★试卷3套精选★新疆名校2018年中考数学第一次阶段模拟试题

合集下载

2018届新疆乌鲁木齐市天山区中考数学一模试卷(有答案)最新精选

2018届新疆乌鲁木齐市天山区中考数学一模试卷(有答案)最新精选

2018届新疆乌鲁木齐市天山区中考一模试卷数 学一、选择题(本大题共10小题,每小题4分,共40分,每题的选项中只有一项符合题目要求,请选出正确答案,将其字母在答卷相应位置涂黑.) 1.计算(﹣2)﹣(﹣2)的结果等于( ) A .﹣4B .0C .4D .1【分析】原式利用减法法则变形,计算即可求出值. 【解答】解:原式=﹣2+2=0, 故选:B .【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键. 2.下列图形中,不是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解. 【解答】解:A 、不是轴对称图形,故本选项正确; B 、是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项错误; D 、是轴对称图形,故本选项错误. 故选:A .【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列运算正确的是( ) A .a 3+a 4=a 7B .a 3÷a 4=aC .2a 3•a 4=2a 7D .(2a 4)3=8a 7【分析】直接利用合并同类项法则以及单项式乘以单项式、积的乘方运算法则分别计算得出答案.【解答】解:A 、a 3+a 4,无法计算,故此选项错误; B 、a 3÷a 4=a ﹣1,故此选项错误; C 、2a 3•a 4=2a 7,正确;D 、(2a 4)3=8a 12,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以单项式、积的乘方运算,正确掌握相关运算法则是解题关键.4.如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.【解答】解:∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°.∴∠2=180°﹣50°=130°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.5.洛阳某中学“研究学习小组”的同学们进行了社会实践活动,其中一个小组的同学调查了30户家庭某月的用水量,如表所示:A.25,27B.25,25C.30,27D.30,25【分析】根据中位数和众数的定义进行解答,将这组数据从小到大重新排列,求出最中间两个数的平均数是中位数,众数是一组数据中出现次数最多的数据.【解答】解:∵用水量为30吨的户数有9户,户数最多,∴该月用水量的众数是30;∵共有30个数,∴这30户家庭该月用水量的中位数是第15个和16个数的平均数,∴该月用水量的中位数是(25+25)÷2=25;故选:D.【点评】此题考查了中位数与众数,掌握中位数与众数的定义是解题的关键,众数是一组数据中出现次数最多的数据,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.6.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B. =C.∠ACB=90°D.∠COB=3∠D【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D .【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.8.已知m 、n 是方程x 2+3x ﹣2=0的两个实数根,则m 2+4m+n+2mn 的值为( ) A .1B .3C .﹣5D .﹣9【分析】根据根与系数的关系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m 2+3m=2,将其代入m 2+4m+n+2mn 中即可求出结论.【解答】解:∵m 、n 是方程x 2+3x ﹣2=0的两个实数根, ∴m+n=﹣3,mn=﹣2,m 2+3m=2,∴m 2+4m+n+2mn=m 2+3m+m+n+2mn=2﹣3﹣2×2=﹣5. 故选:C .【点评】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握x 1+x 2=﹣、x 1x 2=是解题的关键.9.如图,在平面直角坐标系xOy 中,直线y=x 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .若点B 的坐标为(2,0),则点C 的坐标为( )A .(﹣1,)B .(﹣2,)C .(﹣,1)D .(﹣,2)【分析】作CH ⊥x 轴于H ,如图,先根据一次函数图象上点的坐标特征确定A (2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CB H=30°,然后在Rt △CBH 中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH ﹣OB=3﹣2=1,于是可写出C 点坐标.【解答】解:作CH ⊥x 轴于H ,如图, ∵点B 的坐标为(2,0),AB ⊥x 轴于点B , ∴A 点横坐标为2,当x=2时,y=x=2,∴A (2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征和含30度的直角三角形三边的关系.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.二、填空题(本大题共5小题,每小题4分,共20分)11.科学家测量到某种细菌的直径为0.00001917mm,将这个数据用科学记数法表示为 1.917×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00001917用科学记数法表示为1.917×10 ﹣5,故答案为:1.917×10 ﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在﹣1,0,,1,,中任取一个数,取到无理数的概率是.【分析】由题意可得共有6种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【解答】解:∵共有6种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是: =.故答案为:.【点评】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.13.已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是8πcm2(结果保留π).【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.14.已知关于x、y的二元一次方程组,则4x2﹣4xy+y2的值为36 .【分析】方程组两方程相加表示出2x﹣y,原式分解后代入即可求出值.【解答】解:,①+②得:2x﹣y=6,则原式=(2x﹣y)2=36,故答案为:36【点评】此题考查了解二元一次方程组,利用了整体思想,熟练掌握公式及法则是解本题的关键.15.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为 2 .【分析】作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,P′A+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.三、解答题(本大题共9小题,共90分.解答时应在每题相应空白位置处写出文字说明、证明过程或演算过程.)16.(8分)计算:(3﹣π)0﹣8sin45°+()﹣1【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:(3﹣π)0﹣8sin45°+()﹣1=1+2﹣8×+2=3﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(8分)先化简,再求值:(1﹣)÷,从﹣1,0,1,2中选择一个适当的数作为x的值代入.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(10分)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.【分析】(1)熟练用尺规作一条线段的垂直平分线;(2)根据所作的是线段的垂直平分线结合平行四边形的性质,根据ASA证明三角形全等.再根据全等三角形的性质进行证明.【解答】解:(1)作图,(2)证明:根据作图知,PQ是AC的垂直平分线,∴AO=CO,且EF⊥AC.∵四边形ABCD是平行四边形∴∠OAE=∠OCF.∴△OAE≌△OCF(ASA).∴AE=CF.【点评】掌握尺规作图的方法,作图中的条件就是第二问中的已知条件,正确进行尺规作图是解题的关键.19.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8﹣a)≥5400,解得a≥2.答:至少销售甲种商品2万件.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.20.(12分)某中学组织学生参加交通安全知识网络测试活动.小王对九年(3)班全体学生的测试成绩进行了统计,并将成绩分为四个等级:优秀、良好、一般、不合格,绘制成如下的统计图(不完整),请你根据图中所给的信息解答下列问题:(1)九年(3)班有50 名学生,并把折线统计图补充完整;(2)已知该市共有12000名中学生参加了这次交通安全知识测试,请你根据该班成绩估计该市在这次测试中成绩为优秀的人数;(3)小王查了该市教育网站发现,全市参加本次测试的学生中,成绩为优秀的有5400人,请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因;(4)该班从成绩前3名(2男1女)的学生中随机抽取2名参加复赛,请用树状图或列表法求出抽到“一男一女”的概率.【分析】(1)根据成绩为良好的人数以及百分比,即可得到九年(3)班的人数,根据成绩为一般的人数为:50﹣15﹣20﹣5=10(人),即可补充折线统计图;(2)利用该市中学生总数乘以成绩为优秀的人数所占的百分比,即可得到结论;(3)根据样本是否具有代表性和广泛性,说明实际优秀人数与估计人数出现较大偏差的原因;(4)根据题意列表,进而求出抽到“一男一女”的概率.【解答】解:(1)20÷40%=50(人);成绩为一般的人数为:50﹣15﹣20﹣5=10(人)折线统计图如图所示:故答案为:50;(2)该市在这次测试中成绩为优秀的人数为:12000×=3600(人),答:估计该市在这次测试中成绩为优秀的人数为3600人;(3)实际优秀人数与估计人数出现较大偏差的原因:小王只抽查了九年(3)班的测试成绩,对于全市来讲不具有代表性,且抽查的样本只有50名学生,对于全市12000名中学生来讲不具有广泛性;(4)列表如下:由上表知:P(一男一女)==.【点评】本题主要考查了折线统计图,扇形统计图以及概率的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.(10分)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.【分析】(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;(3)连接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.【解答】(1)证明:连接CD,∵BC为⊙O的直径,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点.(2)解:DE是⊙O的切线.证明:连接OD,则DO是△ABC的中位线,∴DO∥AC,又∵DE⊥AC,∴DE⊥DO即DE是⊙O的切线;(3)解:∵AC=BC,∴∠B=∠A,∴cosB=cosA=,∵cosB=,BC=18,∴BD=6,∴AD=6,∵cosA=,∴AE=2,在Rt△AED中,DE=.【点评】本题考查了切线的判定与性质,勾股定理,圆周角定理,解直角三角形的运用,关键是作辅助线,将问题转化为直角三角形,等腰三角形解题.22.(10分)某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)【分析】(1)利用锐角三角函数关系得出sin24°=,进而求出即可;(2)利用锐角三角函数关系得出sin12°=,进而求出DE,AE的长,即可得出AD的长.【解答】解:(1)∵∠BAC=24°,CD⊥AB,∴sin24°=,∴CD=ACsin24°=30×0.40=12cm;∴支撑臂CD的长为12cm;(2)过点C作CE⊥AB,于点E,当∠BAC=12°时,∴sin12°==,∴CE=30×0.20=6cm,∵CD=12,∴DE=,∴AE==12cm,∴AD的长为(12+6)cm或(12﹣6)cm.【点评】此题主要考查了解直角三角形的应用,熟练利用三角函数关系是解题关键.23.(10分)如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(1,3).已知点A(3,0),B(0,2),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的解析式;(3)直接写出线段AB扫过的面积.【分析】(1)利用待定系数法即可得出结论;(2)利用平移求出点C坐标,最后利用待定系数法即可得出结论;(3)利用面积之和即可得出结论.【解答】解:(1)将点P(1,3)代入直线y=k1x得,k1=3,将P(1,3)代入双曲线y=得,k2=1×3=3,(2)∵A(3,0),B(0,2),∴AO=3,BO=2,由平移知,A'(4,3),B'(1,5),∵A'C∥y轴交双曲线于点C,∴C点的横坐标为1+3=4,当x=4时,y=,∴C(4,),设直线PC的解析式为y=kx+b,把点P(1,3),C(4,)代入得,,∴;(3)如图,延长A'C交x轴于D,过点B'作B'E⊥y轴于E,∴A'D=3,B'E=1,由平移得,△AOB≌△A'PB',∴线段AB扫过的面积为S▱POBB '+S▱AOPA'=BO×B'E+AO×A'D=2×1+3×3=11.【点评】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,几何图形的面积的求法,求出点C的坐标是解本题的关键.24.(12分)如图,在直角坐标系中,矩形OABC的顶点A、C均在坐标轴上,且OA=4,OC=3,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;动点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC于点P,连接MP.(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);(2)设△OMP的面积为S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.【分析】(1)根据矩形OABC中OA=4,OC=3以及矩形的性质,得出B点坐标,再由PG∥AB,得出△OPG∽△OBA,利用相似三角形对应边成比例得出P点坐标;(2)利用PG以及OM的长表示出△OMP的面积,再根据二次函数的性质求出最大值即可;(3)△OMP是等腰三角形时,分三种情况:①PO=PM;②OP=OM;③OM=PM.画出图形,分别求出即可.【解答】解:(1)∵矩形OABC中,OA=4,OC=3,∴B点坐标为(4,3).如图,延长N P,交OA于点G,则PG∥AB,OG=CN=x.∵PG∥AB,∴△OPG∽△OBA,∴=,即=,解得PG=x,∴点P的坐标为(x, x);(2)∵在△OMP中,OM=4﹣x,OM边上的高为x,∴S=(4﹣x)•x=﹣x2+x,∴S与x之间的函数表达式为S=﹣x2+x(0<x<4).配方,得S=﹣(x﹣2)2+,∴当x=2时,S有最大值,最大值为;(3)存在某一时刻,使△OMP是等腰三角形.理由如下:①如备用图1,若PO=PM,则OG=GM=CN=x,即3x=4,解得:x=,所以M(,0);②如备用图2,若OP=OM,则=OM,即x=4﹣x,解得:x=,所以M(,0);③如备用图3,若OM=PM时,∵PG=x,GM=OM﹣OG=(4﹣x)﹣x=4﹣2x,∴PM2=PG2+GM2=(x)2+(4﹣2x)2,∵OM=4﹣x,∴(4﹣x)2=(x)2+(4﹣2x)2,解得:x=,所以,M(,0).综上所述,M的坐标为(,0)或(,0)或(,0).【点评】此题是四边形综合题,主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积,二次函数的性质,等腰三角形的性质,锐角三角函数,勾股定理等知识,综合性较强,难度适中.利用数形结合、分类讨论以及方程思想是解题的关键.。

