近几全国物理竞赛复赛力学

合集下载

近七年全国物理竞赛复赛试题

近七年全国物理竞赛复赛试题

第十六届全国中学生物理竞赛复赛试题全卷共六题,总分为140分.一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此、。

现将2D 的1、3、5三点分别与1D 的2、4、6三点用导线连接,如图复16-5-2所示。

然后将3D 的1、3、5三点分别与2D 的2、4、6三点用导线连接,┅ 依此类推。

最后将5D 的1、3、5三点分别连接到4D 的2、4、6三点上。

1.证明全部接好后,在1D 上的1、3两点间的等效电阻为724627R 。

2.求全部接好后,在5D 上的1、3两点间的等效电阻。

六、(25分)如图复16-6所示,z 轴竖直向上,xy 平面是一绝缘的、固定的、刚性平面。

在0(,0,0)A x 处放一带电量为(0)q q ->的小物块,该物块与一细线相连,细线的另一端B 穿过位于坐标原点O 的光滑小孔,可通过它牵引小物块。

现对该系统加一匀强电场,场强方向垂直与x 轴,与z 轴夹角为θ(如图复16-6所示)。

设小物块和绝缘平面间的摩擦系数为tan μθ=,且静摩擦系数和滑动摩擦系数相同。

不计重力作用。

现通过细线来。

所示,在真空中有一个折射率为观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3S a U r k r=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即r h ⎛⎫大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。

第31届全国中学生物理竞赛复赛试题及答案(归档整理)

第31届全国中学生物理竞赛复赛试题及答案(归档整理)

第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是 [][]-=f t 1③ [][]=r l ④ [][][]ρ-=m l 3⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132即[][][][]αββγγ--+-=t l m t 132 ⑦由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩解为311,,222αβγ=-=-=⑪将⑪式代入①式得 =f 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s-1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③[]m =r ④[]kg m ρ-=⋅3⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为ff =f ∝2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④此即lnln ii fp p p p γ= ⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)i f ih h h h h h γ+=+-+ ⑧利用近似关系式:1, ln(1)x x x +≈当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==-- ⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T ①00bc://=f p T p T ②由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③此即lnln i i fp p p p γ= ④由力学平衡条件有0i i p p gh ρ=+ ⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)i f ih h h h h h γ+=+-+ ⑦利用近似关系式:1, ln(1)x x x +≈当,以及 00/1, /1i f h h h h ,有 000///i ii f i fh h h h h h h h h γ==-- ⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分. 三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N , (,0,0)2b-式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A Bx0=+=∑xxF N N ①A B sin 0ϕ=++-=∑yyyF Q N N mg ② A B cos 0ϕ=+-=∑z z zF N N mg ③ 0sin 0x M mgh Q z ϕ=-⋅=∑ ④B A 022=-=∑y z z b bM N N⑤ 0A B 022z y yb bM Q x N N =⋅+-=∑⑥ 联立以上各式解得sin mgh Q z ϕ=,A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z z N N mg ϕ== 即0M 0sin (0,,0)mgh z ϕ=Q , ⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N , ⑧ 0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩ M 点移动的起始位置为0M ,由⑩式得 00022-=-b x b x z z z z⑪或00022b x b x zz z ⎛⎫-=- ⎪⎝⎭ ⑫ 这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为 .此时与速率v 对应的指向中心C 的小球加速度大小为21a R=v ①同时,对应于圆环角速度,指向OO轴的小球加速度大小为2(sin )sin R a R ωωθθ=②该加速度的指向中心C 的分量为22(sin )sin R a a Rωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤ 在小球下滑至 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度0和转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在角位置处取角度增量,圆心角所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上 角位置到竖直轴OO 的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨[或:由转动惯量的定义可知圆环绕竖直轴OO的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为CRzl r2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬ 根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m g m m ⑮ 式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有20020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分. 五、(20分) (1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =,10cm f =,代入透镜成像公式111u f+=v ①得像距为20cm =v ②其横向放大率为1uβ=-=-v ③可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样.(2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm,利用两个相似三角形CRR'∆与CBB'∆的关系,得CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE 相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有620DR'=cm, DE'=cm, EE'=2.5cm,77ACOBB' CRBR'B'利用两个相似三角形DRR'∆与DEE'∆的关系,得DR'20/72RR'=EE'= 2.5cm 0.75cm DE'20/7a r -=⨯⨯= ⑤ 可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm 处,则当圆形光阑半径逐渐减小时,圆盘像的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分; 第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)固定金属板和可旋转金属板之间的重叠扇形的圆心角 的取值范围为00θθθ-≤≤.整个电容器相当于2N 个相同的电容器并联,因而1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200012(), 2()12(2), 2θθθθπθθθππθθθ⎧⨯--≤≤-⎪⎪=⎨⎪⨯--<<⎪⎩R A R 当当③由②③式得200012000(), 4()(2), 4θθθθπθπθθππθθθπ⎧--≤≤-⎪⎪=⎨-⎪-<<⎪⎩R ksC R ks当当④由①④式得DRER' E'20002000(), 2()(2),2θθθθπθπθθππθθθπ⎧--≤≤-⎪⎪=⎨-⎪-<<⎪⎩NR ks C NR ks 当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max 2NR C ksθπ=⑦ 充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max 2NR Q E ksθπ=⑧ 断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当 ⑨ 设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T F r F l U ⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当0 2πθθ==时, ()θT 发散,这表明所用的平行板电容公式需要修改.当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks⑫(3)当0cos V V t ω=,则其电容器所储存能量为[]222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-, ⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m i B k r=①由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋.两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆= ②考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆==④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤其方向指向轴心.(2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥图(a)圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆ ⑦由于1N ,有22(1)-=N N i I 内⑧由⑦⑧式得224π=m k I P r 内⑨代入题给数据得1221.0210N/m P =⨯ ⑩一个大气压约为5210N/m ,所以710atm P ≈⑪即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫式中,因此有1212=mm I I k k l l⑬即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=mI B k R内⑭方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2) + 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯若要求2222244ππ+>外内外内()m m k I I I k I R r ⑰只需满足222222 = ++<外内外内I I I R M NMr I N ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点的距离之比34/l l :333444I L l I L l == ⑲式中,33CL l =,44CL l =,CO l =. 由此得33443434I I I I l l l l +==+ ⑳考虑到磁场分布的对称性,全部电流在C 点的磁感应强度应与CO 垂直. 穿过3L 和4L 段的电流在C 点产生的磁感应强度的垂直于CO 的分量之和为3344C 3434cos cos 2cos mm m I I I IB k k k l l l l θθθ+=+=+ ○21○21 设过C 点所作的直线34CL L 与直线CO 的夹角为θ,直线34CL L 与圆的半径4OL 的夹角为α(此时,将微小弧元视为点). 由正弦定理有34sin()sin sin()l l l αθααθ==-+○22○22 式中,3OCL θ=,4CL O α=. 于是343434C 342cos 2sin cos [sin()sin()]m m m I I I I I I B k k k l l l lθαθαθαθ+++===+++- ○23○23 即穿过两段微小圆弧的电流3I 和4I 在C 点产生的磁场沿合磁场方向的投影等于3I 和4I 移至圆柱轴在在C点产生的磁场.整个圆周可以分为许多“对”这样的圆弧段,因此沿柱轴通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,mI B k l r l=>内○24○24 方向垂直于C 点与圆心O 的连线,满足右手螺旋法则.评分标准:本题26分.第(1)问6分,②③式各1分,④式2分,⑤式1分,方向1分;第(2)问6分,⑥~⑪式各1分;第(3)问3分,⑫⑬式各1分,对称性分析正确1分;第(4)问6分,⑮⑯各2分,⑰⑱式各1分;第(5)问5分,⑲○21○21○22○23○24式各1分. 八、(20分)(1)由题给条件,观察到星系的谱线的频率分别为1414.54910Hz ν'=⨯和142 6.14110Hz ν'=⨯,它们分别对应于在实验室中测得的氢原子光谱的两条谱线1和2.由红移量z 的定义,根据波长与频率的关系可得νννννν''--==''112212z①式中,ν'是我们观测到的星系中某恒星发出的频率,而是实验室中测得的同种原子发出的相应的频率. 上式可写成11221111(1),(1)νννν=+=+'' z z由氢原子的能级公式2=n E E n , ②得到其巴耳末系的能谱线为00222ν=-E E h n ③由于z 远小于1,光谱线红移后的频率近似等于其原频率.把1ν'和2ν'分别代入上式,得到这两条谱线的相应能级的量子数1234≈≈≈≈, n n ④从而,证实它们分别由n=3和4向k =2的能级跃迁而产生的光谱,属于氢原子谱线的巴尔末系.这两条谱线在实验室的频率分别为14012211() 4.56710Hz 23=--=⨯E v h , 14022211() 6.16610Hz 24=--=⨯E v h 根据波长与频率的关系可得,在实验室中与之相对应的波长分别是12656.4nm 486.2nm λλ==, ⑤(2)由①式可知1122121()0.00402νννννν''--=+=''z ⑥由于多普勒效应,观测到的频率νν'=因为vc ,推导得z = v /c从而,该星系远离我们的速度大小为 860.0040 2.99810 m/s 1.210 m/s v ==⨯⨯=⨯zc ⑦(3)由哈勃定律,该星系与我们的距离为641.210 Mpc 18Mpc 6.78010v D H ⨯===⨯ ⑧评分标准:本题20分. 第(1)问14分,①式2分,③④⑤式各4分;第(2)问4分,⑥⑦式各2分;第(3)问2分,⑧式2分. (有效数字位数正确但数值有微小差别的,仍给分)/。

