有同样的字母;②同样字母的指数同样.根据上面的条件能够求出同类项中字母的指数.其方法是:①找出同类项中的同样字母;②依照同样字母的指数同样列出等式;③求出字母指数.【例 4】若 25a4bn 与 5mamb3是同类项,则 m=__________,n=__________. 剖析:本题中 5mamb3中 5 的指数,a 的指数都是m,而 5 又在前,很简单让人认为 5m=25,进而 m=2. 本质上,在5mamb3 中,5m可是这个代数式的系数,不论 m等于几 (m 等于 4 除外 ) ,都和5mamb3与 25a4bn 是同类项没关.答案:4 3 5. 归并同类项的步骤 (1) 归并同类项的依照是逆用乘法分派律,依照归并同类项的法例进行归并.(2) 归并同类项的一般步骤能够简单概括为:找→移→并.找:找出多项式中的同类项;移:将多项式中的同类项经过搬动地址,将同类项会集在一同;并:将系数相加,达成归并同类项.辨误区归并同类项的注意事项 (1) 只有同类项才能归并,归并时应注意不要漏项. (2) 多项式中含有两种以上的同类项时,为防备漏项或混杂,可先在各项的下边用不同样的记号标示出各样同类项,尔后再分别进行归并.【例 5】归并同类项: (1)2x2 -7-x-3x-4x2; (2) -3a2+2a-1+a2-5a+7;(3)4(a +b) -5(a -b) -6(a -b) +7(a +b).剖析:先找出各代数式中的同类项,再进行归并.解:(1)2x2-7-x-3x-4x2 找=(2x2 -4x2) +( -x-3x) -7 移=(2 -4)x2+(-1-3)x -7 并=- 2x2-4x-7; (2) -3a2+2a-1+a2-5a+7找=( -3a2+a2) +(2a -5a) +( -1+7) 移=( -3+1)a2 +(2 -5)a +( -1+7) 并=- 2a2+( -3)a +6=- 2a2-3a+6;合用优选文件资料分享(3)4(ab)] +[+b) -5(a -b) -6(a -b) +7(a +b) 找=[4(a +b) +7(a +-5(a -b) -6(a -b)] ⋯移=11(a +b) -11(a -b) =22b.并 6. 去括号的技巧今世数式中含有多重括号,即有大括号、中括号、小括号,能够由内向外逐去括号,也能够由外向内逐去括号,主要有以下几种方法:①按常序去括号,先去小括号,再去大括号.②改常先去大括号,再去小括号.③先局部归并再去括号.④大小括号同去掉.⑤先整体归并再去括号.⑥运用乘法分派律去括号.若代数式括号前有系数,可先行乘法分派律,再去括号;也能够用乘法分派律直接将括号前面的系数乘以括号内的各.【例 6】算: 4xy2 -3x2y-{3x2y +xy2-[2xy2 -4x2y+(x2y -2xy2)]} .剖析:看清,去多重括号能够由内向外逐行,也能够由外向内逐行,若是去括号法掌握得熟,也能够内外同去括号.解:方法一: ( 由内向外逐去括号 ) 原式= 4xy2 -3x2y-[3x2y +xy2-(2xy2 -4x2y+x2y-2xy2)] =4xy2-3x2y- (3x2y +xy2-2xy2+4x2y-x2y +2xy2) =4xy2-3x2y-(6x2y +xy2)=4xy2-3x2y-6x2y-xy2=3xy2-9x2y. 方法二:( 由外向内去括号 )原式= 4xy2-3x2y-3x2y-xy2+[2xy2 -4x2y+(x2y -2xy2)] =3xy2-6x2y+2xy2-4x2y+(x2y -2xy2) =5xy2-10x2y+x2y-2xy2=3xy2-9x2y. 方法三: ( 内外同去括号 ) 原式= 4xy2-3x2y-3x2y-xy2+(2xy2 -4x2y+x2y-2xy2) =3xy2-6x2y-3x2y=3xy2-9x2y. 7 .去括号的用以下几种用中都会用到去括号:(1)代数式化及求化有括号的代数式或求代数式的,要用到去括号法.解决此的一般步:①去括号:依照去括号法行去括号;②归并同:将代数式中的同归并,化代数式;③代入算:用具体的数代替代数式中的字母,依照代数式中指明的运算算出果. (2) 中的去括号在列代数式表示中的数量关系,有会用到括号,因此,的解决中也会用到去括号法.解决主要的步:① 真,依照意列出表示中数量关系的代数式;②去括号,归并同,化代数式;③写出答案.【例7】数学上,李老同学出了一道整式的化求的: (xyz2 +7xy-2) +( -3xy+合用优选文件资料分享xyz2-5) -(2xyz2 +4xy) .李老师看着题目对同学们说:“大家随意给出 x,y,z 的一组值,我能立刻说出答案.”同学们不相信,小刚同学立刻站起来,但他刚说完“ x=2 013,y=- 277,z=193”后,李老师就说出了答案是- 7. 同学们都感觉不能思议,计算速度也太快了吧,何况是这么复杂的一组数值呢!但李老师却信心实足地说:“这个答案正确无误.” 同学们,你知道李老师为什么算得这么快吗?剖析:要知道李老师算得快的原因,能够先化简整式,看看化简后的结果,你就知道李老师算得快的奇妙了.解:(xyz2 +7xy-2) +( -3xy+xyz2-5) -(2xyz2 +4xy) =xyz2+7xy-2-3xy+xyz2-5-2xyz2-4xy =(1 +1-2)xyz2 +(7 -3-4)xy +( -2-5) =0+0+ ( -7) =- 7. 本来化简后的结果不含有字母x,y,z,也就是说整式的值与x,y,z 的取值没关.因此李老师的答案是正确的.。