【初三英语试题精选】2018中考数学第一次模拟考试题(x疆乌鲁木齐市附答案)

【初三英语试题精选】2018中考数学第一次模拟考试题(x疆乌鲁木齐市附答案)

2018中考数学第一次模拟考试题(x疆乌鲁木齐市附答案) 40)+3500,即y=100x-500.当x≥40时,y与x之间的关系式是y=100x-500.-------------
(2)当y≥4000时,y与x之间的关系式是y=100x-500.解100x -500≥4000,得x≥45.应从第45天开始进行人工灌溉. -----------
22.解(1)500 12 32(3分)
(2)对“社会主义核心价值观”达到“A非常了解”的人数为32%×500=160(人),补全条形统计图如下.
(3)100000×32%=3----------
(2)①∵点B为抛物线的顶点,∴B(1,8),∴BD=8,OD=1,CD=4,
又∵PM⊥BD,BD⊥AC,∴PM∥AC,∴Rt△BPM∽Rt△BDC,
∴ ,即,∴MP= ,∵四边形PMED为矩形,∴ED=MP= ,
∴OE=1+ ,即点E的横坐标为1+ ,∴点N的横坐标为1+ ,
若点N落在抛物线上,则点N的纵坐标为,
∴NE= = ,
∵BP= ,PD=ME,∴ME=8-,∴NM=NE-ME= -(8- )= ,
又∵四边形PMNQ是正方形,∴MP=NM,∴ = ,即 =0, =4,
∴当 =4时,点N落在抛物线上. -------------
②如图,连结QE,∵QR∥EC,若四边形ECRQ为平行四边形,只需RQ=CE,
∵Rt△BQR∽Rt△BDC, ∴ ,∵BQ=BP-QP=BP-MP=t-
∴ ,∴QR= ,
而CE=5-(1+ )=4-,∴ =4-,∴ = ,
∴当 = 时,四边形ECRQ为平行四边形.-----------。

(完整word版)2018年新疆数学中考试卷

(完整word版)2018年新疆数学中考试卷

新疆维吾尔自治区、新疆生产建设兵团 2018年中考数学试题一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中, 只有一项符合题目要求)丄1. ( 5分)「的相反数是( )A .- 2B . 2C .- 2D . 0.52. ( 5分)某市有一天的最高气温为 2 °C,最低气温为-8 °C,则这天的最高气温 比最低气温高( )A . 10CB . 6C C .- 6CD . - 10C3. ( 5分)如图是由三个相同的小正方体组成的几何体,贝U 该几何体的左视图是4. ( 5分)下列计算正确的是( )A. a2?a3=a6B .( a+b )(a -2b ) =a2- 2b2 (ab3) 2=a2b6 D . 5a- 2a=3(5分)如图,AB // CD ,点 E 在线段 BC 上, CD=CE .若/ ABC=30,则/ D6.( 5分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的 统计结果如下表: 班级 参加人数 平均数 中位数 方差 甲 55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:(1) 甲、乙两班学生的成绩平均成绩相同;(2) 乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字》 150个为优秀); /~7\7丿 7 上直]B . C. C . 60°D . 30° ( ) C . 5. 75°(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A •①②B •②③C •①③D •①②③7.(5分)如图,矩形纸片ABCD中,AB=6cm , BC=8cm.现将其沿AE对折, 使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为C . 3cmD . 2cm8.( 5分)某文具店一本练习本和一支水笔的单价合计为 3元,小妮在该店买了20本练习本和10支水笔,共花了 36元.如果设练习本每本为 x 元,水笔每支为y 元,那么根据题意,A . F 列方程组中,正确的是(『K +y=3B . ":. 'U0x+20y=36 9.( 5分)如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点 M ,N 分别是AB ,BC 边上的中点,贝U MP+PN 的最小值是( )二、填空题(本大题共6小题,每小题5分,共30分)10. (5分)点(-1, 2)所在的象限是第 象限.11. ( 5分)如果代数式:・有意义,那么实数x 的取值范围是12. (5分)如图,△ ABC 是。

2018中考数学第一次模拟考试题x疆乌鲁木齐市附答案

2018中考数学第一次模拟考试题x疆乌鲁木齐市附答案


?
22
L(10

)













































A.





a
B.



a
C.




^三


















宀 完





-
「⑴











m
n
(2
)







7
(3
0







100
000



2018〕
中考数学第一
亠次
模扌
以考试题(
〕x疆
雷乌
鲁木齐市附
匸答案)
201
7-2(
)18学年第二
丄纟=一-一学期L

[试卷合集3套]新疆名校2018届中考数学毕业生学业模拟试题

[试卷合集3套]新疆名校2018届中考数学毕业生学业模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°【答案】A 【解析】如图,过点C 作CD ∥a ,再由平行线的性质即可得出结论.【详解】如图,过点C 作CD ∥a ,则∠1=∠ACD ,∵a ∥b ,∴CD ∥b ,∴∠2=∠DCB ,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A .【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键. 2.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .6±B .6C .2或3D 23【答案】A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=26±故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键. 3.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13【答案】D【解析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD中求tanB .【详解】过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt △BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【解析】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C .考点:勾股定理的证明.5.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°【答案】B 【解析】在等腰三角形△ABE 中,求出∠A 的度数即可解决问题.【详解】解:在正五边形ABCDE 中,∠A=15×(5-2)×180=108°又知△ABE 是等腰三角形,∴AB=AE ,∴∠ABE=12(180°-108°)=36°. 故选B .【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.6.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴 【答案】C【解析】根据顶点式y=a (x-h )2+k 的对称轴是直线x=h ,找出h 即可得出答案.【详解】解:二次函数y=x 2的对称轴为y 轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a (x-h )2+k 的对称轴是直线x=h ,顶点坐标为(h ,k ). 7.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .【答案】D 【解析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是.故选D .8.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 【答案】B【解析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.9.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A 3B .2C .23D .(123+ 【答案】C 【解析】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由垂径定理得到C 为AB 的中点,再由折叠得到CD=OC ,求出OC 的长,在直角三角形AOC 中,利用勾股定理求出AC 的长,即可确定出AB 的长.【详解】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=3cm,则AB=2AC=23cm.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.10.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.二、填空题(本题包括8个小题)11.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.【答案】7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC .∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC .又∵∠B=∠C=60°,∴△ABD ∽△DCE . ∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=.12.比较大小:417(填入“>”或“<”号) 【答案】>【解析】试题解析:∵16<17 ∴4<17.考点:实数的大小比较.【详解】请在此输入详解!13.如图,点A 是双曲线y =﹣9x在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB =120°,点C 在第一象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =k x上运动,则k 的值为_____.【答案】1【解析】根据题意得出△AOD ∽△OCE ,进而得出AD OD OA EO CE OC==,即可得出k=EC×EO=1. 【详解】解:连接CO ,过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E ,∵连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°,∴CO ⊥AB ,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE ,又∵∠ADO=∠CEO=90°,∴△AOD ∽△OCE ,∴AD OD OAEO CE OC===tan60°=3,∴AODEOCSS∆∆=()23=1,∵点A是双曲线y=-9x在第二象限分支上的一个动点,∴S△AOD=12×|xy|=92,∴S△EOC=32,即12×OE×CE=32,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.14.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.如图,直线y =x +2与反比例函数y =k x的图象在第一象限交于点P.若OP =10,则k 的值为________.【答案】1【解析】设点P (m ,m+2),∵10, ∴()222m m ++10, 解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.16.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 【答案】2a ≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..17.如图,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1表示以PA 为一边的正方形的面积,S 2表示长是AB 、宽是PB 的矩形的面积,则S 1_______S 2.(填“>”“="”“" <”)【答案】=.【解析】黄金分割点,二次根式化简.【详解】设AB=1,由P是线段AB的黄金分割点,且PA>PB,根据黄金分割点的,AP=51-,BP=51351---=.∴21151353535S S1⎛⎫----===⨯=⎪⎪⎝⎭,.∴S1=S1.18.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.【答案】40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.三、解答题(本题包括8个小题)19.先化简,再求值:22212212x x xxx x x--+÷-+-,其中x=1.【答案】2【解析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x的值代入计算即可求出值.【详解】原式=()()()()21121•21x x x xx x x+--+--=111xx++ -=21 xx-,当x=1时,原式=233 31⨯=-.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.【答案】(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入,则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩, ∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤,∴ 830x ≤≤ ;(2) 设利润为w 元,则 ()()810300w x x =--+=2103802400x x -+- =2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元; (3) 当19x = 时,110y =, 110×40=4400<4800, ∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.21.校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理; 看法 频数 频率 赞成 5 无所谓 0.1 反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【答案】(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数; (2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整; (3)根据题意列式计算即可.【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8, 故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=539,OD=3,求线段CE的长.【答案】(1)证明见解析;(2)证明见解析;(3)CE13【解析】(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG 为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.【详解】解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE =60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB=12AC=AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=32,DN=332,∵tan∠BMF=539,∴tan ∠NDE =539, ∴3532933x += ,解得x =1, ∴NE =52, ∴DE =13, ∴CE =13.故答案为(1)证明见解析;(2)证明见解析;(3)CE =13. 【点睛】本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF 相等的角为解题的关键.23.如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形; ②当BE =______时,四边形BECD 是菱形.【答案】 (1)、证明过程见解析;(2)、①、2;②、1.【解析】(1)、首先证明△BEF 和△DCF 全等,从而得出DC=BE ,结合DC 和AB 平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE 是等边三角形,从而得出答案.【详解】(1)、证明:∵AB ∥CD ,∴∠CDF=∠FEB ,∠DCF=∠EBF ,∵点F 是BC 的中点, ∴BF=CF ,在△DCF 和△EBF 中,∠CDF=∠FEB ,∠DCF=∠EBF ,FC=BF , ∴△EBF ≌△DCF (AAS ), ∴DC=BE , ∴四边形BECD 是平行四边形;(2)、①BE=2;∵当四边形BECD 是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°; ∴∠ECB=30°,∴BE=12BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.24.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.【答案】48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.25.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)3,补图详见解析;(2)712【解析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数 (2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可 【详解】由扇形图可以看到发箴言三条的有3名学生且占25%, 故该班团员人数为: 325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =. 【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键 26.绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