全国中学生高中物理竞赛集锦(力学)答案

全国中学生高中物理竞赛集锦(力学)答案
mg-T=ma(14)
T0-mg=ma(15)
T0=2T(16)
由(14)、(15)和(16)式得
(17)
托盘的加速度向上,初速度v2向下,设经历时间t2,托盘速度变为零,有
v2=at2(18)
由(7)、(12)、(17)和(18)式,得
(19)
即砝码1自与弹簧分离到速度为零经历的时间与托盘自分离到速度为零经历的时间相等。由对称性可知,当砝码回到分离位置时,托盘亦回到分离位置,即再经历t1,砝码与弹簧相遇。题中要求的时间
(23)
评分标准:本题20分。
第一小问13分:求得式(15)、(16)各3分,式(17)2分,求得式(19)并说明“ ”取“+”的理由给5分。第二小问7分:式(20)2分,式(22)2分,式(23)3分。
第二十届复赛
三、参考解答
位于通道内、质量为 的物体距地心 为 时(见图复解20-3),它受到地球的引力可以表示为
(1)
(2)
因而
(3)
由能量守恒
(4)
由(3)、(4)两式及mB=2mA得
(5)
(6)
评分标准:
本题(15)分.(1)、(2)式各3分,(4)式5分,(5)、(6)两式各2分。
九、设从烧断线到砝码1与弹簧分离经历的时间为△t,在这段时间内,各砝码和砝码托盘的受力情况如图1所示:图中,F表示△t时间内任意时刻弹簧的弹力,T表示该时刻跨过滑轮组的轻绳中的张力,mg为重力,T0为悬挂托盘的绳的拉力。因D的质量忽略不计,有
要求作斜抛运动的摆球击中 点,则应满足下列关系式:
,(5)
(6)
利用式(5)和式(6)消去 ,得到
(7)
由式(3)、(7)得到
(8)