数学北师大版七年级上册整式的加减练习题

数学北师大版七年级上册整式的加减练习题

数学北师大版七年级上册整式的加减练习题整式的加减是代数学习的重要基石,对于七年级的学生来说,理解并掌握整式的加减法则是进一步学习更高级数学课程的关键。

下面,我将提供一些由浅入深的练习题,以帮助学生掌握整式的加减法。

一、单项式的加减例1.1: (-2) + (-3) = ?例1.2: (2/3) + (-1/4) = ?例1.3: (-2/3) + (2/3) = ?二、多项式的加减例2.1: (x + y) + (x - y) = ?例2.2: (-2x + 3y) + (3x - 4y) = ?例2.3: (2x - 3y) + (-4x + 5y) = ?三、合并同类项例3.1: (2x + 3y) + (4x + 5y) = ?例3.2: (-2x - 3y) + (4x + 5y) = ?例3.3: (2x - 3y) + (-4x + 5y) = ?四、去括号例4.1: (2x - 3y) - (4x + 5y) = ?例4.2: (-2x - 3y) - (4x + 5y) = ?例4.3: (2x - 3y) - (-4x + 5y) = ?五、整式的加减应用题例5.1:一个长方形的长是6m,宽是4m。

求这个长方形的周长。

例5.2:一个梯形的上底是7m,下底是3m,高是5m。

求这个梯形的面积。

在解答这些练习题时,学生们应先尝试独立完成,然后再对照答案进行自我评估。

这样,他们不仅能加深对整式的加减运算的理解,还能提升解决实际问题的能力。

老师或家长也可以根据这些练习题的解答情况,了解学生对整式加减法的掌握程度,从而调整教学策略或辅导方法。

七年级上册数学整式的加减》测试题七年级上册数学整式的加减测试题一、填空题(每小题3分,共30分)1、已知一杯茶要放25g奶粉,那么10杯茶需要放奶粉________g.2、已知一次劳务费为a元,按每月5%的比例提取,经过n个月后,总共提取________元.3、若n为整数,则用n的代数式表示偶数为________,奇数为________.4、某商店原来平均每天要用去打印纸500张,最近因扩大业务范围,每天需要用去打印纸________张.5、已知x+y=3,xy=2,则x-y=________.6、一个长方形的长为2a+3b,宽为a,则这个长方形的周长为________.7、若代数式3x-4与代数式x+3的和是10,则x的值是________.8、某市出租车收费标准是:起步价为7元,2千米以后每千米为2.6元,则乘坐出租车走x(x为大于起步路程小于9千米的整数)千米的路程时,需要付________元.9、已知单项式2x^{m}y^{n-1}的次数是5,则m、n的值分别为m=,n=.10、在多项式中,每个单项式叫做多项式的________,多项式中各项的________叫做这个多项式的次数.二、选择题(每小题3分,共30分)11、下列各组数中,不是同类项的是()A. -7与-4 BB.与-2C.与D. -1与−1∣111、下列各式的值等于5的是()A. B. C. D.1111、下列各式的计算中,正确的是()A. B. C. D.下列各式的化简结果为不同的是()A.与B.与C.与D.与下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D19下列各式的计算中,正确的是()A B C D 20下列各式的化简结果为不同的是()A B C D三、化简下列各式(每小题5分,共30分) 21 (6a+5b)+(4a-3b) 22 -(2x+3y)+(4x-5y) 23 3(2a-b)-2(a+3b) 24x-[4x-(3x-7)]+[2x-(x+5)] 25 3(-ab+2a)-(3a-b) 26 (6a-7b)-(4a+b) 27 2x-[5x-(3x-1)]+[4x-(x+5)] 28 x+(3x+6)-(4x+2)四、解方程(每小题5分,共10分) 29 x+2=5 30 x-4=6五、应用题(每小题10分,共20分) 31在一块长为40m、宽为22m的矩形地面上要建造一个长为18m、宽为10m的长方形花坛,请你求出这快地面上还剩下的空地面积。