新疆生产建设兵团第二中学2018届中考一模数学试卷(解析版)

新疆生产建设兵团第二中学2018届中考一模数学试卷(解析版)

2018年新疆生产建设兵团二中中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.在,2,,3这四个数中,比小的数是A. B. 2 C. D. 3【答案】A【解析】【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【详解】解:∵正数和0大于负数,∴排除2和3.∵,∴4>2>1,,即,∴-4<-2<-1.故选:A.【点睛】本题考查了有理数大小比较法则,正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.计算的结果是A. B. C. D.【答案】A【解析】【分析】根据积的乘方运算法则即可求出答案.【详解】原式=4a6.故选A.【点睛】本题考查了积的乘方,解题的关键是熟练运用积的乘方的运算法则,本题属于基础题型.3.如图,,,则等于A. B. C. D.【答案】C【解析】【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,由邻补角互补可得∠4的度数.【详解】∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°.故选C.【点睛】本题考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.4.下列说法正确的是A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,,则甲的射击成绩较稳定C. “明天降雨的概率为”,表示明天有半天都在降雨D. 了解一批电视机的使用寿命,适合用普查的方式【答案】B【解析】【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【详解】A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C.“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D.了解一批电视机的使用寿命,适合用抽查的方式,此选项错误.故选B.【点睛】本题考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大.5.将一次函数的图象向上平移2个单位,平移后,若,则x的取值范围是A. B. C. D.【答案】B【解析】试题分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣4,当x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,考点:一次函数图象与几何变换.6.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为的新多边形,则原多边形的边数为A. 13B. 14C. 15D. 16【答案】B【解析】试题分析:减去一个角之后,得到的多边形比原来的多边形多一条边,只要求出现在多边形的边数就可以得出原多边形的边数.2340÷180+2=15 15-1=14考点:多边形的内角和定理7.某单位向一所希望小学赠送1080 件文具,现用 A、B 两种不同的包装箱进行包装,已知每个B型包装箱比 A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为()A. B.C. D.【答案】B【解析】分析:设B型包装箱每个可以装x件文具,需要B型包装箱个,A型包装箱每个可以装件文具,需要B型包装箱个,根据单独使用B型包装箱比单独使用A型包装箱可少用12个.列出方程即可.详解:设B型包装箱每个可以装x件文具,需要B型包装箱个,A型包装箱每个可以装件文具,需要B型包装箱个,列方程为:.故选B.点睛:考查分式方程的应用,找出题目中的等量关系是解题的关键.8.如图是一个餐盘,它的外围是由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,已知正三角形的边长为10,则该餐盘的面积是()A. 50π-50B. 50π–25C. 25π+50D. 50π【答案】A【解析】试题分析:根据等边三角形的性质可知∠A=∠B=∠C=60°,再由该餐盘的面积等于3个扇形的面积减去2个△ABC的面积即可得出结论.试题解析:S扇形ABC=,S△ABC=×10×10×sin60°=25,S餐盘=3×-3×25+25=50π-50.故选A.考点:1.扇形面积的计算;2.等边三角形的性质.9. 将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A. 1B. 2C. 2D. 4【答案】C【解析】试题分析:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AEBC=2.故选:C.考点:折叠问题以及勾股定理.10.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B、C 两点,则弦BC的长的最小值为( )A. 22B. 24C.D.【答案】B【解析】试题分析:根据题意可得直线经过定点D(3,4),则OD=5,当OD⊥BC时,BC取得最小值,根据垂径定理可得BC=24.考点:垂径定理二、填空题(本大题共5小题,共20.0分)11.函数中,自变量x的取值范围是______.【答案】【解析】【分析】根据二次根式的有意义的条件,被开方数大于等于0,就可以求解.【详解】根据题意得:x﹣2≥0,解得:x≥2.故答案为:x≥2.【点睛】本题考查了函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若,,则______cm.【答案】2.5【解析】【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=2.5cm,故答案为:2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.13.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元【答案】300【解析】分析:设这种商品的定价是x元.根据定价的七五折出售将赔25元和定价的九折出售将赚20元,分别表示出进价,从而列方程求解.详解:设这种商品的定价是x元.根据题意,得0.75x+25=0.9x-20,解得x=300.答:这种商品的定价为300元.点睛:找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.注意:七五折即定价的75%,九折即定价的90%.14.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.【答案】.【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB==,S阴影=S半圆-2S弓形ABM=π×22-2()=2.故答案为:2.15.已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;;,c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号【答案】①③【解析】试题解析:∵抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),∴,∴bc>0,故①正确;∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;∴可以转化为:,得x=b或x=c,故③正确;∵b,c是关于x的一元二次方程的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a ﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误;故答案为:①③.三、解答题(本大题共9小题,共90.0分)16.计算:.【答案】3【解析】【分析】直接利用二次根式的性质、零指数幂的性质、绝对值的性质以及特殊角的三角函数值分别化简得出答案.【详解】原式=2﹣1+2=2﹣1+2=3.【点睛】本题考查了实数运算,正确化简各数是解题的关键.17.先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.【答案】原式=,把x=2代入的原式=1.【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式==当x=2时,原式=118.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BF A=60°,BE=,求平行四边形ABCD的周长.【答案】(1)证明见解析;(2)12【解析】试题分析:(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;(2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.试题解析:(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,∠F AD=∠AFB.又∵AF平分∠BAD,∴∠F AD=∠F AB.∴∠AFB=∠F AB.∴AB=BF.∴BF=CD.(2)解:由题意可证△ABF为等边三角形,点E是AF的中点.在Rt△BEF中,∠BF A=60°,BE=,可求EF=2,BF=4.∴平行四边形ABCD的周长为12.19.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【答案】(1)35元/盒;(2)20%.【解析】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.20.某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.【答案】(1)300,10;(2)有800人;(3).【解析】试题分析:试题解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.21.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1cm)【答案】(1)小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK 相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.22.如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.【答案】(1)证明见解析;(2)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC2=BE•BA.∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x.∵BC=6,∴62=2x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.23.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.【答案】(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.8分或4.6分相距28米.【解析】【分析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,由题意得,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=28时,解得x=4.6,答:两机器人出发1.2分或2.8分或4.6分相距28米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键..24.如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.点B,C的坐标分别为______,______;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值______.【答案】(1)B(3,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(3).【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到=2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图3中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.试题解析:(1)在中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,分两种情况:①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴=2,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2);②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(3)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC 的延长线上时,AP的值最大,最大值=,∴OE的最大值为.故答案为:.。

新疆维吾尔自治区2018年中考数学模拟试题及答案

新疆维吾尔自治区2018年中考数学模拟试题及答案

新疆维吾尔自治区2018年中考数学模拟试题及答案新疆维吾尔自治区2018年中考数学模拟试题及答案一、选择题1.数a的相反数是()A。

|a| B。

C。

-a。

D。

02.下列运算正确的是()CA。

a·a3 = a3 B。

(ab)3 = a3b C。

(a3)2 = a6 D。

a8 ÷ a4 = a23.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A。

4 B。

5 C。

6 D。

74.在下列四个图形中,既是轴对称图形,又是中心对称图形的是()A。

B。

C。

D。

5.如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB = 6,AC = 4,则四边形AEDF的周长是()A。

10 B。

20 C。

30 D。

406.一元二次方程2x - 3x + 1 = 0的根的情况是()A。

有两个相等的实数根 B。

有两个不相等的实数根 C。

只有一个实数根 D。

没有实数根7.如右图,⊙O的半径OD ⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC。

若AB = 8,CD = 2,则sin∠ECB为()A。

5 B。

13 C。

3 D。

138.对于二次函数y = (x + 1)2 - 3,下列说法正确的是()A。

图象开口方向向下B。

图象与y轴的交点坐标是(0,-3) C。

图象的顶点坐标为(1,-3) D。

抛物线在x。

-1的部分是上升的9.不等式组A。

B。

C。

D。

的图象相交于()A。

B。

C。

D。

10.如图,一次函数y = x + 3的图象与x轴,y轴交于A,B两点,与反比例函数C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A。

①② B。

①②③ C。

①②③④ D。

②③④二、填空题11.PM2.5造成的损失巨大,治理的花费更大.我国每年因为空气污染造成的经济损失高达约5659亿元.将5659亿元用科学计数法表示为亿元.答案:5.659 × 10212.已知a = 6,a = 3,则am+2n =。

2018年新疆数学中考试卷(2021年整理精品文档)

2018年新疆数学中考试卷(2021年整理精品文档)

(完整版)2018年新疆数学中考试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年新疆数学中考试卷)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年新疆数学中考试卷的全部内容。