第 23届全国中学生物理竞赛复赛参考解答

第 23届全国中学生物理竞赛复赛参考解答

第23届全国中学生物理竞赛复赛题参考解答及评分标准一、参考解答:解法一小球沿竖直线上下运动时,其离开玻璃管底部的距离h 随时间t 变化的关系如图所示.设照片拍摄到的小球位置用A 表示,A 离玻璃管底部的距离为h A ,小球开始下落处到玻璃管底部的距离为H .小球可以在下落的过程中经过A 点,也可在上升的过程中经过A 点.现以τ表示小球从最高点(即开始下落处)落到玻璃管底部所需的时间(也就是从玻璃管底部反跳后上升到最高点所需的时间),1τ表示小球从最高点下落至A 点所需的时间(也就是从A 点上升至最高点所需的时间),2τ表示小球从A 点下落至玻璃管底部所需的时间(也就是从玻璃管底部反跳后上升至A 点所需的时间).显然,12τττ+=.根据题意,在时间间隔T 的起始时刻和终了时刻小球都在A 点.用n 表示时间间隔 T 内(包括起始时刻和终了时刻)小球位于A 点的次数(n ≥2).下面分两种情况进行讨论:1.A 点不正好在最高点或最低点. 当n 为奇数时有()()()12111T n n n τττ=-+-=- 3,5,7,n = (1)在(1)式中,根据题意1τ可取10ττ<<中的任意值,而21τττ=-(2)当n 为偶数时有()()211222T n n n n ττττ=+-=+- 2,4,6,n = (3)由(3)式得12ττ=(4)由(1)、(3)、(4)式知,不论n 是奇数还是偶数,都有()1T n τ=- 2,3,4,n =(5)因此可求得,开始下落处到玻璃管底部的距离的可能值为th2211221n T H g g n τ⎛⎫== ⎪-⎝⎭2,3,4,n = (6)若用n H 表示与n 对应的H 值,则与n H 相应的A 点到玻璃管底部的距离 2112A n h H g τ=-2,3,4,n = (7)当n 为奇数时,1τ可取10ττ<<中的任意值,故有0A n h H << 2121n T H g n ⎡⎤⎛⎫=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦n=3,5,7,·· · (8) 可见与n H 相应的A h 的可能值为0与n H 之间的任意值.当n 为偶数时,112ττ=,由(6)式、(7)式求得n H 的可能值34A n h H =2121n T H g n ⎡⎤⎛⎫=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦n=2,4,6,·· · (9) 2.若A 点正好在最高点或最低点. 无论n 是奇数还是偶数都有()21T n τ=- n=2,3,4,· · ·(10)()22112221n T H g g n τ⎡⎤==⎢⎥-⎢⎥⎣⎦n=2,3,4,·· · (11)A n h H = ()21221n T H g n ⎧⎫⎡⎤⎪⎪=⎨⎢⎥⎬-⎢⎥⎪⎪⎣⎦⎩⎭n=2,3,4,·· · (12)或0A h =(13)解法二因为照相机每经一时间间隔T 拍摄一次时,小球都位于相片上同一位置,所以小球经过该位置的时刻具有周期性,而且T 和这个周期的比值应该是一整数.下面我们就研究小球通过某个位置的周期性.设小球从最高点(开始下落处)落下至管底所需时间为τ ,从最高点下落至相片上小球所在点(A 点)所需时间为1τ,从A 点下落至管底所需时间为2τ,则12τττ=+(1)(小球上升时通过相应路程段所需时间与下落时同一路程所需时间相同,也是τ、1τ和2τ)从小球在下落过程中经过A 点时刻开始,小球经过的时间22τ后上升至A 点,再经过时间12τ后又落到A 点,此过程所需总时间为12222τττ+=.以后小球将重复这样的运动.小球周期性重复出现在A 点的周期是多少? 分两种情况讨论:(1). 12ττ≠,1τ和2τ都不是小球在A 点重复出现的周期,周期是2τ.(2). 12ττ=,小球经过时间22ττ=回到A 点,再经过时间12ττ=又回到A 点,所以小球重复出现在A 点的周期为τ.下面就分别讨论各种情况中H 的可能值和A 点离管底的距离A h 的可能值.(如果从小球在上升过程中经过A 点的时刻开始计时,结果一样,只是1τ和2τ对调一下)1.H 的可能值(1).较普遍的情况,12ττ≠.T 与2τ的比值应为一整数,τ的可能值应符合下式2Tk τ=, 1,2,3,k = (2)由自由落体公式可知,与此相应的k H 的数值为2211222k T H g g k τ⎛⎫== ⎪⎝⎭1,2,3,k = (3)(2).12ττ=.τ的可能值应符合下式Tk τ'= 1,2,3,k '= (4)故k H '的可能值为221122k T H g g k τ'⎛⎫== ⎪'⎝⎭1,2,3,k '= (5)当k '为偶数时,即2,4,6,k '=时,(5)式与(3)式完全相同.可见由(3)式求得的H 的可能值包含了12ττ≠的全部情况和12ττ=的一部分情况.当k '为奇数时,即1,3,5,k '=时,由(5)式得出的H 的可能值为212k T H g k '⎛⎫= ⎪'⎝⎭1,3,5,k '= (6)它们不在(3)式之内,故(3)式和(6)式得出的H 合在一起是H 的全部的可能值. 2.与各H 值相应的A h 的可能值 a.与k H 相应的A h 的可能值由于在求得(3)式时未限定A 点的位置,故A h 的数值可取0和k H 之间的任意值,即0A k h H ≤≤ 2122k T H g k ⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 1,2,3,k = (7)b. 与k H '(k '为奇数)相应的A h 的可能值 这些数值与A 位于特定的位置,122τττ==,相对应,所以对于每一个k H '对应的A h 是一个特定值,它们是21122A k T h H g k '⎛⎫=- ⎪'⎝⎭212k T H g k '⎡⎤⎛⎫=⎢⎥ ⎪'⎝⎭⎢⎥⎣⎦1,3,5,k '= (8)评分标准:本题23分 二、参考解答:1. 求刚碰撞后小球A 、B 、C 、D 的速度设刚碰撞后,小球A 、B 、C 、D 的速度分别为A v 、B v 、C v 、D v ,并设它们的方向都与0v 的方向相同.由于小球C 位于由B 、C 、D 三球组成的系统的质心处,所以小球C 的速度也就是这系统的质心的速度.因碰撞前后四小球组成的质点组的动量守恒, 故有0A C 3M M m =+v v v(1) 碰撞前后质点组的角动量守恒,有C D 02ml ml =+v v(2)这里角动量的参考点设在与B 球重合的空间固定点,且规定顺时针方向的角动量为正.因为是弹性碰撞,碰撞前后质点组的动能相等,有222220A B C D 11111+22222M M m m =++v v mv v v (3)因为杆是刚性杆,小球B 和D 相对于小球C 的速度大小必相等,方向应相反,所以有B C C D --v v =v v(4)解(1)、(2)、(3)、(4)式,可得两个解C v =0(5)和C 0456MM m=+v v(6)因为C v 也是刚碰撞后由B 、C 、D 三小球组成的系统的质心的速度,根据质心运动定律,碰撞后这系统的质心不可能静止不动,故(5)式不合理,应舍去.取(6)式时可解得刚碰撞后A 、B 、D 三球的速度 A 05656M mM m -=+v v(7)B 01056M M m=+v v(8)D 0256MM m=-+v v(9)2.讨论碰撞后各小球的运动碰撞后,由于B 、C 、D 三小球组成的系统不受外力作用,其质心的速度不变,故小球C 将以(6)式的速度即C 0456MM m=+v v 沿0v 方向作匀速运动.由(4)、(8)、(9)式可知,碰撞后,B 、D 两小球将绕小球C 作匀角速度转动,角速度的大小为656B M l M m ω-==+C v v v l(10)方向为逆时针方向.由(7)式可知,碰后小球A 的速度的大小和方向与M 、m 的大小有关,下面就M 、m 取值不同而导致运动情形的不同进行讨论:(i )A 0v =,即碰撞后小球A 停住,由(7)式可知发生这种运动的条件是 即65M m = (11)(ii )A 0v <,即碰撞后小球A 反方向运动,根据(7)式,发生这种运动的条件是65M m < (12)(iii )A 0v >但A C <v v ,即碰撞后小球A 沿0v 方向作匀速直线运动,但其速度小于小球C 的速度.由(7)式和(6)式,可知发生这种运动的条件是 560M m ->和m M M 654->即665m M m << (13)(iv )A C >v v ,即碰撞后小球A 仍沿0v 方向运动,且其速度大于小球C 的速度,发生这种运动的条件是6M m > (14) (v )A C =v v ,即碰撞后小球A 和小球C 以相同的速度一起沿0v 方向运动,发生这种运动的条件是6M m =(15)在这种情形下,由于小球B 、D 绕小球C 作圆周运动,当细杆转过180时,小球D 将从小球A 的后面与小球A 相遇,而发生第二次碰撞,碰后小球A 继续沿0v 方向运动.根据质心运动定理,C 球的速度要减小,碰后再也不可能发生第三次碰撞.这两次碰撞的时间间隔是()056πππ6M m l lt Mω+===v v (16)从第一次碰撞到第二次碰撞,小球C 走过的路程C 2π3ld t ==v (17)3.求第二次碰撞后,小球A 、B 、C 、D 的速度刚要发生第二次碰撞时,细杆已转过180,这时,小球B 的速度为D v ,小球D 的速度为B v .在第二次碰撞过程中,质点组的动量守恒,角动量守恒和能量守恒.设第二次刚碰撞后小球A 、B 、C 、D 的速度分别为A 'v 、B 'v 、C 'v 和D 'v ,并假定它们的方向都与0v 的方向相同.注意到(1)、(2)、(3)式可得0AC 3M M m ''=+v v v (18) C B 02ml ml ''=+v v(19)222220A B C D 11111+22222M M m m ''''=++v v mv v v(20)由杆的刚性条件有D C C B ''''-=-v v v v(21)(19)式的角动量参考点设在刚要发生第二次碰撞时与D 球重合的空间点.把(18)、(19)、(20)、(21)式与(1)、(2)、(3)、(4)式对比,可以看到它们除了小球B 和D 互换之外是完全相同的.因此它们也有两个解C0'=v (22) 和C0456MM m'=+v v(23)对于由B 、C 、D 三小球组成的系统,在受到A 球的作用后,其质心的速度不可能保持不变,而(23)式是第二次碰撞未发生时质心的速度,不合理,应该舍去.取(22)式时,可解得 A 0'=v v (24)B 0'=v(25)D 0'=v(26)(22)、(24)、(25)、(26)式表明第二次碰撞后,小球A 以速度0v 作匀速直线运动,即恢复到第一次碰撞前的运动,但已位于杆的前方,细杆和小球B 、C 、D 则处于静止状态,即恢复到第一次碰撞前的运动状态,但都向前移动了一段距离2π3ld =,而且小球D 和B 换了位置. 评分标准:本题25分. 三、参考解答:由k pV =α, 1>α (1)可知,当V 增大时,p 将随之减小(当V 减小时,p 将随之增大),在p V -图上所对应的曲线(过状态A )大致如图所示.在曲线上取体积与状态B 的体积相同的状态C .现在设想气体从状态A 出发,保持叶片不动,而令活V塞缓慢地向右移动,使气体膨胀,由状态A 到达状态C ,在此过程中,外界对气体做功11111C A k W V V ααα--⎡⎤=-⎢⎥-⎣⎦(2)用U A 、U C 分别表示气体处于状态A 、C 时的内能,因为是绝热过程,所以内能的增量等于外界对气体做的功,即11111C A C A k U U V V ααα--⎡⎤-=-⎢⎥-⎣⎦(3)再设想气体处于状态C 时,保持其体积不变,即保持活塞不动,令叶片以角速度ω 做匀速转动,这样叶片就要克服气体阻力而做功,因为缸壁及活塞都是绝热的,题设缸内其它物体热容量不计,活塞又不动(即活塞不做功),所以此功完全用来增加气体的内能.因为气体体积不变,所以它的温度和压强都会升高,最后令它到达状态B .在这过程中叶片转动的时间用∆t 表示,则在气体的状态从C 到B 的过程中,叶片克服气体阻力做功W L t ω'=∆ (4)令U B 表示气体处于状态B 时的内能,由热力学第一定律得B C U U L t ω-=∆(5)由题知1p L t Vαω∆-=⋅∆ (6)由(4)、(5)、(6)式得()1BB C BC V U U p p α-=-- (7)(7)式加(3)式,得()111111B B A B C C A V k U U p p V V αααα--⎡⎤-=-+-⎢⎥--⎣⎦(8)利用pV k α=和C B V V =得()11B A B B A A U U p V p V α-=-- (9)评分标准:本题23分. 四、参考解答:答案:D u 如图1所示,B u 如图2 所示. u D.附参考解法:二极管可以处在导通和截止两种不同的状态.不管D 1和D 2处在什么状态,若在时刻t ,A 点的电压为u A ,D 点的电压为u D ,B 点的电压为u B ,电容器C 1两极板间的电压为u C 1,电容器C 2两极板间的电压为u C 2,则有1D A C u u u =- (1)2B C u u =(2) 11C A D q u u u C =-=(3)22C B G qu u u C=-=(4)式中q 1为C 1与A 点连接的极板上的电荷量,q 2为C 2与B 点连接的极板上的电荷量.