最新2019-2020年度北师大版七年级数学上册《整式的加减》同步练习题及答案-精品试题

最新2019-2020年度北师大版七年级数学上册《整式的加减》同步练习题及答案-精品试题

3.4 整式的加减(1)一、填空题1.3x与-5x的和是__________,3x与-5x的差是__________.2.a-b,b-c,c-a三个多项式的和是.3.x+y-z+z-y+x-x+y+z=________.二、选择题1.计算-2a2+a2的结果为( )A.3aB.-aC.-3a2D.-a22. 若长方形长是2a+3b,宽为a+b,则其周长是( )A.6a+8bB.12a+16bC.3a+8bD.6a+4b3.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,则m等于( )A.2B.-2C.-4D.-8三、解答题1.小明计划三天看完一本书,于是预计第一天看x页,第二天看的页数比第一天看的页数多50页,第三天看的页数比第二天看的页数的还少5页.求这本书的页数.2.已知小明的年龄是m岁,小红的年龄比小明年龄的2倍少4岁,小华的年龄比小红年龄多1岁,这三个人的年龄之和是多少?3.4 整式的加减(2)一、填空题1. a-(b+c)=_________,c-(b-a)=_________.2.化简:2(a+1)-a= .3.把3+[3a-2(a-1)]化简得.二、选择题1.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b2.如图,从边长为(a +1)cm的正方形纸片中剪去一个边长为(a -1)cm的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积为( )A.2cm2B.2acm2C.4acm2D.(a2-1)cm23.当a=5时,(a2-a)-(a2-2a+1)的值是( )A.4B.-4C.-14D.1三、解答题1.化简(1)(2x2-x-3)+(3-4x+x2). (2)(3y3-5y2-6)-(y-2+3y2).2.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求多项式C.3.4 整式的加减(3)一、填空题1.化简:2x-(2-5x)=__________.3x2y+(2x-5x2y)=__________.2.计算:a-(2a-3b)+(3a-4b)=__________.3.若x2y=x m y n,则m=______,n=______.4.化简x+{3y-[2y-(2x-3y)]}=__________.5.m+n-p的相反数为__________.二、选择题1.当a=5,b=3时,a-[b-2a-(a-b)]等于()A.10B.14C.-10D.42.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是()A.4B.20C.8D.-63.-[-(-a2)+b2]-[a2-(+b2)]等于()A.2a2B.2b2C.-2a2D.2(b2-a2)三、解答题1,计算2a-3b-[3abc-(2b-a)]+2abc的值.1.已知a=1,b=2,c=22.已知2x m y2与-3xy n是同类项,计算m-(m2n+3m-4n)+(2nm2-3n)的值.3.把(a+b)当作一个整体化简,5(a+b)2-(a+b)+2(a+b)2+2(a+b).3.4 整式的加减(1)一、1.-2x 8x 2. 0 3. x+y+z二、1.D 2. A 3. C三、1.(2.2x+55)页 2.(4m-5)岁3.4 整式的加减(2)一、1.a-b-c 2.a+2 3. a+5二、1.C 2. C 3. A三、1.(1) 3x2-5x (2) 3y3-8y2-y-4 2.3a2-3b2-2c23.4 整式的加减(3)一、1. 7x-2 ,-2x2y+2x 2. 2a-b 3. 2 , 1 4.3x-2y 5.p-m-n二、1.A 2. C 3. C三、1.-2 2. 2 3.7(a+b)2+(a+b)。

七年级数学上册整式加减练习题2北师大版

七年级数学上册整式加减练习题2北师大版

2019-2020 年七年级数学上册整式的加减练习题 2 北师大版知识点 1同类项:所含字母同样,而且同样字母的指数也分别同样的项,此外,全部的常数项都是同类项。

练习:若 - 5a3b m 1与 1 b 2a n 1是同类项,求m n 100的值。

3知识点 2:归并同类项把多项式中的同类项归并成一项,即把它们的系数相加作为新的系数,而字母部分不变。

练习:归并同类项:7ab 3a2b 27 8ab 23a2 b2 3 7ab.知识点 3:升幂摆列与降幂摆列为便于多项式的运算,能够用加法的互换律将多项式各项的地点按某一字母指数大次序从头摆列。

若按某个字母的指数从大到小的次序摆列,叫做这个多项式按这个字母降幂摆列。

若按某个字母的指数从小到大的顺序摆列,叫做这个多项式按这个字母升幂摆列。

练习:小把多项式 x 2 y 1 xy 2 1 x32 y3按x升幂摆列。

3 2知识点 4: 去括号假如括号外的因数是正数,去括号后原括号内各项的符号与本来的符号同样假如括号外的因数是负数,去括号后原括号内各项的符号与本来的符号相反练习:1.先去括号,再归并同类项:1 8a 2b 5a b2 3x 2 5 2x2. a b c的相反数为()A. a b cB. a b cC. a b cD. c a b 知识点 5:整式加减的一般步骤假如有括号,那么先去括号,再归并同类项。

练习:化简:3x 2 y z5x x 2 y z 3x综合练习:题型一:整式的加减1 三角形的第一边等于2a b ,第二边比第一边小1b 2 ,而第三边比第一边2大1b 2 ,这个三角形的周长是多少?22. 计算:1 5y 3x 5z2与12 y 7 x 3z2的和;2 8xy2 3x2 y 2与 2x2 y 5xy 2 3的差题型二:同类项的相关运算当m,n各等于多少时,3x 5 y n 2与16x m 2 y17是同类项。