新疆维吾尔自治区、新疆生产建设兵团2018年中考数学试题一、选择题(本大题共9小题,每小题5分,共45分。

在每题列出的四个选项中,只有一项符合题目要求)1.(5分)的相反数是( )A.﹣B.2 C.﹣2 D.0。

52.(5分)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃3.(5分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.(5分)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=35.(5分)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°6.(5分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是( )(完整版)2018年新疆数学中考试卷A.①②B.②③C.①③D.①②③7.(5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B 落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm8.(5分)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.9.(5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)点(﹣1,2)所在的象限是第象限.11.(5分)如果代数式有意义,那么实数x的取值范围是.12.(5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.13.(5分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.14.(5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.15.(5分)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)计算:﹣2sin45°+()﹣1﹣|2﹣|.17.(8分)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.18.(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B 两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1。

[试卷合集3套]新疆名校2018届中考多校联考数学试题

[试卷合集3套]新疆名校2018届中考多校联考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°【答案】B【解析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小. 【详解】解:连接AD ,∵AB 为O 的直径,∴90ADB ∠=︒. ∵40BCD ∠=︒, ∴40A BCD ∠=∠=︒, ∴904050ABD ∠=︒-︒=︒. 故选:B . 【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.2.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(x -1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13 D .2x+3(x -1)=13【答案】A【解析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶, 根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元, 可得方程为:2(x-1)+3x=1.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A 中饮料的钱+买B 中饮料的钱=一共花的钱1元.3.如果关于x 的分式方程1311a x x x --=++有负数解,且关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩无解,则符合条件的所有整数a 的和为( ) A .﹣2 B .0C .1D .3【答案】B【解析】解关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩,结合解集无解,确定a 的范围,再由分式方程1311a xx x --=++有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可.【详解】由关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩,可整理得242y a y +⎧⎨<-⎩ ∵该不等式组解集无解, ∴2a+4≥﹣2 即a≥﹣3又∵1311a x x x --=++得x =42a - 而关于x 的分式方程1311a x x x --=++有负数解 ∴a ﹣4<1 ∴a <4于是﹣3≤a <4,且a 为整数 ∴a =﹣3、﹣2、﹣1、1、1、2、3 则符合条件的所有整数a 的和为1. 故选B . 【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.4.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是A.B.C.D.【答案】A【解析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.5.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③【答案】B【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.6.下列各数中最小的是()A.0 B.1 C.﹣3D.﹣π【答案】D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣3<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠1【答案】C【解析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D .【答案】B【解析】由题意可知, 当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 9.在函数y =1xx -中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可. 【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2. 故x 的取值范围是x≥2且x≠2. 故选C . 【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键. 10.一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断【答案】A【解析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 二、填空题(本题包括8个小题)11.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= .【答案】225-. 【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.12.若-2a m b 4与5a 2b n+7是同类项,则m+n= . 【答案】-1.【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m 、n 的值,根据有理数的加法,可得答案. 试题解析:由-2a m b 4与5a 2b n+7是同类项,得,解得.∴m+n=-1.考点:同类项.13.如图所示,点C 在反比例函数ky (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.【答案】1【解析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭,∴点B 的坐标为k 0,2a ⎛⎫⎪⎝⎭,1k a 122a∴⋅⋅=, 解得,k 4=, 故答案为:1. 【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.已知直线y=kx (k≠0)经过点(12,﹣5),将直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为_____. 【答案】0<m <132【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答. 【详解】把点(12,﹣5)代入直线y=kx 得,﹣5=12k ,∴k=﹣512; 由y=﹣512x 平移m (m >0)个单位后得到的直线l 所对应的函数关系式为y=﹣512x+m (m >0),设直线l 与x 轴、y 轴分别交于点A 、B ,(如图所示) 当x=0时,y=m ;当y=0时,x=125m , ∴A (125m ,0),B (0,m ), 即OA=125m ,OB=m ,在Rt △OAB 中,135m ==, 过点O 作OD ⊥AB 于D ,∵S△ABO=12OD•AB=12OA•OB,∴12OD•135m=12×125m×m,∵m>0,解得OD=1213m,由直线与圆的位置关系可知1213m <6,解得m<132,故答案为0<m<13 2.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了. 15.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.【答案】4 5【解析】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024 105-=.考点:概率16.如图,正方形ABCD的边长为422+,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.【答案】2【解析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴22+4,EF=BF=x,∴2x,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°, ∴∠AED=180°-45°-67.5°=67.5°, ∴∠AED=∠DAE , ∴AD=ED ,∴BD=BE+ED=2x+4+22=42+4, 解得:x=2, 即EF=2.17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm . 【答案】8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD ,则AB=AD+CD ,所以,△ACD 的周长=AD+CD+AC=AB+AC ,解答出即可 解:∵DE 是BC 的垂直平分线, ∴BD=CD ,∴AB=AD+BD=AD+CD ,∴△ACD 的周长=AD+CD+AC=AB+AC=8cm ; 故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等 18.使分式的值为0,这时x=_____.【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法三、解答题(本题包括8个小题)19.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长. 【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4, ∵在Rt △ACF 中,tan ∠α=AFCF, ∴CF=4tan30x -︒=BD ,同理,Rt △ABE 中,BE=tan60x︒,∵BD-BE=DE , ∴4tan30x -︒-tan60x︒=3,解得332答:树高AB 为(332. 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 20.如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.【答案】(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下: 八年级7886 74 81 75 76 87 70 75 907579 81 70 74 80 86 69 83 77 九年级9373 88 81 72 81 94 83 77 83 8081 70 81 73 78 82 80 70 40 整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x )40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级人数0 0 1 11 7 1 九年级人数 1 0 0 7 10 2 (说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示: 年级 平均数 中位数 众数 方差 八年级78.3 77.5 75 33.6 九年级 78 80.5 a 52.1(1)表格中a 的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)【答案】 (1)81;(2) 108人;(3)见解析.【解析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60%20⨯, 九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .【答案】(1)见解析;(2)见解析;(3)'(2,1)B ;(4)4.【解析】(1)根据C 点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A 、B 、C 三点关于y 轴对称的点的位置,再连接即可;(3)根据点B'在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:()B'2,1;(4)ΔABC 111S 34231224222=⨯-⨯⨯-⨯⨯-⨯⨯ 123144=---=.【点睛】此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.23.如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)【答案】3031)米【解析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD, ∴CD =AD =x ,∴BD =BC+CD =x+60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴(60)3x x =+, ∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?【答案】 (1)35元;(2)30元.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.【详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x 2+700x-10000=-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:210700100002000x x -+-=,解得:130x =,240x =,销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.25.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得2236 2432.k bk b+=⎧⎨+=⎩解得280. kb=-⎧⎨=⎩∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.26.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解析】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:x-y=152x+3y=255⎧⎨⎩,解得:x=60 y=45⎧⎨⎩.答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,依题意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【答案】D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.2.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A .22B .3C .1D .62【答案】C【解析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=2AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON ∽△CHM ,再利用相似比可计算出ON 的长. 【详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD 为正方形,∴∠MAH=45°,∴△AMH 为等腰直角三角形,∴AH=MH=22AM=222, ∵CM 平分∠ACB ,∴2∴2∴222)2+2,∴OC=122,CH=AC ﹣2+222, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON OC MH CH =21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.3.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.4.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.【答案】D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.5.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.4【答案】A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C 、13+12>20,能够组成三角形;D 、5+5<11,不能组成三角形.故选:C .【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°【答案】A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.8.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B 【解析】由已知条件可得ABC DAC ~,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=2, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.9.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.10.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(本题包括8个小题)11.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).【答案】AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).12.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.【答案】1【解析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=1°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=1°,故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.因式分解:4x2y﹣9y3=_____.【答案】y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).。