若二极管D 1截止,D 2导通,则称电路处在状态I . 当电路处在状态I 时有D B u u = 0D u >(5)若二极管D 1和D 2都截止,则称电路处在状态II . 当电路处在状态II 时有D B u u < 0D u >(6)若二极管D 1导通,D 2截止,则称电路处在状态III .当电路处在状态III 时有D B u u < 0=D u(7)电路处在不同状态时的等效电路如图3所示.在0t =到2t T =时间间隔内,u D 、u B 随时间t 的变化情况分析如下:1. 从0t =起,u A 从0开始增大,电路处在状态 I ,C 1、C 2与电源组成闭合回路. 因C 1、C 2的电容相等,初始时两电容器都不带电,故有在u A 达到最大值即u A = U 时,对应的时刻为14t T =,这时12D B u U ==,也达到最大值. u A 达到最大值后将要减小,由于D 2的单向导电性,电容器C 1、C 2都不会放电,1C u 和2C u 保持不变,u D 将要小于12U ,即将要小于u B ,D 2将由导通变成截止,电路不再处于状态I . 所以从t = 0到14t T =时间间隔内,u D 、u B随时间t 变化的图线如图4、图5中区域I 内的的直线所示.2. 从14t T =起,因u D 小于u B ,D 2处在截止状态,电路从状态 I 变为状态 II . 因为二极管的反向电0 2TT 图2C 1D 1 C 2 D u A G A BD 2 C 1 D 1 2 Du A GA BD 2C 1D 1 C 2 D u A GA B D 2 状态I 状态II 状态III图3阻为无限大,电容器C 1、C 2都不会放电,两极板间的电压都保持不变.当电路处在状态II 时,D 点的电压 B 点的电压随着u A 从最大值U 逐渐变小,u D 亦变小;当12A u U =时,对应的时刻为38t T =,0D u =.如果u A 小于12U ,则u D 将小于0,D 1要从截止变成导通,电路不再处在状态II .所以在14t T =到38t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中区域 II 1 内的直线所示.3.从38t T =起,u A 从12U 开始减小,D 1导通,但D B u u <,D 2仍是截止的,电路从状态II 变为状态III .当电路处在 状态 III 时有在u A 减小的过程中,C 1两极板间的电压u C 1(= u A )也随之改变,从而维持u D 为0. 当u A 达到反向最大值即A u U =-时,对应的时刻为34t T =,1C u U =-.若u A 从U -开始增大(U -减小),因D 1的单向导电性,电容器C 1不会放电,1C u U =-保持不变,10D A C u u u =->,D 1要从导通变成截止,电路不再处于状态III .所以在38t T =到34t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中区域 III 1 内的直线所示.4. 从34t T =起,u A 从U -开始增大, D 1变为截止状态,D A u u U =+从零开始增大,只要u D 仍小于u B ,D 2仍是截止的,电路从状态III 变为状态II . 当电路处在 状态 II 时,C 1和C 2不会放电,电容器两极板间的电压保持不变. 故有当u A 增大至12U -时,对应的时刻为78t T =,12D B u u U ==. 若u A 再增大,u D 将要大于u B ,D 2将要从截止变为导通,D B u u =,电路不再处于状态II . 所以在34t T =到78t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中 区域 II 2 中的直线所示.5. 从78t T =起,u A 要从12U -增大, D 2变为导通状态,这时D 1仍是截止的,电路又进入状态I . 当电路处在 状态I 时,电源与C 1、C 2构成闭合回路,而当u A 变化时,12q q +将随之变化,但由导通的二极管D 2连接的C 1、C 2的两块极板所带的总电荷量12q q -+是恒定不变的.由于在78t T =时刻,1C u U =-,212C u U =,此时1q CU =-,212q CU =,故有 由以上有关各式得u D 、u B 随着u A 的增大而增大. 当u A 达到最大值即A u U =时,对应的时刻为54t T =,54D B u u U ==.由于D 2单向导电,2B C u u =只增不减,u A 从最大值减小时,1C u 不变,u D 将要小于54U ,而2B C u u =保持为54U ,因而D B u u <,D 2从导通变成截止,电路不再是状态I . 所以在78t T =到T t 45=时间间隔内,u D 、u B 随t 变化的图线如图4和图5中 I 2中的直线所示.6. 从54t T =起,u A 从U 开始减小, D 2变为截止状态,这时D 1仍是截止的,电路又进入状态II . 当电路处在 状态 II 时,C 1和C 2不会放电,电容器两极板间的电压保持不变. 由54t T =时刻的u D 和u A 的值可知此时114C u U =-. 故有当u A 减少至14U -时,对应的时刻为=t 2516T ,0D u =,以后D 1将由截止变为导通,电路不再处在状态II . 所以在54t T =到2516t T =时间内,u D 、u B 随t 变化的图线如图4和图5中 II 3中的直线所示.7. 从2516t T =起,u A 从14U -开始减小,D 1变为导通状态,但D 2仍是截止的,电路又进入状态III ,故有在u A 减小的过程中,C 1两端的电压u C 1也随之改变,开始阶段D 1保持导通,u D = 0. 但当u A 减小至-U 时,对应的时刻为74t T =,u C 1 = U . 因D 1单向导电,且D B u u <,C 1右极板的正电荷只增不减,u A 到达-U 后要增大,u D 要大于0,D 1要从导通变为截止,电路不再处于状态III . 所以在2516t T =到74t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中III 2内的直线所示.8. 从74t T =起,u A 从-U 开始增大,D 1变为截止状态,D 2仍是截止的,电路又进入状态II . 当电路处于状态II 时,C 1和C 2不会放电,电容器两极板间的电压保持不变.由74t T =时刻的u D 和u A 的值可知,此时1C u U =-.故有u D 将随着u A 的增大而增大.当u A =14U 时,对应的时刻33216t T T =>,u D =54U ,与u B 相等.以后u D 要大于54U ,D 2要从截止变为导通,电路不再是状态II . 所以在74t T =到2t T =时间间隔内,u D 、u B 随t 变化的图线如图4和图5中II 4内的直线所示.总结以上讨论,各时段起讫时刻及D u 和B u 变化值如下表所示: 时 段 1 2 3 4 5 6 7 8 I 1II 1III 1II 2I 2II 3III 2II 4u D评分标准:本题25分 五、参考解答:1.题给的磁场(),B x t 随时间和空间的变化具有周期性,在某时刻t ,磁场的空间分布为 在t t +∆时刻,磁场的空间分布为比较上面两式,不难看出,t 和t t +∆这两个时刻的磁场的空间分布规律是相同的,只是t 时刻原位于x t k ω⎛⎫-∆ ⎪⎝⎭处的磁场,经历t ∆时间,在t t +∆时刻,出现在x 处.即整个磁场的分布经时间间隔t ∆沿x轴的正方向平移了一段距离 平移速度0x t kω∆==∆v (1)平移速度0v 为恒量.由此可见,题给出的磁场()()0,cos B x t B t kx ω=-可视为一在空间按余弦规律分布的非均匀磁场区域以速度0v 沿x 轴的正方向平移.如果金属框移动的速度小于磁场区域平移的速度,那么通过金属框的磁通将随时间发生变化,从而在金属框中产生感应电流,感应电流将受到磁场的安培力作用.由题已知,在时刻t ,金属框移动的速度为v ,金属框MN 边位于坐标x 处,PQ 边位于坐标x d +处.设此时金属框的磁通为Φ(规定由纸内到纸外Φ为正);经过一很短的时间间隔t ∆,整个磁场分布区域向x 方向移动了一段距离0t ∆v ,金属框向x 方向移动了一段距离t ∆v ,其结果是:MN 边左侧穿过面积为()0l t -∆v v 的磁通()()0,B x t l t -∆v v 移进了金属框,PQ 边左侧穿过面积为()0l t -∆v v 的磁通()()0,B x d t l t +-∆v v 移出了金属框,故在t t +∆时刻,通过金属框的磁通为在t ∆时间间隔内,通过金属框的磁通增量为()()()0,,B x t B x d t l t ΦΦΦ'∆=-=⎡-+⎤-∆⎣⎦v v(2)规定框内的感应电动势()t E 沿顺时针方向(沿回路MNPQM 方向)为正,由电磁感应定律,可得t 时刻的感应电动势()t tΦ∆=∆E (3)规定金属框内的感应电流()i t 沿顺时针方向(沿回路MNPQM 方向)为正,可得t 时刻的感应电流为()i t R=E (4)磁场对于上下两边NP 和MQ 的安培力的大小相等,方向相反,二者的合力为零.规定向右的力为正,则磁场作用于金属框MN 边的安培力为()(),i t B x t l ;由于PQ 边和MN 边的电流方向相反,磁场作用于金属框PQ 边的安培力为 ()(),i t B x d t l -+,故金属框的安培力的合力()()()()(),,f t i t B x t l i t B x d t l =-+(5)由(1)、(2)、(3)、(4)、(5)式及题给定的磁场分布规律,得()()(){}2202cos cos B l k f t t kx t kx kd ωωω⎛⎫- ⎪⎝⎭=--⎡--⎤⎣⎦v R(6)利用三角学公式,得()()()220222042sin sin sin 222B l t kx kd kd kd k f t F t kx ωωω⎛⎫- ⎪⎡--⎤⎛⎫⎡⎤⎝⎭==--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦v R (7)0F 称为安培力()f t 的幅度.从(7)式可以看出,安培力()f t 在0F 的幅度内随时间变化,但其值不会小于零,表示磁场作用于金属框的安培力始终向右.2.讨论安培力的大小与线框几何尺寸的关系就是讨论0F 与线框几何尺寸的关系.0F 与金属框长度l 的平方成正比,与金属框的宽度d 有关:当2πkd n =, 即2π0,1,2,n d n k== (8)得00F =(9)当()21πkd n =+,即()21π 0,1,2,n d n k+== (10)0F 达最大值()2200max 4B l k F ω⎛⎫- ⎪⎝⎭=v R(11)当d 取其它值时,0F 介于0与最大值()0max F 之间.评分标准:本题25分. 六、参考解答:1. 圆筒内光学元件的相对位置如图1所示.各元件的作用如下:22 观察屏P :位于L 2焦平面上,光源的谱线即在此屏上.透镜L 3:与P 的距离≤f 3,是人眼观察光谱线所用的放大镜(目镜).2.已知钠黄光的谱线位于P 的中央,S 的像位于L 2 的焦点上,由此可知,对分光棱镜系统来说,钠黄光的入射光束和出射光束都与轴平行,由于棱镜系统是左右对称,因此钠黄光在棱镜内的光路应该是左右对称的,在中间棱镜中的光路应该与轴平行,分光元件中的光路图如图2所示,左半部的光路如图3.用i 1、r 1、i 2、r 2分别表示两次折射时的入射角和折射角,用n 1、n 2分别表示两块棱镜对D 线的折射率,由图3可以看出,在两棱镜界面上发生折射时,22i r >,表明21n n >,即中间的棱镜应用折射率较大的火石玻璃制成,两侧棱镜用冕牌玻璃制成,故有D n n =1D n n '=2由几何关系可得122i r α==(1)12r i α+=(2) 由折射定律可得111sin sin i n r =(3)1222sin sin n i n r =(4)从以上各式中消去1i 、2i 、1r 和2r 得22212sin 2n n α⎛⎫-= ⎪⎝⎭(5)解(5)式得图2图3图1()()221222124142sin n n n n -+-=⎪⎭⎫⎝⎛α (6)以5170.11=n ,7200.12=n 代入,得123.6α= (7)评分标准:本题23分. 七、参考解答:带电粒子在静电场内从S 到T 的运动过程中,经历了从S 到N 和从N 到T 的两次加速,粒子带的电荷量q 的大小均为191.6010C -⨯,若以U 表示N 与地之间的电压,则粒子从电场获得的能量2E qU ∆=(1)质子到达T 处时的质量m =(2)式中v 为质子到达T 时的速度.质子在S 处的能量为20m c ,到达T 处时具有的能量为2mc ,电子的质量与质子的质量相比可忽略不计,根据能量守恒有220mc E m c =∆+(3)由(1)、(2)、(3)式得代入数据解得74.3410m/s =⨯v(4)评分标准:本题16分.。