题型三:去括号或添括号1. 计算:7a2 b 3ab 2 4a 2b 2ab 2 3ab 4ab 11a2 b 31ab bab 22. a b c d a b c d[ a -()][ a +()]3 三角形的周长为48,第一条边长为3a 2b,第二条边长的2倍比第一条边长少a 2b2,求第三条边的长。

《整式的加减》课后习题-七年级上册数学北师大版

《整式的加减》课后习题-七年级上册数学北师大版

第3课时整式的加减知识点1整式的加减1.计算(6a2-5a+3)-(5a2+2a-1)的结果是( )A.a2-3a+4 B.a2-3a+2C.a2-7a+2 D.a2-7a+42.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-33.用2a+5b减去4a-4b的一半,结果是( )A.4a-b B.b-aC.a-9b D.7b4.减去-2x等于-3x2+2x+1的多项式是( )A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-15.化简:(x2+y2)-3(x2-2y2)=____________.6.计算:(1)(-x2+5x+4)+(5x-4+2x2);(2)(3a2-ab+7)-(5ab-4a2+7).7.化简求值:(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-2.知识点2整式加减的应用8.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是( )A.12a+16b B.6a+8bC.3a+8b D.6a+4b9.一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下____________.10.已知某三角形的一条边长为m+n,另一条边长比这条边长大m-3,第三条边长等于2n-m,求这个三角形的周长.11.某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C 小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?12.有理数a、b、c在数轴上的位置如图所示.化简:|b|+b+2-|c|+|a-1|+|c-a|.参考答案基础题1.D2.A3.D4.C5.-2x2+7y26.(1)原式=-x2+5x+4+5x-4+2x2=x2+10x.(2)原式=3a2-ab+7-5ab+4a2-7=7a2-6ab.7.原式=-7a3+3a2+6a-3.当a=-2时,原式=53.8.B9.3a+2b10.(m+n)+(m-3)+(m+n)+(2n-m)=2m+4n-3.11.B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.12.由数轴可知b<0,有|b|=-b;c>0,有|c|=c;a>1,有a-1>0,|a-1|=a-1;c>a,有c-a>0,|c-a|=c -a,所以,原式=-b+b+2-c+a-1+c-a=(-b+b)+(a-a)+(-c+c)+(2-1)=1.。

最新北师大版七年级数学上册《整式的加减》同步精品练习题

最新北师大版七年级数学上册《整式的加减》同步精品练习题

3.4 整式的加减第3课时 整式的加减1、把下式化简求值,得( )(a 3—3a 2+5b)+(5a 2—6ab)—(a 3—5ab+7b),其中a=—1,b=—2A 、4B 、48C 、0D 、202、一个多项式A 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则A 等于( )A 、x 2-4xy -2y 2B 、-x 2+4xy +2y 2C 、3x 2-2xy -2y 2D 、3x 2-2xy 3、若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( )A 、三次多项式B 、四次多项式C 、七次多项式D 、四次七项式4、多项式3a n +3-9a n +2+5a n +1-2a n 与-a n +10a n +3-5a n +1-7a n +2的差是 。

5、已知222,32x xy a y xy b +=+=,求22489x xy y ++的值。

(用,a b 的代数式表示)6、一位同学做一道题:“已知两个多项式A 、B ,计算2A+B ”。

他误将“2A+B ”看成“A+2B ”,求得的结果为9x 2-2x+7。

已知B =x 2+3 x -2,求正确答案。

7、已知33222334A x y x y xy xy =-++-+,33224333B y x x y xy xy =----+,322266C y x y xy xy =+++-,试说明对于x 、y 、z 为何值A B C ++是常数。

●体验中考1、(2009年山西太原中考题)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A 、51x --B 、51x +C 、131x --D 、131x +2、(2009年湘西自治州中考题改编)如果2231,27A m m B m m =-+=--,且0A B C -+=,求C 。

3、(2009年湖南长沙中考题改编)化简求值(1)2223(421)2(31)a a a a a +----+,其中12a =-(2)2222222(2)(223)xy y xy yx xy x +---+,其中3x =-,2y =成功名言警句:2、对我来说,不学习,毋宁死。

七年级数学上册整式的加减同步训练(附详解北师大版)

七年级数学上册整式的加减同步训练(附详解北师大版)