〖汇总3套试卷〗新疆名校2018年中考学业质量监测数学试题

〖汇总3套试卷〗新疆名校2018年中考学业质量监测数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C .23D.32【答案】A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S△ABC =9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2【答案】A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62°B.38°C.28°D.26°【答案】C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率. 【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况, 因此两个球中至少有一个红球的概率是:710. 故选:D . 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1【答案】B【解析】0.056用科学记数法表示为:0.056=-25.610 ,故选B.6.如图,等腰直角三角形的顶点A 、C 分别在直线a 、b 上,若a ∥b ,∠1=30°,则∠2的度数为( )A .30°B .15°C .10°D .20°【答案】B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数. 详解:如图所示:∵△ABC 是等腰直角三角形, ∴∠BAC=90°,∠ACB=45°, ∴∠1+∠BAC=30°+90°=120°, ∵a ∥b ,∴∠ACD=180°-120°=60°, ∴∠2=∠ACD-∠ACB=60°-45°=15°; 故选B .点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.7.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题8.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5 【答案】D【解析】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D9.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BDAD的值为()A.1 B.22C2-1 D2+1【答案】C【解析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出22 ADAB=,结合BD=AB﹣AD即可求出BDAD的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴2ADEABCS ADAB S⎛⎫=⎪⎝⎭,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴2ADAB=,∴22212BD AB ADAD AD--===-,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【解析】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.二、填空题(本题包括8个小题)11.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.【答案】1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形; 故腰长为1. 故答案为:1. 【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验. 12.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定. 【答案】甲【解析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可. 【详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.13.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 【答案】2.1【解析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解. 【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k , 则k+2k+3k=180°, 解得k=30°, 2k=60°, 3k=90°, ∵AB=10, ∴BC=12AB=1,∵CD ⊥AB , ∴∠BCD=∠A=30°, ∴BD=12BC=2.1. 故答案为2.1. 【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC 是直角三角形是解本题的关键.14.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________. 【答案】-10【解析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可.【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4, ∴−2+4=−m ,−2×4=n , 解得:m=−2,n=−8, ∴m+n=−10, 故答案为:-10 【点睛】此题考查根与系数的关系,掌握运算法则是解题关键15.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .【答案】7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC . ∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC . 又∵∠B=∠C=60°,∴△ABD ∽△DCE . ∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=.16.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB =,则AB 所对的圆周角为__o .【答案】45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB ===,在Rt △AOC 中,OA=1, 22AC =, 根据勾股定理得:2222OC OA AC =-=,即OC=AC , ∴△AOC 为等腰直角三角形, 45AOC ∴∠=, 同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=, ∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135. 故答案为45或135.17.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 . 【答案】5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n = 考点:正多边形中心角的概念.18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E+∠F=80°,则∠A=____°.【答案】50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.三、解答题(本题包括8个小题)19.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.20.如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【答案】(1)详见解析;(2)tan∠ADP=.【解析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB =30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE =∠AEB ,∴∠AEB =∠BAE ,∴AB =BE ,∴AF =BE .∵AF ∥BC ,∴四边形ABEF 是平行四边形.∵AB =BE ,∴四边形ABEF 是菱形;(2)解:作PH ⊥AD 于H ,∵四边形ABEF 是菱形,∠ABC =60°,AB =4,∴AB =AF =4,∠ABF =∠AFB =30°,AP ⊥BF ,∴AP =AB =2,∴PH =,DH =5,∴tan ∠ADP ==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大. 21.如图,河的两岸MN 与PQ 相互平行,点A ,B 是PQ 上的两点,C 是MN 上的点,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,3≈1.732)【答案】17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠=∴sin60,CD BC ︒=∴3,220CD = ∴103CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.22.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【答案】(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.23.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x 元.根据题意,得 (40-x )(1+2x )=110,整理,得x 2-30x+10=0,解得x 1=10,x 2=1.∵“扩大销售量,减少库存”,∴x 1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24.九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【答案】(1)8,3;(2)144;(3)2 3 .【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.25.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m .经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B 点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度.【答案】 (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 26.如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM 的形状;若不存在,请说明理由.【答案】(1)抛物线的解析式为248y x x 433=-++;(2)PM=24m 4m 3-+(0<m <3);(3)存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形. 【解析】(1)将A (3,0),C (0,4)代入2y ax 2ax c =-+,运用待定系数法即可求出抛物线的解析式.(2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,从而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长.(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC ∽△AEM ,②△CFP ∽△AEM ;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.【详解】解:(1)∵抛物线2y ax 2ax c =-+(a≠0)经过点A (3,0),点C (0,4), ∴,解得4a {3c 4=-=. ∴抛物线的解析式为248y x x 433=-++. (2)设直线AC 的解析式为y=kx+b ,∵A (3,0),点C (0,4),∴3k b 0{b 4+==,解得4k {3b 4=-=. ∴直线AC 的解析式为4y x 43=-+.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,4m 43-+). ∵点P 的横坐标为m ,点P 在抛物线248y x x 433=-++上, ∴点P 的坐标为(m ,248m m 433-++). ∴PM=PE -ME=(248m m 433-++)-(4m 43-+)=24m 4m 3-+. ∴PM=24m 4m 3-+(0<m <3). (3)在(2)的条件下,连接PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=4m 43-+,CF=m ,PF=248m m 4433-++-=248m m 33-+, 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况: ①若△PFC ∽△AEM ,则PF :AE=FC :EM ,即(248m m 33-+):(3-m )=m :(4m 43-+), ∵m≠0且m≠3,∴m=2316. ∵△PFC ∽△AEM ,∴∠PCF=∠AME .∵∠AME=∠CMF ,∴∠PCF=∠CMF .在直角△CMF 中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM 为直角三角形.②若△CFP ∽△AEM ,则CF :AE=PF :EM ,即m :(3-m )=(248m m 33-+):(4m 43-+), ∵m≠0且m≠3,∴m=1.∵△CFP ∽△AEM ,∴∠CPF=∠AME .∵∠AME=∠CMF ,∴∠CPF=∠CMF .∴CP=CM .∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺【答案】B 【解析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴ 1.5150.5x , 解得x=45(尺),故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.2.下列各数中是有理数的是( )A .πB .0C 2D 35【答案】B【解析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C 2是无理数,故本选项错误;D 35故选B .【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.3.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm【答案】B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.5.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案. 【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.6.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】D【解析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5【答案】B【解析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点, ∴CP =12BD =1. 故选B .8.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒【答案】B【解析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数. 【详解】解:∵DE 是AC 的垂直平分线, ∴DA=DC , ∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°, ∴∠A=56°,∴∠CDA=∠DCE+∠A=112°, 故选B . 【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型. 9.若22a -3,则a 的值可以是( ) A .﹣7 B .163C .132D .12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.二、填空题(本题包括8个小题)11.分解因式:x2-9=_ ▲.【答案】(x+3)(x-3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).12.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解, ∴其整数解为3和4, 则4⩽125a +<5, 解得:8⩽a<13, 故答案为:8⩽a<13 【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键13.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____ 【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 14.如图,矩形ABCD 中,BC =6,CD =3,以AD 为直径的半圆O 与BC 相切于点E ,连接BD 则阴影部分的面积为____(结果保留π)【答案】94π. 【解析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD -S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【详解】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD =CD =3,OE ⊥BC , ∴四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32﹣2903360π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.15.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 . 【答案】-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解. 【详解】∵一元二次方程x 2+mx+1=0的一个根为-1,设另一根为x 1, 由根与系数关系:-1•x 1=1, 解得x 1=-1. 故答案为-1.16.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .【答案】()240024008.120%x x -=+. 【解析】试题解析:∵原计划用的时间为:2400x, 实际用的时间为:()2400120%x +, ∴可列方程为:()240024008.120%x x -=+ 故答案为()240024008.120%x x-=+ 17.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD=2,AC=6,那么CE=________.【答案】43【解析】∵AB=AC ,AD ⊥BC , ∴BD=CD=2,∵BE 、AD 分别是边AC 、BC 上的高, ∴∠ADC=∠BEC=90°, ∵∠C=∠C , ∴△ACD ∽△BCE ,。

新疆乌鲁木齐2018年中考数学一模试卷一

新疆乌鲁木齐2018年中考数学一模试卷一

2018年新疆乌鲁木齐九十八中中考数学一模试卷一.选择题(共10小题,每小题4分,计40分.每小题只有一个选项是符合题意的)1.﹣的相反数是()A.4 B.﹣ C.D.﹣42.把a3﹣ab2分解因式的正确结果是()A.(a+ab)(a﹣ab)B.a(a2﹣b2)C.a(a+b)(a﹣b)D.a(a﹣b)23.新疆近年旅游业发展快速,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2018年全疆共接待游客3354万人次,将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×1064.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.6.抛物线y=﹣(a﹣8)2+2的顶点坐标是()A.( 2,8 )B.( 8,2 )C.(﹣8,2 )D.(﹣8,﹣2)7.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,38.若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<39.如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.410.△ABC是⊙O内接三角形,∠BOC=80°,那么∠A等于()A.80° B.40° C.140°D.40°或140°二.填空题(共6小题,每小题4分,计24分)11.的平方根是.12.若一个多边形内角和为900°,则这个多边形是边形.13.函数y=中自变量x的取值范围是.14.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2= .15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=42°,则∠OAC的度数是.16.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是.三.解答题(共8小题,计72分)17.计算:.18.化简,求值:,其中m=.19.解方程组.20.某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将两幅统计图中不完整的部分补充完整;(3)假定全校各班实施新课程改革效果一样,全校共有学生2 400人,请估计该校新课程改革效果达到A类的有多少学生;(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.22.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.23.乌苏市某生态示范园,计划种植一批苹果梨,原计划总产量达36万千克,为了满足市场需求,现决定改良苹果梨品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?24.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式:(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM周长最短?若不存在,请说明理由;若存在,求出点M的坐标.2018年新疆乌鲁木齐九十八中中考数学一模试卷参考答案与试题解析一.选择题(共10小题,每小题4分,计40分.每小题只有一个选项是符合题意的)1.﹣的相反数是()A.4 B.﹣ C.D.﹣4【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:C.2.把a3﹣ab2分解因式的正确结果是()A.(a+ab)(a﹣ab)B.a(a2﹣b2)C.a(a+b)(a﹣b)D.a(a﹣b)2【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用平方差公式分解即可.【解答】解:a3﹣ab2,=a (a2﹣b2),=a(a+b)(a﹣b).故选C.3.新疆近年旅游业发展快速,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2018年全疆共接待游客3354万人次,将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3354万用科学记数法表示为:3.354×107.4.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小【考点】正比例函数的性质.【分析】先判断出函数y=﹣k2x(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.【解答】解:∵k≠0∴﹣k2>0∴﹣k2<0∴函数y=﹣k2x(k是常数,k≠0)图象为直线,且经过二、四象限,如图,∴y随x的增大而减小,∴C错误.故选C.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.【考点】概率公式.【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【解答】解:共8球在袋中,其中5个红球,故摸到红球的概率为,6.抛物线y=﹣(a﹣8)2+2的顶点坐标是()A.( 2,8 )B.( 8,2 )C.(﹣8,2 )D.(﹣8,﹣2)【考点】二次函数的性质.【分析】根据函数顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=﹣(a﹣8)2+2的顶点坐标是(8,2).故选B.7.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,3【考点】根的判别式;一元二次方程的定义.【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.【解答】解:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,则k的非负整数值为1或0.∵k≠0,∴k=1.故选:A.8.若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3【考点】解一元一次不等式组.【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围【解答】解:①x+8<4x﹣1﹣3x<﹣9x>3∵不等式组的解集为x>3∴m≤3故选(C)9.如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变,由此可得出答案.【解答】解:根据反比例函数的几何意义可得,S△ABP==2,又∵函数图象在第一象限,∴k=4.故选:D.10.△ABC是⊙O内接三角形,∠BOC=80°,那么∠A等于()A.80° B.40° C.140°D.40°或140°【考点】圆周角定理.【分析】因为点A可能在优弧BC上,也可能在劣弧BC上,则根据圆周角定理,得∠BAC=40°或140°.【解答】解:应分为两种情况:点A在优弧BC上时,∠BAC=40°;点A在劣弧BC上时,∠BAC=140°;所以∠BAC的大小为40°或140°.二.填空题(共6小题,每小题4分,计24分)11.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±212.若一个多边形内角和为900°,则这个多边形是七边形.【考点】多边形内角与外角.【分析】根据多边形的外角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故答案为:七.13.函数y=中自变量x的取值范围是x>3 .【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x ﹣3>0,解得x的范围.【解答】解:根据题意得:x﹣3>0,解得:x>3.14.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2= 32°.【考点】平行线的性质.【分析】根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.【解答】解:∵直线a∥b,AM⊥b,∴AM⊥a(在同一平面内,垂直于两条平行线中的一条,那么必定垂直于另一条);∴∠2=180°﹣90°﹣∠1;∵∠1=58°,∴∠2=32°.故答案是:32°.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=42°,则∠OAC的度数是21°.【考点】圆周角定理.【分析】先根据圆周角定理求出∠ACB的度数,再由平行线的性质即可得出结论.【解答】解:∵∠AOB=42°,∴∠ACB=∠AOB=21°.∵AO∥BC,∴∠OAC=∠ACB=21°.故答案为:21°.16.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是3n+4 .【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;【解答】方法一:解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;故答案为:3n+4方法二:当n=1时,s=7,当n=2时,s=10,当n=3时,s=13,经观察,此数列为一阶等差,∴设s=kn+b,,∴,∴s=3n+4.三.解答题(共8小题,计72分)17.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及特殊角的三角函数值以及绝对值的性质分别化简各数进而求出答案.【解答】解:=2﹣1﹣4×+2=1.18.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.19.解方程组.【考点】解二元一次方程组.【分析】根据代入消元法,可得方程的解.【解答】解:,由①得y=4﹣2x ③, 把③代入②得 x+2(4﹣2x )=5, 解得x=1,把x=1代入③,得y=2,方程组的解为.20.某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20 名学生;(2)将两幅统计图中不完整的部分补充完整;(3)假定全校各班实施新课程改革效果一样,全校共有学生2 400人,请估计该校新课程改革效果达到A类的有多少学生;(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);由(1)(2)继而可补全条形统计图;(3)由样本中A类所占的百分比,即可估计该校新课程改革效果达到A类的有多少学生;(4)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)3÷15%=20(人);故答案为:20(2)(3)2 400×15%=360(人);(4)列表如下:A类中的两名男生分别记为A1和A2.共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为P==.21.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.【考点】切线的性质;全等三角形的判定与性质;勾股定理;矩形的判定与性质.【分析】(1)连接OA,由切线的性质可知OA⊥AP,再由MN⊥AP可知四边形ANMO是矩形,故可得出结论;(2)连接OB,则OB⊥BP由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB=∠NPM.故可得出Rt△OBM≌△MNP,OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP利用勾股定理即可求出x的值,进而得出结论.【解答】(1)证明:如图,连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO是矩形,∴OM=AN;(2)解:连接OB,则OB⊥BP∵OA=MN,OA=OB,OM∥AP.∴OB=MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△MNP,∴OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP中,有x2=32+(9﹣x)2∴x=5,即OM=5.22.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x的取值范围,再根据y随着x的增大而增大,得出x的值.【解答】解:(1)因为购买大型客车x辆,所以购买中型客车(20﹣x)辆.y=62x+40(20﹣x)=22x+800.(2)依题意得20﹣x<x.解得x>10.∵y=22x+800,y随着x的增大而增大,x为整数,∴当x=11时,购车费用最省,为22×11+800=1042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.23.乌苏市某生态示范园,计划种植一批苹果梨,原计划总产量达36万千克,为了满足市场需求,现决定改良苹果梨品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?【考点】分式方程的应用.【分析】设原计划平均每亩产量为x万千克,根据“改良前亩数﹣改良后亩数=20”列出分式方程求解即可.【解答】解:设原计划平均每亩产量为x万千克,根据题意列方程得,﹣=20解得,x=0.3经检验,x=0.3是原方程的解且符合题意.则1.5x=0.45万千克;答:原计划平均每亩产量0.3万千克,改良后平均每亩产量是0.45万千克.24.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式:(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM周长最短?若不存在,请说明理由;若存在,求出点M的坐标.【考点】二次函数综合题.【分析】(1)由直线解析式可求得A、B两点的坐标,根据待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得C点坐标,再根据三角形的面积可求得答案;(3)连接BC交对称轴于点M,由题意可知A、C关于对称轴对称,则可知MA=MC,故当B、M、C三点在同一条直线上时MA+MB最小,则△ABM的周长最小,由B、C坐标可求得直线BC 的解析式,则可求得M点的坐标.【解答】解:(1)在y=3x﹣3中,令y=0可求得x=1,令x=0可得y=﹣3,∴A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+2x﹣3;(2)令y=0得0=x2+2x﹣3,解得x1=1,x2=﹣3∴C(﹣3,0),AC=4∴S△ABC=AC•OB=×4×3=6;(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的对称轴为x=﹣1,∵A、C关于对称轴对称,∴MA=MC,∴MB+MA=MB+MC,∴当B、M、C三点在同一条直线上时MB+MC最小,此时△ABM的周长最小,∴连接BC交对称轴于点M,则M即为满足条件的点,设直线BC的解析式为y=kx+m,∵直线BC过点B(0,﹣3),C(﹣3,0),∴,解得,∴直线BC的解析式y=﹣x﹣3,当x=﹣1时,y=﹣2,∴M(﹣1,﹣2),∴存在点M使△ABM周长最短,其坐标为(﹣1,﹣2).。