第19届全国中学生物理竞赛复赛试题与解答

第19届全国中学生物理竞赛复赛试题与解答

第十九届全国中学生物理竞赛复赛试卷地、市题号-一- -二二三四五六七总计学校姓名一、(20分)某甲设计了一个如图复19-1所示的“自动喷泉”装置,其中A、B、C为三个容器,D、E、F为三根细管。

管栓K 是关闭的。

A、B、C及细管均盛有水,容器水面的高度差分别为h i和h2,如图所示。

A、B、C的截面半径为12cm ,D的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K,会有水从细管口喷出。

”乙认为不可能。

理由是:“低处的水自动走向高处,能量从哪儿来?”甲当即拧开K,果然见到有水喷出,乙哑口无言,但不能明白自己的错误何在。

甲又进一步演示。

在拧开管栓K前,先将喷管D的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度。

1 •论拧开K后水柱上升的原因。

2•当D管上端足够长时,求拧开K后D中静止水面与A中水面的高度差。

3 •论证水柱上升所需的能量来源。

性别现读年级准考证号全卷共七题,总分为140分。

二、(18分)在图复19-2中,半径为R的圆柱形区域内有匀强磁场,磁场方向垂直图面指向纸外,磁感强随时间均匀变化,变化率△ B/ △ t = K (K为一正值常数)。

圆柱形区域外空间中没有磁场。

沿图中AC弦的方向画一直线,并向外延长,弦AC与半径OA的夹角a = n /4。

直线上有一任意点,设该点与A点的距离为x,求从A沿直线到该点的电动势大小。

三、(18分)如图复19-3所示,在水平光滑的绝缘桌面上,有三个带正电的质点1、2、3 ,位于边长为L的等边三角形的三个顶点处,C为三角形的中心。

三个质点的质量皆为m,带电量皆为q。

质点1、3之间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。

已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C处时,其速度为多少?1卜1LJC •\>31L2图复19-3得分四、(18分)有人设计了下述装置用以测量线圈的自感系数。

第28届全国中学生物理竞赛复赛试卷(含答案)

第28届全国中学生物理竞赛复赛试卷(含答案)

第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。

已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。

二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。

1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。

2、若μA =1.00,μC =0.866,θ=60.0°。

求系统平衡时α的取值范围(用数值计算求出)。

三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。

一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。

第37届全国部分地区大学生物理竞赛

第37届全国部分地区大学生物理竞赛

第37届全国部分地区大学生物理竞赛这份报告将介绍《第37届全国部分地区大学生物理竞赛》的详细内容。

比赛将于[日期]在[地点]进行。

此次竞赛将有来自各地区高校的优秀大学生参加。

竞赛包括理论考试和实践考试两部分。

其中理论考试将涵盖物理学的不同领域,包括力学、电磁学、光学等。

实践考试将对学生应用物理知识解决实际问题的能力进行考察。

比赛将分为多个阶段,包括初赛、复赛和决赛。

初赛将筛选出表现优秀的参赛者晋级至复赛,而复赛将再次选拔出最终的决赛选手。

竞赛将设立一、二、三等奖以及优胜奖,以表彰表现出色的参赛者。

通过举办这一竞赛活动,旨在激发大学生对物理学的兴趣与热爱,推动物理学科的发展,并培养更多具有物理素养的优秀人才。

第37届全国部分地区大学生物理竞赛》将为全国高校的物理研究者提供一个展示自己才能的平台,并促进交流与竞争。

欢迎大家积极参与!这篇文章将为大家介绍第37届全国部分地区大学生物理竞赛的背景、目的和重要性。

我们将讨论该竞赛的历史以及对参与学生的学术发展和技能培养的积极影响。

物理竞赛作为一种学术竞赛活动,旨在促进学生对物理学科的研究和兴趣。

该竞赛为大学生提供了一个展示他们物理知识和解决问题能力的平台。

同时,该竞赛还为学生们提供了锻炼团队合作能力、创新思维和实践技能的机会。

过去的历史显示,全国部分地区大学生物理竞赛一直受到广泛关注和参与。

众多高水平的学生通过参与竞赛,不仅加深了对物理学科的理解,同时还培养了他们解决实际问题的能力。

这样的竞赛对于学生们在学术上的发展和技能的培养起到了积极的推动作用。

在接下来的内容中,我们将进一步探讨第37届全国部分地区大学生物理竞赛的详情,包括竞赛的时间、地点以及竞赛的具体规则和要求。

希望通过本文的介绍,能够激发更多学生的兴趣,参与到这一有意义的学术竞赛中来。

为了保证文章的简洁和清晰,接下来将详细展开我们的内容。

该竞赛的组织方式包括以下内容:报名流程参赛学校需要按照指定的时间和途径进行报名。

第37届全国中学生物理竞赛复赛试题解析,附试卷及答案

第37届全国中学生物理竞赛复赛试题解析,附试卷及答案

总评这套题作为复赛题的难度还是比较大的。

从这套题我们大概可以看出来,计算量增大、基础知识向大学普通物理靠拢(甚至直接用普通物理作为最底层的基础)、微积分作为最基本的数学工具、题目模型直接采用现实科研前沿模型已经成为物理竞赛的趋势。