七年级数学上册整式的加减同步训练(附详解北师大版)七年级数学上册整式的加减同步训练(附详解北师大版)1.同类项定义所含字母相同,并且相同字母的指数也相同的项,叫做同类项.谈重点同类项的理解“两个相同”:①所含字母相同;②相同字母的指数也相同.“两个无关”:①同类项只与项中的字母有关,与系数无关;②同类项与项中字母的排列顺序无关.“一个特别”:特别地,几个常数项也是同类项.如5与-8是同类项.为便于记忆,我们将其总结为:“同类项、同类项,两个条件不能忘,字母要相同,指数要一样.”【例1】下列各组代数式中,属于同类项的有()组.①0.5a2b3与0.5a3b2;②xy与xz;③mn与0.3mn;④xy2与12xy2;⑤3与-6.A.5B.4C.3D.1解析:①×相同字母的指数不相同②×含有的字母不相同③√含有相同的字母(③m,n;④x,y)且相同字母的指数也相同④√⑤√几个数也是同类项答案:C2.合并同类项及法则(1)合并同类项把同类项合并成一项叫做合并同类项.如:2a-a中,2a与-a是同类项,可以合并为a.(2)合并同类项的法则把同类项的系数相加,字母和字母的指数不变.如:2xy+3xy=(2+3)xy =5xy.谈重点合并同类项合并同类项时,只把同类项的系数相加,字母及其指数都不变.为便于记忆,我们将其总结为:“合并同类项,法则不能忘;只求系数和,字母、指数不变样.”【例2】下列合并同类项,正确的是().A.3a+2b=5abB.7ab-7ba=0C.3x2+2x3=5x5D.4x2y-5y2x=-xy解析:只有同类项才可以合并,而选项A,C,D中前后两项都不是同类项,不可以合并.答案:B3.去括号法则法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.谈重点去括号的技巧①去括号时应将括号前的符号连同括号一起去掉;②要注意括号前的符号,它是去括号后括号内各项是否变号的依据;③要注意括号前面是“-”号时,不管括号前是否有系数,去掉括号后,括号内的各项都要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余项的符号;④当括号里的第一项是省略“+”号的正数时,去掉括号和它前面的“+”号后要补上原先省略的“+”号;⑤括号内原有几项,去括号后仍有几项,不能丢项.去括号口诀:去括号,看符号;是“+”号,不变号;是“-”号,全变号.【例3】下列去括号正确的是().A.3a+(2b-c)=3a+2b+cB.3a-(2b+c)=3a-2b+cC.3a-(2b+c)=3a+2b+cD.3a-(2b+c)=3a-2b-c解析:根据去括号法则判断.选项A中去括号时,-c变成了+c,所以是错误的;选项B中去括号时,括号内c未变号;选项C中去括号时,括号内各项都没有变号;只有选项D符合去括号法则,故应选D. 答案:D4.根据同类项的概念求字母的值同类项具备两个条件:①含有相同的字母;②相同字母的指数相同.根据上面的条件可以求出同类项中字母的指数.其方法是:①找出同类项中的相同字母;②根据相同字母的指数相同列出等式;③求出字母指数.【例4】若25a4bn与5mamb3是同类项,则m=__________,n=__________.解析:此题中5mamb3中5的指数,a的指数都是m,而5又在前,很容易让人认为5m=25,从而m=2.实际上,在5mamb3中,5m只是这个代数式的系数,不管m等于几(m等于4除外),都和5mamb3与25a4bn 是同类项无关.答案:435.合并同类项的步骤(1)合并同类项的依据是逆用乘法分配律,根据合并同类项的法则进行合并.(2)合并同类项的一般步骤可以简单归纳为:找→移→并.找:找出多项式中的同类项;移:将多项式中的同类项通过移动位置,将同类项集中在一起;并:将系数相加,完成合并同类项.辨误区合并同类项的注意事项(1)只有同类项才能合并,合并时应注意不要漏项.(2)多项式中含有两种以上的同类项时,为防止漏项或混淆,可先在各项的下边用不同的记号标示出各种同类项,然后再分别进行合并.【例5】合并同类项:(1)2x2-7-x-3x-4x2;(2)-3a2+2a-1+a2-5a+7;(3)4(a+b)-5(a-b)-6(a-b)+7(a+b).分析:先找出各代数式中的同类项,再进行合并.解:(1)2x2-7-x-3x-4x2找=(2x2-4x2)+(-x-3x)-7移=(2-4)x2+(-1-3)x-7并=-2x2-4x-7;(2)-3a2+2a-1+a2-5a+7找=(-3a2+a2)+(2a-5a)+(-1+7)移=(-3+1)a2+(2-5)a+(-1+7)并=-2a2+(-3)a+6=-2a2-3a+6;(3)4(a+b)-5(a-b)-6(a-b)+7(a+b)找=4(a+b)+7(a+b)]+-5(a-b)-6(a-b)]…移=11(a+b)-11(a-b)=22b.并6.去括号的技巧当代数式中含有多重括号时,即有大括号、中括号、小括号时,可以由内向外逐层去括号,也可以由外向内逐层去括号,主要有以下几种方法:①按常规顺序去括号,先去小括号,再去大括号.②改变常规先去大括号,再去小括号.③先局部合并再去括号.④大小括号同时去掉.⑤先整体合并再去括号.⑥运用乘法分配律去括号.若代数式括号前有系数,可先进行乘法分配律,再去括号;也可以用乘法分配律直接将括号前面的系数乘以括号内的各项.【例6】计算:4xy2-3x2y-{3x2y+xy2-2xy2-4x2y+(x2y-2xy2)]}.分析:看清题,去多重括号可以由内向外逐层进行,也可以由外向内逐层进行,如果去括号法则掌握得较熟练,也可以内外同时去括号.解:方法一:(由内向外逐层去括号)原式=4xy2-3x2y-3x2y+xy2-(2xy2-4x2y+x2y-2xy2)]=4xy2-3x2y-(3x2y+xy2-2xy2+4x2y-x2y+2xy2)=4xy2-3x2y-(6x2y+xy2)=4xy2-3x2y-6x2y-xy2=3xy2-9x2y.方法二:(由外向内去括号)原式=4xy2-3x2y-3x2y-xy2+2xy2-4x2y+(x2y-2xy2)]=3xy2-6x2y+2xy2-4x2y+(x2y-2xy2)=5xy2-10x2y+x2y-2xy2=3xy2-9x2y.方法三:(内外同时去括号)原式=4xy2-3x2y-3x2y-xy2+(2xy2-4x2y+x2y-2xy2)=3xy2-6x2y-3x2y=3xy2-9x2y.7.去括号的应用以下几种应用中都会用到去括号:(1)代数式化简及求值化简有括号的代数式或求代数式的值时,要用到去括号法则.解决此类题的一般步骤:①去括号:按照去括号法则进行去括号;②合并同类项:将代数式中的同类项合并,化简代数式;③代入计算:用具体的数值代替代数式中的字母,按照代数式中指明的运算计算出结果.(2)实际问题中的去括号在列代数式表示实际问题中的数量关系时,有时会用到括号,因此,实际问题的解决中也会用到去括号法则.解决时主要的步骤:①认真审题,根据题意列出表示问题中数量关系的代数式;②去括号,合并同类项,化简代数式;③写出答案.【例7】数学课上,李老师给同学们出了一道整式的化简求值的练习题:(xyz2+7xy-2)+(-3xy+xyz2-5)-(2xyz2+4xy).李老师看着题目对同学们说:“大家任意给出x,y,z的一组值,我能马上说出答案.”同学们不相信,小刚同学立刻站起来,但他刚说完“x =2013,y=-277,z=193”后,李老师就说出了答案是-7.同学们都感到不可思议,计算速度也太快了吧,何况是这么复杂的一组数值呢!但李老师却信心十足地说:“这个答案准确无误.”同学们,你知道李老师为什么算得这么快吗?分析:要知道李老师算得快的原因,可以先化简整式,看看化简后的结果,你就知道李老师算得快的奥妙了.解:(xyz2+7xy-2)+(-3xy+xyz2-5)-(2xyz2+4xy)=xyz2+7xy-2-3xy+xyz2-5-2xyz2-4xy=(1+1-2)xyz2+(7-3-4)xy+(-2-5)=0+0+(-7)=-7.原来化简后的结果不含有字母x,y,z,也就是说整式的值与x,y,z 的取值无关.所以李老师的答案是正确的.。

