A814AY-102K中文资料
814光耦的应用-概述说明以及解释
814光耦的应用-概述说明以及解释1.引言1.1 概述光耦(Optocoupler)是一种电子器件,它由发光二极管(LED)和光敏二极管(光电晶体管或光电二极管)组成。
光电二极管接收来自LED 发出的光信号,并将其转换为电信号,从而实现光与电的相互隔离与耦合。
通过这种方式,光耦可以在不同电路之间传递信号,同时有效地隔离它们,以防止信号干扰和电气噪声的影响。
光耦的应用范围非常广泛,可以用于电子设备和电路的各个方面。
它常常被用于电源隔离、信号传输、调节和控制等功能。
一方面,光耦可以实现输入与输出之间的电气隔离,从而保护接收电路免受输入电路可能带来的电气噪声、干扰或高电压的损害。
另一方面,光耦可以实现不同电平之间的信号转换,将一个电路的信号转换为另一个电路所需要的电平,以便实现不同功能的电路之间的协调和联动。
光耦在工业控制、通信设备、医疗仪器、电力系统等领域中有着重要的应用。
在工业控制领域,光耦常被用于隔离高电压和低电压电路,以确保工业设备的安全运行。
在通信设备中,光耦被广泛应用于光纤通信系统和光模块等设备中,以实现高速信号的传输和隔离。
在医疗仪器中,光耦可以实现对生物电信号的测量和隔离,确保医疗设备的安全可靠性。
在电力系统中,光耦可以用于电力调节、继电保护和故障检测等功能,确保电力传输过程中的安全和稳定。
未来,随着电子技术的不断发展和创新,光耦的应用前景将进一步扩大。
随着新型材料和制造工艺的引入,光耦的性能和可靠性将得到进一步提高。
同时,高速、高频率和大带宽的需求也将推动光耦技术的发展,使其在数据通信、光电子器件和光学传感等领域发挥更重要的作用。
此外,随着物联网、人工智能和自动驾驶等技术的普及和应用,光耦也将扮演重要角色,为这些领域的设备和系统提供可靠的隔离和传输功能。
综上所述,光耦作为一种重要的电子器件,在电子设备中具有广泛的应用。
它通过光与电的耦合,实现了不同电路之间的信号传输和隔离,保障了电路的稳定工作和可靠性。
BS814A-2 串口应用说明
BS814A-2串口应用说明文件编码:HA0346S简介本篇介绍的是BS814A-2的串行接口应用。
功能说明传输格式(Data & Clock)时序图数据结构Start bit :当按键状态改变时,由Data 脚位送出低电平,唤醒主机,主机读取键值。
Bit 0:Key1状态 (0 = 按键、1 = 松键)。
Bit 1:Key2状态 (0 = 按键、1 = 松键)。
Bit 2:Key3状态 (0 = 按键、1 = 松键)。
Bit 3:Key4状态 (0 = 按键,1 = 松键)。
Bit 6~4:核对Bit 3 ~ bit 0 -- "0" 的总数,即被触摸按键的总数。
Bit 7:停止位,永远为 "1" (高状态)。
位 7 6 ~ 4 3 ~ 0 说明功能Stop bit Check Sum Key4 ~ Key1 State0: Touched / 1: Not Touched 数据流1 100 0000Check Sum = 100, Four keys are touched. 10110001, 0010, 0100 or 1000 Check Sum = 011, Three keys are touched.1 010 0011, 0101, 0110, 1001, 1010 or1100Check Sum = 010, Two keys are touched. 1 001 0111, 1011, 1101 or 1110Check Sum = 001, One key is touched. 1000 1111Check Sum = 000, No key is touched.4-key 串行数据流格式程序流程图程序范例SET Clock_C ;设置Clock pin为inputSET Data_C ;设置Data pin为inputCLR Receive_Buffer ;清除数据接收寄存器MOV A,8 ;接收8位数据MOV Receive_Count, AReceive_Loop:CLR Clock ;Clock = lowCLR Clock_C;-----DelayMOV A,20 ;delay 30µsSDZ AccJMP $-1;----Read bitSET Clock_C ;Clock = highSET C ;由data pin 读取数据SNZ Data ;CLR C ;RRC Receive_Buffer ;将数据右旋至寄存器内;-----DelayMOV A,20 ;delay 30usSDZ AccJMP $-1;-----Count down Receive_CountSDZ Receive_Count ;是否收到8位数据JMP Receive_loop;------Verify DataSNZ Receive_buffer.7 ;check stop bit = 1 ?JMP Receive_error;---MOV A,Receive_buffer ;MOV Data_Buffer,A ;CLR Key_pressed_Amount ;;-----MOV A,4 ;RRC Data_Buffer ;计算按键按下的总数SNZ C ;INC Key_Pressed_Amount ;SDZ ACC ;JMP $-4 ;;---- -Verify Check SumSWAPA Receive_buffer ;XOR A,Key_Press_AmountAND A,00000111BSZ ZJMP Receive_errorRET ;data correctReceive_error:;--do error functionRET补充说明•BS814A-2 Data & Clock内建上拉电阻!•当触控IC侦测到按键被按下时,Data脚位会输出低电平,可用来唤醒主机。
XLIN_DS_AW8145_CN_V1.2_无破音_超低EMI_3W_单声道_无需滤波器_D类音频功率放大器
无破音、超低EMI、3W、单声道、无需滤波器、D 类音频功率放大器特性y 独特的无破音(NCN )功能,NCN1,NCN2,NCNOFF 三种模式可选y EEE 技术,优异的全带宽EMI 抑制能力 y 优异的“噼噗-咔嗒”(Pop-Click )杂音抑制 y 3W 输出功率(10% THD 、5V 电源、4Ω负载)y 0.05%THD+N (1W 输出功率、5V 电源) y 无需滤波器Class-D 结构 y 高达90%的效率y 高PSRR :-80dB (217Hz ) y 低静态电流(3.5mA ) y 低关断电流(<0.1μA ) y 工作电压范围:2.5V ~5.5V y 过流保护、过热保护、欠压保护y 纤小的1.45mm×1.45mm CSP9封装应用y 手机 y MP3/PMP y GPSy 数码相框概要AW8145是一款无破音、超低EMI 、3W 、单声道、无需滤波器的D 类音频功率放大器。