这一套题从题型、模型新颖程度、计算量和阅读分析能力上来看逐渐向国际比赛的风格靠拢,是一套非常优秀的考题(虽然对于基础不扎实的考生来说并不友好)。

第一题热学题,采用了现实生活中的装置作为模型,比较考验抽象出模型的能力。

该题计算量较大,加上需要自己理解模型,对于未经过此类建模计算题目训练的同学难度较大。

较有区分度。

第二题这套卷子为数不多的较为常规的题目。

第一问考察刚体的动力学,第二题运动学分析。

考查基础知识,对刚体力学基础扎实的同学来说应该不难。

但要注意计算的仔细程度,第二问的运动学量矢量运算稍显复杂。

第三题考察交流电路系统。

需要对交流电路的微分方程有一个扎实的基础知识。

虽然这道题给出了解的形式降低了一部分难度,但是具体的计算量还是较大的。

对于理解谐振系统的解的物理意义的要求也很高。

同时交流电也是一个冷门考点,如果考生在备赛的时候忽略了这一部分知识的复习,那么这道题拿到高分的希望渺茫。

第四题基础的高能粒子物理题目。

回旋加速器应该是很常见的模型,具体原理应该要求考生掌握。

这套卷子中的常规送分题目,要把握好。

第五题相对论题目,内容比较基础,但涉及到繁杂的参照系变换。

对于在平时学习中弄不清参照系变换的考生有极大的考验。

并且由于过程繁杂,这道题对考生的细心程度和阅读理解能力造成了了不小的考验。

第六题光学题,并且和相对论结合。

这道题的模型和科研前沿结合较为紧密,并考察了光在介质中的传播的相对论变换。

计算量相对不大,但对于平时只练习常规题目的考生来说是个很大的挑战。

第七题引力波。

这直接用了近年来的科研最前沿的模型。

但冷静分析后在这道题里面引力波只是一个“能量损失的原因”,并不需要分析引力波的具体物理机制。

33届物理竞赛复赛试题

33届物理竞赛复赛试题

33届物理竞赛复赛试题全文共四篇示例,供读者参考第一篇示例:第33届物理竞赛复赛试题将会考察参赛者在物理知识和解题能力方面的实力。

本次考试难度适中,题目设计涵盖了力学、热学、光学、电磁学等各个领域的知识点。

以下是本次复赛试题的部分内容,希望可以帮助参赛者更好地备战。

一、力学部分1. 一辆质量为m的汽车以速度v行驶在水平路面上,其动能为多少?2. 一个质量为m的物体从高为h的斜面上滑下,当物体到达底部时,其速度为多少?3. 一个质点做直线运动,位置随时间t的变化满足公式x(t)=At^2+Bt+C,求该质点的加速度a(t)是多少?1. 一个理想气体的内能与温度之间的关系满足U = 3/2nRT,求该气体的热容比Cv / Cp是多少?2. 一个装满理想气体的容器,容器与外界热源完全绝缘,气体的体积变小了一半,气体的内能变化了多少?1. 一束光射入玻璃介质,入射角为30度,折射角为20度,求玻璃的折射率是多少?2. 一块凸透镜的焦距为10cm,物体放在焦距的前方10cm处,求成像的位置是多少?1. 一根长为L的直导线通以电流I,求该导线周围的磁感应强度是多少?2. 一个电容器的电容为C,电压为V,求电容器中储存的电荷量是多少?以上仅为部分试题内容,参赛者在考试时需要结合物理知识和解题技巧进行答题。

希望所有参赛者都能在本次竞赛中取得优异的成绩,加油!第二篇示例:第33届物理竞赛复赛试题欢迎参加第33届物理竞赛复赛!本次试题共分为三部分,包括选择题、填空题和解答题。

希望各位选手发扬科学精神,全力以赴,展现自己的物理才能。

祝你们取得优异的成绩!选择题:1. 下列哪个物理现象不是经典力学能够解释的?A. 光的干涉与衍射B. 行星的运动C. 惯性力的作用D. 弹性碰撞答案:A. 光的干涉与衍射2. 在真空中,光速的数值大小为多少?A. 300,000米/秒B. 200,000米/秒C. 400,000米/秒D. 500,000米/秒答案:A. 300,000米/秒3. 一个物体的质量是10kg,如果它处于地球表面,那么它的重力大小为多少?A. 98NB. 100NC. 105ND. 110N答案:A. 98N填空题:4. 一个在真空中的光波的波长为500nm,求它的频率。

21---30届全国物理竞赛力学部分复赛试题

21---30届全国物理竞赛力学部分复赛试题

(第20届全国中学生物理竞赛复赛题)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M=20m,地球半径0R =6400 km.假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.(第20届全国中学生物理竞赛复赛题)有一半径为R的圆柱A,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A相同,半径为r的较细圆柱B,用手扶着圆柱A,将B 放在A的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B与墙面间的静摩擦系数和圆柱B的半径r的值各应满足什么条件?(第20届全国中学生物理竞赛复赛题)如图所示,将一铁饼状小物块在离地面高为h 处沿水平方向以初速v 抛出.己知物块碰地弹起时沿竖直方向的分速度的大小与碰前沿竖直方向的分速度的大小之比为e (<1).又知沿水平方向物块与地面之间的滑动摩擦系数为μ(≠0):每次碰撞过程的时间都非常短,而且都是“饼面”着地.求物块沿水平方向运动的最远距离.(第21届全国中学生物理竞赛复赛题)二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示)(第21届全国中学生物理竞赛复赛题)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上(图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的夹角为 ,< /2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.(第22届全国中学生物理竞赛复赛题)图中的AOB 是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R 的1/4圆周连接而成,它们的圆心1O 、2O 与两圆弧的连接点O 在同一竖直线上.B O 2沿水池的水面.一小滑块可由弧AO 的任意点从静止开始下滑. 1.若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时应在圆弧AO 上的何处?(用该处到1O 的连线与竖直线的夹角表示).2.凡能在O 点脱离滑道的小滑块,其落水点到2O 的距离如何?O 1O 2O ABABCπ-αDE(第22届全国中学生物理竞赛复赛题) 如图所示,在一个劲度系数为 k 的轻质弹簧两端分别拴着一个质量为 m 的小球A 和质量为 2m 的小球B .A 用细线拴住悬挂起来,系统处于静止状态,此时弹簧长度为l .现将细线烧断,并以此时为计时零点,取一相对地面静止的、竖直向下为正方向的坐标轴Ox ,原点O 与此时A 球的位置重合如图.试求任意时刻两球的坐标.(第23届全国中学生物理竞赛复赛题)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。

2023年全国中学生物理竞赛复赛试题参考解答

2023年全国中学生物理竞赛复赛试题参考解答

全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。

所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。

以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。

同理可求得 max 62l R =(5)评分标准: 本题15分。

式(1)、(2)各4分, 式(4)2分, 式(5)5分。

二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。

设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。

物理竞赛1-35届真题分类02力学(无答案)

物理竞赛1-35届真题分类02力学(无答案)

真题分类--力学(17初赛)二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。

一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。

将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。

物块在桌面上运动时,绳将缠绕在立柱上。

已知当绳的张力为0 2.0NT =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .(15届复赛)二、(25分)如图2所示,有两条位于同一坚直平面内的水平轨道,相距为h 。

轨道上有两个物体A 和B ,它们通过一根绕过定滑轮O 的不可伸长的轻绳相连接。

物体A 在下面的轨道上以匀速率v 运动。

在轨道间的绳子与轨道成300角的瞬间,绳子BO 段的中点处有一与绳相对静止的小水滴P 与绳子分离,设绳长BO 远大于滑轮直径,求:1、小水滴P 脱离绳子时速度的大小和方向。

2、小水滴P 离开绳子落到下面轨道所需要的时间。

(18届复赛)六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分1G 的质量为1m ,下部分2G 的质量为2m ,弹簧夹在1G 与2G 之间,与二者接触而不固连.让1G 、2G 压紧弹簧,并将它们锁定,此时弹簧的弹性势能为己知的定值0E .通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这—释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分1G 升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h 的时刻解除锁定.1.在第一种方案中,玩具的上部分1G 升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化来的?2.在第二种方案中,玩具的上部分1G 升空可能达到的最大高度(亦从井口算起)为多少?并定量地讨论其能量可能是从何种形式的能量转化来的.(19届复赛)七、(26分)一根不可伸长的细轻绳,穿上一粒质量为m 的珠子(视为质点),绳的下端固定在A 点,上端系在轻质小环上,小环可沿固定的水平细杆滑动(小环的质量及与细杆摩擦皆可忽略不计)。

近几全国物理竞赛复赛力学

近几全国物理竞赛复赛力学
(1)
(2)
以及对A点的力矩

(3)
式中 待求. 是过 的竖直线与过 的水平线的交点, 为 与 的交点.由几何关系有
(4)
取杆CD为研究对象,由平衡条件有
(5)
(6)
以及对 点的力矩
(7)
解以上各式可得
(8)
(9)
(10)
(11)
(12)
(13)
CD杆平衡的必要条件为
(14)
由(12)、(13)、(14)式得
3.解法一
取直角坐标系Oxy,原点O位于椭圆的中心,则哈雷彗星的椭圆轨道方程为
(1)
a、b分别为椭圆的半长轴和半短轴,太阳S位于椭圆的一个焦点处,如图1所示.
以 表示地球绕太阳运动的周期,则 ;以 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则 ,根据开普勒第三定律,有
(2)
设c为椭圆中心到焦点的距离,由几何关系得
4、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆AB和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l.
(1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(3)
(4)
由图1可知,P点的坐标
(5)
(6)
把(5)、(6)式代入(1)式化简得
(7)
根据求根公式可得
(8)
由(2)、(3)、(4)、(8)各式并代入有关数据得
(9)
可以证明,彗星绕太阳作椭圆运动的机械能为
(10)
式中m为彗星的质量.以 表示彗星在P点时速度的大小,根据机械能守恒定律有