(最新整理)北师大版初一七年级数学整式及其加减精练(附答案)

(最新整理)北师大版初一七年级数学整式及其加减精练(附答案)

31.一台电视机成本价为 a 元,销售价比成本价增长 25%,因库存积压,所以就接销售价的 70%
(2) 3x2 2xy 4 y2 3xy 4 y2 3x2 其中 x=—2,y=1.
(3) 1 a 2(a 1 b2 ) (3 a 1 b2 ) ,其中 a=—2, b 2 .
2
2
23
3
(4) 2x2 y 3xy2 2
xy2 2x2 y
,其中
x
1 2

y
2

(5)3x2y﹣[2xy2﹣2(xy﹣ x2y)+xy]+3xy2,(其中 x=3,y=﹣ )
D.5,-1
3.一个多项式减去 x2—2y2 等于 x2—2y2,则这个多项式是( )
A.-2x2+2y2
B.x2-2y2
C.2x2—4y2
D.x2+2y2
4.如图是长 10cm,宽 6cm 的长方形,在四个角剪去 4 个边长为 x cm 的小
正方形,按折痕做一个有底无盖的长方体盒子,这个盒子的容积是
试卷第 1 页,总 1 页
北师大版初一七年级数学整式及其加减精练(附答案)
北师大版初一七年级数学整式及其加减精练(附答案)
(2017 年 10 月) 1.下列式子中代数式的个数有( )
A。2
B。3
C。4
D。5
2.多项式 1+xy-xy²的次数及最高次项的系数分别是( )
A.3,1
B.2,-1
C.3,-1
B.3
C。 2
D。4
16.已知 a-b=—3,c+d=2,则(b+c)-(a-d) =________
17.若 am2bn7 与 3a4b4 是同类项,则 m n 的值为________.