独特的无破音(Non-Crack-Noise )功能可以通过检测输出的破音失真,自动调整系统增益,不仅有效避免了大功率过载输出对喇叭的损坏,同时带来舒适的听觉感受。
AW8145采用专有的EEE (Enhanced Emis-sion Elimination) 技术,在全带宽范围内极大地降低了EMI 干扰,对60cm 的音频线,在FCC 标准下具有超过20dB 的裕量。
AW8145无需滤波器的PWM 调制结构及增益内置方式减少了外部元件、PCB 面积和系统成本,并且简化了设计。
高达90%的效率更加适合于手机及其他便携式音频产品。
AW8145内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。
AW8145提供纤小1.45mm×1.45mm CSP9封装,额定的工作温度范围为-40℃至85℃。
引脚分布及标识图123A BC123ABC8145 – AW8145CSR XY -生产跟踪码AW8145CSR MARKING(器件标识图)AW8145CSR TOP VIEW(俯视图)图 1 AW8145引脚分布俯视图及器件标识图典型应用图CTRL1CTRL2图 2AW8145差分输入方式应用图CTRL1CTRL2图 3AW8145单端输入方式应用图订购信息产品型号工作温度范围 封装形式 器件标识 发货形式 AW8145CSR-40℃~85℃CSP98145卷带包装 3000 片/盘AW8145装运形式R: Tape & Reel 封装形式CS: CSP9绝对最大额定值(注1)参数范围电源电压V DD-0.3V to 6V INP ,INN ,CTRL 引脚电压-0.3V to V DD +0.3V封装热阻θJA (注2) 90/W ℃环境温度-40 to 85℃℃最大结温T JMAX 125℃ 存储温度T STG-65 to 150℃℃引脚温度(焊接10秒) 260℃ESD 范围(注3)HBM (人体静电模式) ±8KVLatch-up测试标准:JEDEC STANDARD NO.78B DECEMBER 2008+IT :450mA -IT :-450mA注1: 如果器件工作条件超过上述各项极限值,可能对器件造成永久性损坏。
NCV8141资料
NCV81415.0 V, 500 mA Linear Regulator with ENABLE, RESET, and WatchdogThe NCV8141 is a linear regulator suited for microprocessor applications in automotive environments.This ON Semiconductor part provides the power for the microprocessors along with many of the control functions needed in today’s computer based systems. Incorporating all of these features saves both cost, and board space.The NCV8141 provides a low sleep mode current as compared to the CS8141. Consult your local sales representative for a low sleep mode current version of the CS8140.Features•5.0 V ±4.0%, 500 mA Output V oltage•Lower Quiescent Current•Improved Filtering for /RESET Functionality•m P Compatible Control Functions♦Watchdog♦RESET♦ENABLE•Low Dropout V oltage (1.25 V @ 500 mA)•Low Quiescent Current (7.0 mA @ 500 mA)•Low Noise, Low Drift•Low Current SLEEP Mode 50 m A (max)•Fault Protection♦Thermal Shutdown♦Short Circuit♦60 V Peak Transient V oltage•NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes•Pb−Free Package is Available**For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.Figure 1. Block DiagramVPIN FUNCTION DESCRIPTIONMAXIMUM RATINGSMaximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.†Depending on thermal properties of substrate R q JA = R q JC + R q CA.1.60 seconds max above 183°C.2.