2021年第38届全国中学生物理竞赛复赛试题

2021年第38届全国中学生物理竞赛复赛试题

2021年第38届全国中学生物理竞赛复赛试题学校:___________姓名:___________班级:___________考号:___________一、解答题1.(1)一宽束平行光正入射到折射率为n的平凸透镜左侧平面上,会聚于透镜主轴上的点F,系统过主轴的截面如图所示。

已知凸透镜顶点O到F点的距离为0r。

试在极坐3.如图,一个半径为r 的均质超球向上、下两个固定的平行硬板之间发射,与两板接连碰撞3次后,几乎返回原处;取x 轴水平向右,y 轴竖直向下,z 轴正向按右手螺旋确定。

开始时球心速度的水平分量为0x v ,z 方向的分量为0,球绕过球心的轴(平行于z 轴)的角速度大小为()000/z z x v r ωω<。

不考虑重力。

(1)求超球与板碰撞第1次后球心速度的水平分量1x v 和球转动的角速度1z ω; (2)求超球与板碰撞第2次后球心速度的水平分量2x v 和球转动的角速度2z ω; (3)求超球与板碰撞第3次后球心速度的水平分量3x v 和球转动的角速度3z ω。

提示:已知一质量为m 、半径为r 的均质球体绕过球心的轴的转动惯量为22/5J mr =;超球是一种硬质橡皮球体,它在硬板面上的反跳可视为是完全弹性的,换言之,在接触点无滑动,它在接触点受到静摩擦力与正压力时产生的切向形变和法向形变可视为是弹性的,为简化起见,假设这两种形变是彼此无关的(因而相应的弹力各自均为保守力)。

4.一枚不的永磁针可视为一个半径很小的电流环,其磁矩μ的大小为IS μ=(I 为固有不变的环电流强度,2S R π=,R 为电流环的半径),方向与电流环所在的平面垂直,且与电流方向成右手螺旋关系,如图所示。

两枚小磁针A 和B 的磁矩大小保持不变均为μ,质量均为m 。

取竖直向下的方向为z 轴正方向建立坐标系。

将A 固定在坐标系的原点O 上,其磁矩方向沿x 轴正方向;将B 置于A 的正下方。

已知真空的磁导率为0μ,重力加速度大小为g 。

第31届全国中学生物理竞赛复赛试题及答案

第31届全国中学生物理竞赛复赛试题及答案

第31届全国中学生物理竞赛复赛试题及答案31届全国中学生物理竞赛复赛理论考试试题解答一、(12分)题目一:球形液滴的振动频率假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。

根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。

力学的基本物理量包括质量m、长度l和时间t,分别对应的单位是千克(kg)、米(m)和秒(s)。

根据单位等式,[f]=[t]^-1,[r]=[l],[ρ]=[m][l]^-3,[σ]=[m][t]^-2.将这些单位代入单位等式,得到[t]^-1=[l]^-3[m]^[ρ][t]^-2[σ],即[t]^-1=[l]^[ρ][m]^[σ][t]^-2.由此可以得到三个未知量的关系式:α-3β=0,β+γ=0,2γ=1.解得α=-1,β=-1,γ=1/2.解法二:假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。

根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。

在国际单位制中,振动频率的单位是赫兹(Hz),半径r的单位是米(m),密度ρ的单位是千克每立方米(kg/m^3),表面张力系数σ的单位是牛每米(N/m)=千克每秒平方(m/s^2)。

根据单位等式,[f]=s^-1,[r]=m,[ρ]=kg/m^3,[σ]=kg/s^-2.将这些单位代入单位等式,得到[s]^-1=[m][ρ][σ],即[s]^-1=[m][kg/m^3][kg/s^-2]。

将这个式子代入f=kρσr,得到k=f/ρσr。

1.(V。

T)。

(p。

V。

T)和(pf。

V。

T)分别表示气体在初态、中间态和末态的压强、体积和温度。

留在瓶内的气体先后满足绝热方程和等容过程方程:p1 * V1^γ = p2 * V2^γ (绝热方程)V1 = V2 * (p1/p2) (等容过程方程)联立以上两式可得:p1/T1 = p2/T2 = pf/Tf由此得到以下式子:p1/pf = (p1/pf)^(1/γ)ln(p1/pf) = ln(p1) - ln(pf) = (1/γ) * ln(p1/pf)pf = p1 / (e^(γ * ln(p1/pf)))2.根据力学平衡条件,有:pi = p + ρghipf = p + ρghf其中,p是瓶外大气压强,ρ是U型管中液体的密度,g 是重力加速度大小。

2024年9月第41届全国中学生物理竞赛复赛试题参考解答

2024年9月第41届全国中学生物理竞赛复赛试题参考解答

第41届全国中学生物理竞赛复赛试题参考解答(2024年9月21日9:00-12:00)一、(45分) (1)(1.1)记质量为M 的振子偏离平衡位置的位移为x (向左为正),单摆的偏转角为θ(向左为正),摆臂上的张力为T ,按牛顿第二定律,摆锤在水平方向上的运动方程为m ẍ+lθcos θ−lθ sin θ =−T sin θ ①在竖直方向上的运动方程为m −l sin θθ−lθ cos θ =m g −T cos θ ② 利用小幅度振动条件,保留到小量θ的领头阶,有sin cos 1 , ③将③式代入①②式,并保留到小量θ的领头阶,得T mg ④ ẍ+lθ+g θ=0⑤【注: 利用悬点不动的非惯性系也可更方便地得到上述结果。

在悬点不动的非惯性系中,摆锤额外受到横向的惯性力−mẍ,有角向运动方程mlθ=−m g sin θ−mẍcosθ ①′ 同时也有径向运动方程2θcosθsin ml mx g T m ②′进一步利用小摆幅条件,保留到小量θ的领头阶,即得⑤④式。

】质量为M 的振子在水平方向上做一维运动, 由牛顿第二定律得Mẍ=−kx +T sin θ+H cos ωt ⑥由③④⑥式得Mẍ+kx −m g θ=H cos ωt ⑦只考虑系统在强迫力下的稳定振动,稳定振动的圆频率为ω,设cos(x x A t ) ⑧ cos()l B t ⑨其中φ 、φ 是稳定振动与所受强迫力之间的位相差。

将⑧⑨式代入方程⑤⑦后,所得出的两个方程对任意时间 t 均成立,故有00x ,⑩进而有22M m k A m B H⑪ 22200A B⑫由⑪⑫式得2202222200()()()HA k M m⑬222222222000()()H B A k M m⑭其中(1.2)由⑬式可知,当没有阻尼器时(这时0m ),有2HA k M ⑮即当风的频率为⑯时,大楼受迫振动幅度最大。

当风的频率取⑮式所示的值、但有阻尼器时,由⑬式得k g H H kl Mg M l A g k gkm m l M⑰为了调节阻尼器的参数m 、l 使得A 最小,可取Mgl k, ⑱或m 尽可能大。

第39届全国中学生物理竞赛复赛试题及答案

第39届全国中学生物理竞赛复赛试题及答案

第39届全国中学生物理竞赛复赛试题(2022年9月17日上午9:00-12:00)考生必读1、考生考试前请务必认真阅读本须知。

2、本试题共7道题,4页,总分为320分。

3、如遇试题印刷不清楚情况,请务必向监考老师提出。

4、需要阅卷老师评阅的内容一定要写在答题纸上;写在试题纸和草稿纸上的解答一律不能得分。

一、(40分)迈克尔逊干涉仪是光学干涉仪中最常见的一种,发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊。

最初设计迈克尔逊干涉仪的目的是为测量“以太”(假想的传播光的媒质)的漂移速度,目前它广泛应用于精密测量。

迈克尔逊干涉仪的光路图如图1a所示:图1a图1b照明光为单色激光,入射光经过半反半透的镜子分为沿干涉仪的两个臂(反射臂和透射臂)传播的两束光。

半反半透镜与入射光轴方向之间的夹角为45°,反射臂和透射臂相互垂直。

在两个臂端上各放置与相应的臂垂直的反射镜,反射镜可以沿臂的方向移动。

反射和透射光线经反射镜反射,再次经过半反半透镜透射和反射,两束光在空间重叠,发生干涉。

如果照明光为发散光源,我们观察到的干涉条纹为同心圆环。

半反半透镜是在一个平整的石英基板上蒸镀一层薄金属膜制成,迈克尔逊干涉仪中参与叠加的两束光都经过半反半透镜的反射,一束光是在石英和金属界面上的反射,另一束光是在空气和金属界面上的反射。