〖汇总3套试卷〗新疆名校2018年中考数学阶段模拟试题

〖汇总3套试卷〗新疆名校2018年中考数学阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.【答案】A【解析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD 的周长为()A.13 B.15 C.17 D.19【答案】B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.3.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【答案】D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.4.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB 和△EPB 中,∵,∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP =PE ,∴△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE S △ABC =4cm 1.故选C .【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE S △ABC . 5.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C 【解析】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.6.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .【答案】D【解析】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .7.下列图形中,阴影部分面积最大的是A .B .C .D .【答案】C【解析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .8.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.9.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.10.下列二次根式中,最简二次根式的是()A 15B0.5C5D50【答案】C【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 155A选项错误;B0.522,被开方数为小数,不是最简二次根式;故B选项错误;C5C选项正确;D5052D选项错误;故选C.考点:最简二次根式.二、填空题(本题包括8个小题)11.将一副三角尺如图所示叠放在一起,则BEEC的值是.【答案】3 【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD .∴△ABE ∽△DCE .∴BE AB EC CD=. ∵在Rt △ACB 中∠B=45°,∴AB=AC . ∵在RtACD 中,∠D=30°,∴AC CD 3AC tan30==︒. ∴BE AB 3EC CD 33AC ===. 12.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .【答案】n 1+n +1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成, 分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.13.如图,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合连接CD ,则∠BDC 的度数为_____度.【答案】1【解析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC=∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°, ∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为:1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.14.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .【答案】1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.15.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.【答案】25【解析】如图作CH ∥BD ,使得CH =EF =2,连接AH 交BD 由F ,则△CEF 的周长最小.【详解】如图作CH ∥BD ,使得CH =EF =2,连接AH 交BD 由F ,则△CEF 的周长最小.∵CH =EF ,CH ∥EF ,∴四边形EFHC 是平行四边形,∴EC =FH ,∵FA =FC ,∴EC+CF =FH+AF =AH ,∵四边形ABCD 是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH=22AC CH+=45,∴△EFC的周长的最小值=22+45,故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.16.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.【答案】1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=kx中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=kx的图象上,∴k=2612⨯=,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.17.分解因式:x2-9=_ ▲.【答案】(x+3)(x-3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).18.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.【答案】950【解析】设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x﹣19x=10.1x元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期间一天的销售收入为:19×50=950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.三、解答题(本题包括8个小题)19.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m %和m %,结果在结算时发现,两种耗材的总价相等,求m 的值.【答案】(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)m 的值为95.【解析】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,根据两种耗材的总价相等列方程求解即可.【详解】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据题意,得18000120002150x x =⨯+. 解方程,得450x =.经检验,450x =是原方程的解,且符合题意150600x ∴+=.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,由题意得:()()45021 2.5%m a m -⋅+ ()()6001501%a m =-⋅+整理,得2950m m -=解方程,得195m =,20m =(舍去).m ∴的值为95.【点睛】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.20.如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,【答案】(1)见解析;(2)EC =1.【解析】(1)由AB =AC ,可知∠B =∠C ,再由DE ⊥BC ,可知∠F+∠C =90°,∠BDE+∠B =90°,然后余角的性质可推出∠F =∠BDE ,再根据对顶角相等进行等量代换即可推出∠F =∠FDA ,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=1BD=2,2∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.21.灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a=%,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?【答案】(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)【答案】(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【解析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是:15[(7-8)2+3(8-8)2+(9-8)2]=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是:15[2(6-8)2+2(9-8)2+(10-8)2]=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.23.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.【答案】(1)图形见解析;(2)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×105 100=1(人),故答案为1.【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.24.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.观察下列各个等式的规律: 第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【答案】(1)225412--=4;(2)22(1)12n n +--=n . 【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4; (2)第n 个等式是:22(1)12n n +--=n .证明如下: ∵22(1)12n n +--=[(1)][(1)]12n n n n +++-- =2112n +- =n∴第n 个等式是:22(1)12n n +--=n . 点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.26.如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB .求证:AB 是⊙O 的切线;若∠ACD=45°,OC=2,求弦CD 的长.【答案】(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出△OAC 是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB 与⊙O 相切;(2)作AE ⊥CD 于点E ,由已知条件得出AC=2,再求出AE=CE ,根据直角三角形的性质就可以得到AD .【详解】(1)直线AB 是⊙O 的切线,理由如下:连接OA .∵OC=BC ,AC=12OB , ∴OC=BC=AC=OA ,∴△ACO 是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB ,∴∠B=30°,∴∠OAB=90°.∴AB 是⊙O 的切线.(2)作AE ⊥CD 于点E .∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,;∵∠D=30°,∴.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.3D.3【答案】B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=22ADAB==故选B.2.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2【答案】C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx1+mx﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.3.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2【答案】A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.4.如图,点A 是反比例函数y=k x的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣6【答案】D 【解析】试题分析:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k <0,∴k=﹣1.故选D .考点:反比例函数系数k 的几何意义.5.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x (k <0)的图象经过点B ,则k 的值为( )A.﹣12 B.﹣32 C.32 D.﹣36【答案】B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=k(k<0)的图象经过点B,x∴﹣4=k,得k=﹣32.8故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.6.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是(). A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>1【答案】A【解析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.7.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.8.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A .2个B .3个C .4个D .5个【答案】C 【解析】分为三种情况:①AP=OP ,②AP=OA ,③OA=OP ,分别画出即可.【详解】如图,分OP=AP (1点),OA=AP (1点),OA=OP (2点)三种情况讨论.∴以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.9.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .5 【答案】C【解析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.10 )A .±4B .4C .±2D .2【答案】B表示16的算术平方根,为正数,再根据二次根式的性质化简.4=,故选B .【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.二、填空题(本题包括8个小题)11.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD=2,AC=6,那么CE=________.【答案】43 【解析】∵AB=AC ,AD ⊥BC ,∴BD=CD=2,∵BE 、AD 分别是边AC 、BC 上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C ,∴△ACD ∽△BCE ,∴AC CD BC CE=, ∴624CE=, ∴CE=43, 故答案为43. 12.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.【答案】4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x ﹣4).13.化简))201720182121的结果为_____. 2+1【解析】利用积的乘方得到原式=[2﹣1)2)]2017•2+1),然后利用平方差公式计算.【详解】原式=[21)2+1)]2017•2)=(2﹣1)2017•22+1.2+1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____. 【答案】12x (x ﹣1)=1 【解析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为12x (x ﹣1),即可列方程. 【详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:12x (x ﹣1)=1, 故答案为12x (x ﹣1)=1. 【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.15.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .【答案】1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,22AC BC +22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm ),故答案为1.考点:旋转的性质.16.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .【答案】4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.17.不等式组20262xx->⎧⎨->⎩①②的解是________.【答案】x>4【解析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b >mx>-2的解集为_________________.【答案】-4<x<1【解析】将P(1,1)代入解析式y1=mx,先求出m的值为12,将Q点纵坐标y=1代入解析式y=12x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.故答案为-4<x<1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.三、解答题(本题包括8个小题)。