最新北师大版七年级上册整式加减练习2

最新北师大版七年级上册整式加减练习2

54 朋友是一起度过美好时光的人!———来恩第2课时 整式的加减(二)1.在具体情境中体会去括号的必要性,能运用运算律去括号.2.总结去括号法则,并能利用法则解决简单的问题. 夯实基础,才能有所突破……1.-[-(-犪2)+犫2]-[犪2-(+犫2)]等于( ).A.2犪2B.2犫2C.-2犪2D.2(犫2-犪2)2.下列各式等号右边添的括号没有错误的是( ).A.犪-2犫-13犮=犪-2犫-13()犮B.犿-狀+犪-犫=犿-(狀+犪-犫)C.-狓-狔+狕-15=-狓+狔-狕+()15D.犪-12犫-14犮+27=犪-12()犫-14犮+()273.多项式-犪狓狔2-12狓与14狓-犫狓狔2的和是一个单项式,则犪,犫的关系是 .4.如果多项式犃减去-3狓+5,再加上狓2-狓-7后得5狓2-3狓-1,求多项式犃.5.按要求把多项式5犪3犫-2犪犫+3犪犫3-2犫2添上括号:(1)把后三项括到前面带有“-”号的括号里;(2)把四次项括到前面带有“+”号的括号里,把二次项括到前面带有“-”号的括号里.6.(1)已知犪=1,犫=2,犮=12,计算2犪-3犫-[3犪犫犮-(2犫-犪)]+2犪犫犮的值;(2)已知2狓犿狔2与-3狓狔狀是同类项,计算犿-(犿2狀+3犿-4狀)+(2狀犿2-3狀)的值. 课内与课外的桥梁是这样架设的。

7.已知(犪+2)2+|犪+犫+5|=0,求3犪2犫-[2犪2犫-(2犪犫-犪2犫)-4犪2]-犪犫的值.8.老师在黑板上布置的作业中有这样一道题:“先化简,再求值:(-狓3+3狓2狔-狔3)-(狓3-2狓狔2+狔3)+(2狓3-3狓2狔-2狓狔2),其中狓=2008,狔=-12.”小东同学将“狓=2008”错抄成“狓=2080”,但他求得的结果也是正确的.请你说明这是怎么回事?9.某天数学课上,学习了合并同类项,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-狓2+3狓狔-12狔2)-(-12狓2+4狓狔-32狔2)=-12狓2+狔2.部分地方被钢笔水弄污了,你能算出这部分是什么吗?10.证明:(狓3+5狓2+4狓-1)-(-狓2-3狓+2狓3-3)+(8-7狓-6狓2+狓3)的值与狓无关.第三章 整式及其加减社会犹如一条船,每个人都要有掌舵的准备。

北师大版数学初一上《整式的加减》测试(含答案)

北师大版数学初一上《整式的加减》测试(含答案)