因为反射界面不同,所以两束光反射时相位突变不同,两者的差异为ϕ∆。

开始时,观察到干涉场中心是亮斑,干涉场最外侧是亮圆环,一共20个∆,下面我们通过实验测量ϕ亮条纹(计及中心亮斑)。

现在缓慢调节一个臂的反射镜,让反射镜沿臂的方向平移,观察到干涉条纹发生明暗变化,并发现同心圆环条纹越来越稀疏。

干涉场中心明暗变化了23个周期,干涉场最外侧的明暗变化了20个周期。

(本题中,条纹数目均视为精确计数值,干涉仪两臂的长度在cm量级。

)(1)求相位突变差异ϕ∆。

(2)反射镜移动后,可以观察到多少个干涉亮条纹(计及中心亮斑)?(3)使用此干涉仪测量某一透明液体的折射率,将扁平的石英空槽插入迈克尔逊干涉仪的一个臂,使得石英槽的θ=︒;在角度改变过程中,干涉场中心明暗表面与臂的方向垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近几年全国物理竞赛复赛力学1.(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . (30届复赛)2.如图所示,两根刚性轻杆AB 和BC 在B 段牢固粘接在一起,AB 延长线与BC 的夹角α为锐角,杆BC 长为l ,杆AB 长为αcos l 。

在杆的A 、B 和C 三点各固连一质量均为m 的小球,构成一刚性系统。

整个系统放在光滑水平桌面上,桌面上有一固定的光滑竖直挡板,杆AB 延长线与挡板垂直。

现使该系统以大小为0v 、方向沿AB 的速度向挡板平动。

在某时刻,小球C 与挡板碰撞,碰撞结束时球C 在垂直于挡板方向的分速度为零,且球C 与挡板不粘连。

若使球C 碰撞后,球B 先于球A 与挡板相碰,求夹角α应满足的条件。

(29届复赛)3.(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年。

1986年它过近日点P 0时,与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离。

经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°.已知:1AU=1.50×1011m ,引力常量G =6.67×10-11m 3?kg -1?s -2,太阳质量m S =1.99×1030kg.试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。

(28届复赛)4、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦因数为μA ,B 、D 两点与光滑竖直墙面接触,杆A B 和CD 接触处的静摩擦因数为μC ,两杆的质量均为m ,长度均为l .(1)已知系统平衡时AB 杆与墙面夹角θ,求CD 杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。

(2)若μA =1.00,μC =0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。

(28届复赛)SP 0PθP r P5.(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. (30届复赛) 6.( 22 分)如图,一质量均匀分布的刚性螺旋环质量为m ,半径为 R ,螺距H =πR ,可绕竖直的对称轴OO ′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为 m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,首先扶住小球使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴 O O ′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为 h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小.(27届复赛)3.解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b+= (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4)由图1可知,P 点的坐标θα AB CD SPab O0P xy 图1cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得s 21P P Gm r a=⋅-v (12) 代入有关数据得414.3910m s P -⨯⋅v = (13)设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v (14)其中σ为面积速度,并有πabTσ=(15) 由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)4.二、参考解答:1.建立如图所示坐标系Oxy .两杆图2S Pa bO0P x yϕ??B DC AN 1 N 2E mgmgf 2F Oyf 1N 4N 3 x的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB 的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-=(1) 120N mg -= (2)以及对A 点的力矩 即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-= (3) 式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4)取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-= (5)22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7)解以上各式可得41tan 2N mg α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9) 13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10) 12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得arctan 0.38521.1α︒≤= (18)将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19)因此,α的取值范围为19.521.1α≤≤ (20)5. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得220022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点 0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v , (5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r +∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则 22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为 2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略. [代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ](2.) 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件()220(8)4k r l r l mr-+=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式. 6.解法一一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R 的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有π1tan 2π2R R θ== (1)可得5sin 5θ=,25cos 5θ=(2) 设在所考察的时刻,螺旋环绕其转轴的角速度为ω,则环上每一质量为i m ∆的小质元绕转轴转动线速度的大小都相同,用u 表示,u R ω= (3)该小质元对转轴的角动量 整个螺旋环对转轴的角动量22i i L L m R mR ωω=∆=∆=∑∑ (4)小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成.在螺旋环的角速度为ω时,设小球相对螺旋环的速度为'v ,则小球在水平面内作圆周运动的速度为cos Rθω'=-P v v(5)沿竖直方向的速度sin ⊥'=v v θ(6)对由小球和螺旋环组成的系绕,外力对转轴的力矩为0,系统对转轴的角动量守恒,故有0m R L=-P v(7)由(4)、(5)、(7)三式得'v cos θ-ωωR=R (8)在小球沿螺旋环运动的过程中,系统的机械能守恒,有()222i 1122mgh m m u ⊥=++∆∑P v v(9) 由(3)、(5)、(6)、(9)四式得()2222sin gh =R R θ-ωθω2''++v v 2cos(10)图1h?m u解(8)、(10)二式,并利用(2)式得123ghω=R (11)3'v =10gh(12) 由(6)、(12)以及(2)式得23⊥=v gh(13) 或有2123gh⊥=v(14) (14)式表明,小球在竖直方向的运动是匀加速直线运动,其加速度13⊥=a g(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则有 212⊥h =a t (16) 由(11)和(16)式得3=ωgtR(17) (17)式表明,螺旋环的运动是匀加速转动,其角加速度3=βg R(18)小球对螺旋环的作用力有:小球对螺旋环的正压力1N ,在图1所示的薄片平心力2N '面内,方向垂直于薄片的斜边;螺旋环迫使小球在水平面内作圆周运动的向的反作用力2N .向心力2N '在水平面内,方向指向转轴C ,如图2所示.1N 、2N 两力中只有1N 对螺旋环的转轴有力矩,由角动量定理有1sin ∆=∆N R t Lθ(19)由(4)、(18)式并注意到∆=∆ωβt得 153sin 3mg N mg θ==(20)而C Rm2N '图2222N N m R'==Pv(21)由以上有关各式得223=hN mgR(22) 小球对螺旋环的作用力2221221453h N N N mg R=+=+(23)解法二一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R 的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有π1tan 2π2R R θ== (1)可得5sin 5θ=,25cos 5θ= (2) 螺旋环绕其对称轴无摩擦地转动时,环上每点线速度的大小等于直角三角形薄片在光滑水平地面上向左移动的速度.小球沿螺旋环的运动可视为在竖直方向的直线运动和在水平面内的圆周运动的合成.在考察圆周运动的速率时可以把圆周运动看做沿水平方向的直线运动,结果小球的运动等价于小球沿直角三角形斜边的运动.小球自静止开始沿螺旋环运动到在竖直方向离初始位置的距离为h 的位置时,设小球相对薄片斜边的速度为'v ,沿薄片斜边的加速度为'a .薄片相对地面向左移动的速度为u ,向左移动的加速度为0a .u 就是螺旋环上每一质元绕转轴转动的线速度,若此时螺旋环转动的角速度为ω,则有u R ω= (3)而0a 就是螺旋环上每一质元绕转轴转动的切向加速度,若此时螺旋环转动的角加速度为β,则有0=a Rβ(4)竖直小球位于斜面上的受力情况如图2所示:重力mg ,方向向下,斜面的支持力N ,方向与斜面垂直,以薄片为参考系时的惯性力f *,方向水平向右,其大小0*=f ma (5)由牛顿定律有θa 图2mg*f Na '图1h?m ucos sin mg θN f θ*--=0 (6) sin cos *'+=mg f ma θθ (7) 0sin =N ma θ(8)解(5)、(6)、(7)、(8)四式得2sin sin '1+2a =g θθ (9) 2cos =1sin +N mg θθ (10) 02sin cos 1+sin =a g θθθ (11)利用(2)式可得53'a =g(12) 53N =mg (13) 013=a g (14) 由(4)式和(14)式,可得螺旋环的角加速度1=3βgR(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则此时螺旋环的角速度=ωβt (16)因小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成,而小球沿竖直方向的加速度sin ⊥⊥''==a a a θ(17)故有212⊥h =a t (18) 由(15)、(16)、(17)、(18)、以及(2)式得231=ωghR (19)小球在水平面内作圆周运动的向心力由螺旋环提供,向心力位于水平面内,方向指向转轴,故向心力与图2中的纸面垂直,亦即与N 垂直.向心力的大小21N m R =Pv (20) 式中v 是小球相对地面的速度在水平面内的分量.若a 为小球相对地面的加速度在水平面内的分量,则有 a t =P P v (21)令a '为a '在水平面内的分量,有00cos a a a a a θ''=-=P P -(22) 由以上有关各式得123=hN mg R(23) 小球作用于螺旋环的力的大小2201N N N =+(24) 由(13)、(23)和(24)式得202453mg h N R =+ (25)。

相关文档
最新文档