2018年新疆中考数学试卷(含标准答案解析版)-精选.pdf

2018年新疆中考数学试卷(含标准答案解析版)-精选.pdf

2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018?新疆)的相反数是()A.﹣B.2 C.﹣2 D.0.52.(5分)(2018?新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃3.(5分)(2018?新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.(5分)(2018?新疆)下列计算正确的是()A.a2?a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=35.(5分)(2018?新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°6.(5分)(2018?新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③7.(5分)(2018?新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm8.(5分)(2018?新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.9.(5分)(2018?新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018?新疆)点(﹣1,2)所在的象限是第象限.11.(5分)(2018?新疆)如果代数式有意义,那么实数x的取值范围是.12.(5分)(2018?新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.13.(5分)(2018?新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.14.(5分)(2018?新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.15.(5分)(2018?新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x 的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)+()﹣1﹣|2﹣|.16.(6分)(2018?新疆)计算:﹣2sin45°17.(8分)(2018?新疆)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.18.(8分)(2018?新疆)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)(2018?新疆)如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018?新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)(2018?新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)(2018?新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)(2018?新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.2018年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018?新疆)的相反数是()A.﹣B.2 C.﹣2 D.0.5【考点】14:相反数.【专题】11 :计算题.【分析】只有符号不同的两个数互为相反数.【解答】解:的相反数是﹣.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(5分)(2018?新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【考点】1A:有理数的减法.【专题】511:实数.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.(5分)(2018?新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(5分)(2018?新疆)下列计算正确的是()A.a2?a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2?a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a?a﹣a?2b+b?a﹣b?2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.(5分)(2018?新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.(5分)(2018?新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③【考点】W7:方差;W1:算术平均数.【专题】542:统计的应用.【分析】两条平均数、中位数、方差的定义即可判断;【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(5分)(2018?新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.8.(5分)(2018?新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】等量关系为:一本练习本和一支水笔的单价合计为3元;20本练习本的总价+10支水笔的总价=36,把相关数值代入即可.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.9.(5分)(2018?新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2【考点】PA:轴对称﹣最短路线问题;L8:菱形的性质.【专题】46 :几何变换.【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018?新疆)点(﹣1,2)所在的象限是第二象限.【考点】D1:点的坐标.【专题】1 :常规题型.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)(2018?新疆)如果代数式有意义,那么实数x的取值范围是x ≥1.【考点】72:二次根式有意义的条件.【专题】1 :常规题型.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.12.(5分)(2018?新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【考点】MA:三角形的外接圆与外心;KK:等边三角形的性质;MO:扇形面积的计算.【专题】55C:与圆有关的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.13.(5分)(2018?新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.【考点】X6:列表法与树状图法.【专题】1 :常规题型.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(5分)(2018?新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是4元.【考点】B7:分式方程的应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(5分)(2018?新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x 的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是②③(填写所有正确结论的序号).【考点】H3:二次函数的性质;F5:一次函数的性质.【专题】533:一次函数及其应用;535:二次函数图象及其性质.【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x 的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题(一)(本大题共4小题,共30分)+()﹣1﹣|2﹣|.16.(6分)(2018?新疆)计算:﹣2sin45°【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)(2018?新疆)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【考点】6D:分式的化简求值;A3:一元二次方程的解.【专题】11 :计算题.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x2+3x=0可以求得x的值,注意代入的x的值必须使得原分式有意义.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.18.(8分)(2018?新疆)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【考点】G8:反比例函数与一次函数的交点问题.【专题】533:一次函数及其应用.【分析】(1)将点(2,1)代入y=,求出k的值,再将k的值和点(2,1)代入解析式y=kx+m,即可求出m的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P(﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.19.(8分)(2018?新疆)如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是菱形.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018?新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】根据在Rt△ACF中,tan∠ACF=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)(2018?新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20名学生,其中C类女生有2名,D类男生有1名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2018?新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【专题】14 :证明题.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO~△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.23.(13分)(2018?新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)代入x=0可求出点C的纵坐标,代入y=0可求出点A、B的横坐标,此题得解;(2)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,过点Q作QE∥y轴,交x轴于点E,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),进而可得出PB、QE的长度,利用三角形的面积公式可得出S△PBQ关于t的函数关系式,利用二次函数的性质即可解决最值问题;(3)根据(2)的结论找出点P、Q的坐标,假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),进而可得出MF的长度,利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB?QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF?OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用三角形的面积公式找出S△PBQ关于t的函数关系式;(3)利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.。

新疆乌鲁木齐市2018届中考数学第一次模拟考试试题(含答案)

新疆乌鲁木齐市2018届中考数学第一次模拟考试试题(含答案)

2017-2018学年第二学期九年级第一次模拟考试数学试卷(问卷)(说明:本试卷共三道大题,24个小题,共计150分,考试时间120分钟,可以使用科学计算器)。

一、选择题(本大题8个小题,每小题4分,共32分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.﹣50元C.+150元D.﹣150元2.使二次根式有意义的x的取值范围是()A.B.C.D.3.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A、B、C、D、4.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是()A、x>B、x<﹣C、x>﹣D、x<5.将边长为3cm的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为()A.cm2B.cm2C.cm2D.cm26.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为()A. 26元B. 27元C. 28元D. 29元7.如图,AC、BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间t(秒),∠APB=y(度).则下列图象中表示y与t之间的函数关系最恰当的是()8.二次函数的图象如图所示,那么关于此二次函数的下列四个结论:①;②;③;④,其中正确的结论有()A.1个B.2个C.3个D.4个O(第8题)(第12题)(第14题)二、填空题(本大题6个小题,每小题4分,共24分)9、一个多边形的内角和是外角和的2倍,则这个多边形的边数为.10、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为.11.计算:_____________.12. 如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标.13.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为__________.14.如图,△ABC是⊙O的内接锐角三角形,连接AO,设∠OAB=α,∠C=β,则α+β=______°。

2018年新疆维吾尔自治区中考数学模拟试题与答案

2018年新疆维吾尔自治区中考数学模拟试题与答案

2018年新疆维吾尔自治区中考数学模拟试题与答案(全卷满分 120 分,考试时间 120 分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.) 1.|﹣2|=( )A .B .﹣2C .2D .2.中国水产频道报道,据统计,广东省2017年第一季度,饲料总产量6507000吨,用科学记数法表示为( )A .0.6507×107吨 B .6.507×106吨 C .6.5×106吨 D .6.507×105吨 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.如图,图中的几何体中,它的左视图是( )A .B .C .D .5.某种商品进价100元,标价150元出售,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于5%,那么最低可以打( ) A .6折B .7折C .8折D .9折6.如果关于x 的一元二次方程2x 2﹣x+k=0有两个实数根,那么k 的取值范围是( )A .k ≥B .k ≤C .k ≥﹣D .k ≤﹣ 7.下列函数中,图象经过原点的是( )A .y =3xB .y =1-2xC .y =4xD .y =x 2-18.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心. 若∠B=20°,则∠C 的大小等于( )A.20° B.25° C. 40 D.50°9.如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A.B.C.D.10.在同一坐标系内,函数y=kx2和y=kx-2(k≠0)的图象大致如图( )二、填空题(本题共6题,每小题4分,共24分)11.分解因式:9x﹣x3= .12.不等式组的解集是.13.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为.14.某学校准备用5000元购买文学名著和辞典作为科技创新节奖品,其中名著每套65元,辞典每本35元,现已购买名著40套,最多还能购买辞典本.15.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=,四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.16.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是 cm 2.三、解答题(本题共3题,每小题6分,共18分) 17.计算:. 18.先化简,再求值:,其中x=+1.19.如图,AE ∥BF ,AC 平分∠BAE ,交BF 于C .(1)尺规作图:过点B 作AC 的垂线,交AC 于O ,交AE 于D ,(保留作图痕迹,不写作法); (2)求证:AD=BC .四、解答题(二)(本大题3小题,每小题8分,共24分)20.某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%,在销售中出现了滞销,于是先后两次降价,售价降为25元. (1)求这种玩具的进价;(2)求平均每次降价的百分率(精确到0.1%).21.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).第21题图22.某学校为了改善办学条件,计划购置一批实物投影仪和一批台式电脑,经投标,购买1台实物投影仪和2台电脑共用了11000元;购买2台实物投影仪和3台电脑共用了18000元.(1)求购买1台实物投影仪和1台电脑各需多少元?(2)根据该校实际情况,需购买实物投影仪和台式电脑的总数为50台,要求购买的总费用不超过180000元,该校最多能购买多少台电脑?五、解答题(三)(本大题2小题,每小题12分,共24分)23.如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD•2OE;(3)若cos∠BAD=,BE=6,求OE的长.24.如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.C2.B3.D4.B5. B6.B7.A8. D9. D 10. B二、填空题(本题共6题,每小题4分,共24分)11.x(3﹣x)(3+x) 12.﹣3<x≤1 13.k=0或k=-11 14.68 15.25 16.三、解答题(本题共3题,每小题6分,共18分)17.解:原式==18.解:原式=÷=•=,当x=+1时,原式=.19.(1)解:如图,OB即为所求;(2)证明:∵AE∥BF,∴∠EAC=∠BCA.∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC.∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AD=BC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:(1)36÷(1+80%)=20元.故这种玩具的进价为每个20元;(2)设平均每次降价的百分率为x.36(1﹣x)2=25,解得,x≈16.7%,或x≈183%(不合题意,舍去)故平均每次降价的百分率16.7%.21.解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.22.解:(1)设购买1台实物投影仪需x元,1台电脑需y元.则由题意可得,解得;答:购买1台实物投影仪需3000元,1台电脑需4000元.(2)设购买了a台电脑.由题意可得,3000(50﹣a)+4000a≤180000,a≤30.答:最少可以购买30台电脑.23.(1)解:连接BD、OD,如图,∵AB为圆O的直径,∴∠ADB=90°,在Rt △BDC 中,E ∵为斜边BC 的中点,∴CE=DE=BE=BC , ∴∠C=∠CDE , ∵OA=OD , ∴∠A=∠ADO , ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°,∴DE ⊥OD ,又OD 为圆的半径, ∴DE 为⊙O 的切线;(2)证明:∵E 是BC 的中点,O 点是AB 的中点,∴OE 是△ABC 的中位线, ∴AC=2OE ,∵∠C=∠C ,∠ABC=∠BDC , ∴△ABC ∽△BDC , ∴BC :CD=AC :BC , 即BC 2=AC•CD. ∴BC 2=2CD•OE; (3)解:∵OE ∥AC ,∴∠BOE=∠BAD ,在Rt △OBE 中,cos ∠BOE==,设OB=3t ,OE=5t , 则BE=4t ,∴4t=6,解得t=,∴OE=5t=.24. 解:(1)∵点A(a ,12)在直线y =2x 上,∴12=2a ,即a =6.∴点A 的坐标是(6,12),又∵点A(6,12)在抛物线y =12x 2+bx 上,∴把A(6,12)代入y =12x 2+bx ,得b =-1.∴抛物线的函数解析式为y =12x 2-x(2)∵点C 为OA 的中点,∴点C 的坐标是(3,6),把y =6代入y =12x 2-x ,解得x 1=1+13,x 2=1-13(舍去),∴BC =1+13-3=13-2(3)∵点D 的坐标为(m ,n),∴点E 的坐标为(12n ,n),点C 的坐标为(m ,2m),∴点B 的坐标为(12n ,2m).把(12n ,2m)代入y =12x 2-x ,得2m =12(12n)2-(12n),即m =116n 2-14n ,∴m ,n 之间的关系式为m =116n 2-14n。