北师大版数学初一上《整式的加减》测试(含答案)时间:60分钟总分:100分题号一二三四总分得分1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为()A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的谋略终于是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的终于是()A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+2bD. 10a+6b5.如图,在两个形状、巨细完全相同的大长方形内,分别互不重叠地插进四个如图③的小长方形后得图①、图②,已知大长方形的长为a,两个大长方形未被笼盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)()A. −aB. −12a C. 12a D. a6.若长方形的周长为6m,一边长为m+n,则另一边长为()A. 3m+nB. 2m+2nC. m+3nD. 2m−n7.a,b,c为△ABC的三边,化简|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|,终于是()A. 0B. 2a+2b+2cC. 4aD. 2b−2c8.化简4(2x−1)−2(−1+10x),终于为()A. −12x+1B. 18x−6C. −12x−2D. 18x−29.若将代数式4(x+8)写成了4x+8,则终于比原来()A. 少24B. 多24C. 少4D. 多410.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)11.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .12.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.13.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.14.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.第 1 页15.谋略2(4a−5b)−(3a−2b)的终于为______.16.化简:a−(a−3b)=______.17.已知a,b,c为有理数,且满足−a>b>|c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(终于用含a,b的代数式表示)18.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.19.谋略:2(x−y)+3y=________.20.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、谋略题(本大题共4小题,共24.0分)21.已知x+y=1,求代数式3x−2y+1+3y−2x−5的值.b)的值.22.已知a2−1=b,求3(a2−b)+a2−2(a2−1223.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当时x=−1A−2B的值.24.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,此中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)25.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,而且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b<0,求(1)中多项式C的值.26.第一车间有x人,第二车间比第一车间人数的3少20人,要是从第二车间调出104人到第一车间,那么:(1)两个车间共有几多人?(2)变动后,第一车间的人数比第二车间多几多人?第 3 页答案和剖析【答案】 1. C 2. C 3. C 4. C 5. C 6. D 7. A8. C 9. A 10. C11. b −a 12. −10 13. 2114. 6a +8b 15. 5a −8b 16. 3b17. −3a −b 18. a +2b 19. 2x +y 20. −10121. 解:∵x +y =1,∴原式=x +y −4=1−4=−3.22. 解:原式=3a 2−3b +a 2−2a 2+b =2a 2−2b , ∵a 2−1=b ,∴a 2−b =1, 则原式=2(a 2−b)=2.23. 解:(1)∵A =2x 2−3x +1,B =−3x 2+5x −7,∴A −2B =2x 2−3x +1−2(−3x 2+5x −7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当时x =−1,原式=8−7−13=−12. 24. 解:∵(2b −1)2+|a +2|=0, ∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25. 解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b +4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a =−2,b =−3时,C =−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:变动后,第一车间的人数比第二车间多(14x+40)人.【剖析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b=(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考察了整式的加减,掌握去括号与合并同类项是解题的要害.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置鉴别出x、y的标记及绝对值的巨细,再去括号,合并同类项即可.本题考察的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的要害.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长即是(长+宽)×2可以解答本题.本题考察整式的加减,解答本题的要害是明确整式的加减的谋略要领.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−第 5 页6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考察了整式的加减,以及列代数式,熟练掌握运算准则是解本题的要害.6. 解:根据题意得:12⋅6m−(m+n)=3m−m−n=2m−n,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考察了整式的加减,熟练掌握运算准则是解本题的要害.7. 解:|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|=(a+b+c)−(b+c−a)−(a−b+c)−(a+b−c)=a+b+c−b−c+a−a+b−c−a−b+c=0故选:A.首先根据:三角形双方之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算要领,求出终于是几多即可.此题主要考察了三角形的三边的干系,以及整式加减法的运算要领,要熟练掌握,解答此题的要害是要明确:三角形双方之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的要领可以对原式举行化简,从而本题得以办理.本题考察整式的加减,解题的要害是对原式的化扼要化到最简.9. 解:正确终于为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则终于比原来少24,故选A求出正确的终于,比较即可.此题考察了整式的加减,熟练掌握去括号准则是解本题的要害.10. 解:若A和B都是4次多项式,则A+B的终于的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,议决合并同类项求和时,终于的次数定小于或即是原多项式的最高次数.本题考察的是整式的加减,熟知整式的加减实质上便是合并同类项是解答此题的要害.11. 解:根据数轴上点的位置得:a<b<0<c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置鉴别出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到终于.此题考察了整式的加减,数轴,以及绝对值,熟练掌握去括号准则与合并同类项准则是解本题的要害.12. 解:原式=2a+2b−4+4b+8a+2=10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式举行谋略即可.此题考察了整式的加减−化简求值,熟练掌握去括号准则与合并同类项准则是解本题的要害.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发觉系数间的干系,把两个等式相加,便可求出a+b+c的值,代入原式谋略即可求出值.此题考察了整式的加减,熟练掌握运算准则是解本题的要害.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长即是两邻边之和的2倍,表示出周长,去括号合并即可得到终于.此题考察了整式的加减运算,涉及的知识有:去括号准则,以及合并同类项准则,熟练掌握准则是解本题的要害.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到终于.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算准则即可求出答案.本题考察整式的运算准则,解题的要害是熟练运用整式的运算准则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意鉴别出绝对值里边式子的正负,利用绝对值的代数意义谋略即可得到终于.本题考察了整式的加减求值,绝对值的性质,解答本题的要害是掌握绝对值的性质,举行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考察的是整式的加减,根据题意列出关于a、b的式子是解答此题的要害.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到终于.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入谋略即可求出值.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.21. 原式合并同类项得到最简终于,把已知等式代入谋略即可求出值.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.第 7 页22. 原式去括号合并得到最简终于,把已知等式变形后代入谋略即可求出值.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.23. (1)把A与B代入A−2B中,去括号合并即可得到终于;(2)把x=−1代入终于中谋略即可得到终于.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入谋略即可.本题考察了整式的加减−化简求值:给出整式中字母的值,求整式的值的标题,一般要先化简,再把给定字母的值代入谋略,得出整式的值,不能把数值直接代入整式中谋略.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+ 2a2b+4代入谋略即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,谋略即可求解.本题考察了整式的加减、去括号准则、绝对值的定义以及代数式求值.解题的要害是熟记去括号准则,熟练运用合并同类项的准则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出变动后两车间的人数,再作差即可.本题考察的是整式的加减,熟知整式的加减实质上便是合并同类项是解答此题的要害.。

2024年北师大七年级数学上册 3.2 整式的加减(课件)

2024年北师大七年级数学上册 3.2 整式的加减(课件)

感悟新知
1-1. [ 中考·湘潭 ] 下列整式与 ab2 为同类项的是
(B )
A.a2b
B. - 2ab2
C.ab
D.ab2c
知1-练
感悟新知
知识点 2 合并同类项
知2-讲
定义 把同类项合并成一项叫作合并同类项 .
合并同类项时,把同类项的系数相加,字母和字 法则
母的指数不变
一找:找出同类项 .(可用“ ____”“_____ ”等做 一般
知3-练
感悟新知
例4 [母题 教材 P93 习题 T5 ]化简下列各式:
知3-练
(1)(3x-y) -( x+2y-1);
(2)3x+2( y-x) -(-x-4y);
(3)2a-2(5a-3b) +3(2a-b) .
解题秘方:先利用去括号法则去括号,再合并同
类项 .
感悟新知
(1)(3x-y) -( x+2y-1);
(2) 3a2b - 2ab+2+2ab - a2b - 5 解: 3a2b - 2ab+2+2ab - a2b - 5
=(3a2b - a2b ) +(-2ab+2ab) +(2-5)
=(3-1) a 2b+(-2+2) ab-3 =2a 2b-3.
知2-练
感悟新知
2-1. [ 中考·荆州 ] 化简a-2a的结果是( A )
知3-讲
1. 去括号法则 (1)括号前是“ +”号,把括号和它前面的“ +” 号去掉后, 原括号里各项的符号都不改变; (2)括号前是“-”号,把括号和它前面的“-”号去掉后, 原括号里各项的符号都要改变.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档