新疆乌鲁木齐市2018年中考数学模拟试卷(一)含答案解析

新疆乌鲁木齐市2018年中考数学模拟试卷(一)含答案解析

2018年新疆乌鲁木齐市中考数学模拟试卷(一)一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c2.(4分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④3.(4分)若5x=125y,3y=9z,则x:y:z等于()A.1:2:3 B.3:2:1 C.1:3:6 D.6:2:14.(4分)下列说法中,正确的是()A.“打开电视,正在播放新闻联播节目”是必然事件B.某种彩票中奖概率为10%是指买10张一定有一张中奖C.了解某种节能灯的使用寿命应采用全面检查D.一组数据3,5,4,6,7的中位数是5,方差是25.(4分)如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α6.(4分)利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为()A.B.C.D.7.(4分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.8.(4分)已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为()A.12π cm2 B.15π cm2C.24π cm2D.30π cm29.(4分)如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,则点D′到AB的距离为()A.6 B.6或8 C.7或8 D.6或710.(4分)如图所示,已知A(0.2,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(0.5,0)B.(1,0) C.(1.5,0)D.(2.5,0)二.填空题(共5小题,满分20分,每小题4分)11.(4分)计算:(﹣2)2+(2017﹣)0﹣(﹣2)3=.12.(4分)如图,已知菱形ABCD对角线交于点O,AE⊥CD于E,AE=OD,则∠CAE=.13.(4分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.15.(4分)在平面直角坐标系中,A(﹣2,0),B(1,﹣6),若抛物线y=ax2+(a+2)x+2与线段AB有且仅有一个公共点,则a的取值范围是.三.解答题(共9小题,满分90分)16.(8分)解关于x的不等式组:,其中a为参数.17.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(10分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格来源学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.9的值是( ) A .±3 B .3C .9D .81【答案】C【解析】试题解析:∵93=∴9的值是3故选C.2.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02ba-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>, ∴0c >,∴0abc >,故①正确; ②抛物线与x 轴只有一个交点, ∴0∆=,∴240b ac -=,故②正确; ③令1x =-,∴20y a b c =-++=, ∵12ba-=-, ∴2b a =,∴220a a c -++=,∴2a c =+, ∵22c +>, ∴2a >,故③正确; ④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确; 故选D . 【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想. 3.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°【答案】C【解析】分析:作AC 对的圆周角∠APC ,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC 的度数.详解:作AC 对的圆周角∠APC ,如图,∵∠P=12∠AOC=12×140°=70° ∵∠P+∠B=180°, ∴∠B=180°﹣70°=110°, 故选:C .点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.5.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④【答案】B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.6.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.35【答案】A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.7.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【答案】D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236AD EF==⨯=,∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.8.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒【答案】C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.9.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.10.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤3【答案】D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二、填空题(本题包括8个小题)11.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC=,CE=16,那么AE的长为_______【答案】1【解析】根据DE∥BC,得到35DE EABC AC==,再代入AC=11-AE,则可求AE长.【详解】∵DE ∥BC ,∴DE EA BC AC =. ∵35DE BC =,CE=11, ∴3165AE AE -=,解得AE=1. 故答案为1. 【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.13.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.【答案】x&lt;-2或x&gt;1【解析】试题分析:根据函数图象可得:当12y y 时,x <-2或x >1.考点:函数图象的性质14.若-2a m b 4与5a 2b n+7是同类项,则m+n= . 【答案】-1.【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m 、n 的值,根据有理数的加法,可得答案. 试题解析:由-2a m b 4与5a 2b n+7是同类项,得,解得.∴m+n=-1.考点:同类项.15.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P 从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO=22-=213①当点P从O→B时,如图1、图2所示,点Q运动的路程为3,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30° ∴∠BAO=60°∴∠OQD=90°﹣60°=30° ∴AQ=2AC, 又∵CQ=3, ∴AQ=2∴OQ=2﹣1=1,则点Q 运动的路程为QO=1,③当点P 从C→A 时,如图3所示,点Q 运动的路程为QQ′=2﹣3, ④当点P 从A→O 时,点Q 运动的路程为AO=1, ∴点Q 运动的总路程为:3+1+2﹣3+1=4 故答案为4. 考点:解直角三角形16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABCS=,则图中阴影部分面积是 .【答案】4【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGFCGEABGABDABCSSS S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的. 考点:中线的性质.17.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.【答案】22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点, ∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E , ∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ), ∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3, 在Rt △BCF 中,BC=22223122BF CF -=-=. ∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.18.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .【答案】200【解析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴OC=22OA AC -=22500400- =300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200 【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.三、解答题(本题包括8个小题)19.如图,在Rt ΔABC 中,C 90∠=,AD 平分BAC ∠,交BC 于点D ,点O在AB 上,O 经过A,D 两点,交AB 于点E ,交AC 于点F . 求证:BC 是O 的切线;若O 的半径是2cm ,F 是弧AD 的中点,求阴影部分的面积(结果保留π和根号).【答案】(1)证明见解析;(2)22(23)3cm π 【解析】(1)连接OD ,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD ,即可证明OD//AC ,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧AF =弧DF =弧DE ,即可证明∠BOD=60°,在Rt ΔBOD 中,利用∠BOD 的正切值可求出BD 的长,利用S 阴影=S △BOD -S 扇形DOE 即可得答案. 【详解】(1)连接OD∵AD 平分BAC ∠,∴BAD CAD ∠∠=,∵OA OD = ,∴BAD ADO ∠∠=, ∴ADO CAD ∠∠=,∴OD//AC ,∴ODB C 90∠∠==,∴OD BC ⊥又OD 是O 的半径, ∴BC 是O 的切线(2)由题意得OD 2cm =∵F 是弧AD 的中点∴弧AF =弧DF∵BAD CAD ∠∠=∴弧DE =弧DF∴弧AF =弧DF =弧DE ∴1BOD 180603∠=⨯= 在Rt ΔBOD 中 ∵BD tan BOD OD ∠=∴BD OD tan BOD 2tan6023cm ∠=⋅==2ΔBOD DOE 2S S S 23πcm 3阴影扇形⎛⎫=-=- ⎪⎝⎭.【点睛】本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.20.如图,已知直线AB 与轴交于点C ,与双曲线交于A (3,)、B (-5,)两点.AD ⊥轴于点D ,BE ∥轴且与轴交于点E.求点B 的坐标及直线AB 的解析式;判断四边形CBED 的形状,并说明理由.【答案】(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.∴□CBED是菱形21.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.【答案】证明见解析.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.22.如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】 (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析.【解析】(1)证明:∵CF ∥AB ,∴∠DAE =∠CFE .又∵DE =CE ,∠AED =∠FEC ,∴△ADE ≌△FCE ,∴AD =CF .∵AD =DB ,∴DB =CF .(2)四边形BDCF 是矩形.证明:由(1)知DB =CF ,又DB ∥CF ,∴四边形BDCF 为平行四边形.∵AC =BC ,AD =DB ,∴CD ⊥AB .∴四边形BDCF 是矩形.23.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0). 求该抛物线的解析式;求梯形COBD 的面积.【答案】(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形. 24.已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).【答案】 (1)坡顶A 到地面PQ 的距离为10米;()2移动信号发射塔BC 的高度约为19米.【解析】延长BC 交OP 于H.在Rt △APD 中解直角三角形求出AD =10.PD =24.由题意BH =PH.设BC =x.则x+10=24+DH.推出AC =DH =x ﹣14.在Rt △ABC 中.根据tan76°=BC AC,构建方程求出x 即可. 【详解】延长BC 交OP 于H .∵斜坡AP 的坡度为1:2.4,∴512AD PD =, 设AD =5k,则PD =12k,由勾股定理,得AP =13k,∴13k =26,解得k =2,∴AD =10,∵BC ⊥AC,AC ∥PO,∴BH ⊥PO,∴四边形ADHC 是矩形,CH =AD =10,AC =DH,∵∠BPD =45°,∴PH =BH,设BC =x,则x+10=24+DH,∴AC =DH =x ﹣14,在Rt △ABC 中,tan76°=BC AC ,即14x x -≈4.1. 解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC 的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.25.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E .求证:AD =AE .【答案】见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB ≌△AEB 即可.试题解析:∵AB=AC,点D 是BC 的中点,∴AD ⊥BC,∴∠ADB=90°.∵AE ⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB ≌△AEB(AAS),∴AD=AE.26.先化简代数式222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,再从12x -≤≤范围内选取一个合适的整数作为x 的值代入求值。

相关文档
最新文档