−5.0°C/+0°C allowable conditions.ELECTRICAL CHARACTERISTICS (7.0 ≤ V IN≤26 V, 5.0 mA ≤ I OUT≤500 mA, −40°C ≤ T J≤150°C, −40°C ≤ T A≤125°C, unless otherwise noted.) (Note 3)Output Stage (V)ENABLEELECTRICAL CHARACTERISTICS (continued) (7.0 ≤ V IN ≤26 V , 5.0 mA ≤ I OUT ≤500 mA, −40°C ≤ T J ≤150°C, −40°C ≤ T A ≤125°C, unless otherwise noted.) (Note 4)RESETWatchdog 5.R P is connected to RESET and V OUT.TYPICAL PERFORMANCE CHARACTERISTICSFigure 2. Output Stability Figure 3. Output Stability with Capacitor ChangeE S R (W )0.01Output Current (mA)0.111000102030401555010100E S R (W )10Output Current (mA)10010203040155501000253545253545DEFINITION OF TERMSDropout Voltage:The input−output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.Input Voltage:The DC voltage applied to the input terminals with respect to ground.Line Regulation:The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.Load Regulation:The change in output voltage for a change in load current at constant chip temperature. Quiescent Current:The part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.Ripple Rejection: The ratio of the peak−to−peak input ripple voltage to the peak−to−peak output ripple voltage. Current Limit:Peak current that can be delivered to the output.CIRCUIT DESCRIPTIONThe NCV8141 is a 5.0 V Watchdog Regulator with protection circuitry and three logic control functions that allow a microprocessor to control its own power supply. The NCV8141 is designed for use in automotive, switch mode power supply post regulator, and battery powered systems. Basic regulator performance characteristics include a low noise, low drift, 5.0 V ±4.0% precision output voltage with low dropout voltage (1.25 V @ I OUT = 500 mA) and low quiescent current (7.0 mA @ I OUT = 500 mA). On board short circuit, thermal, and overvoltage protection make it possible to use this regulator in particularly harsh operating environments.The Watchdog logic function monitors an input signal (WDI) from the microprocessor or other signal source. When the signal frequency moves outside externally programmable window limits, a RESET signal is generated (RESET). An external capacitor (C DELAY) programs the watchdog window frequency limits as well as the power on reset (POR) and RESET delay.The RESET function is activated by any of three conditions: the watchdog signal moves outside of its preset limits; the output voltage drops out of regulation by more than 4.5%; or the IC is in its power up sequence. The RESET signal is independent of V IN and reliable down to V OUT = 1.0 V.In conjunction with the Watchdog, the ENABLE function controls the regulator’s power consumption. The NCV8141’s output stage and its attendant circuitry are enabled by setting the ENABLE lead high. The regulator goes into sleep mode when the ENABLE lead goes low and the watchdog signal moves outside its preset window limits. This unique combination of control functions in the NCV8141 gives the microprocessor control over its own power down sequence: i.e. it gives the microprocessor the flexibility to perform housekeeping functions before it powers down.VOLTAGE REFERENCE AND OUTPUT CIRCUITRY Precision Voltage ReferenceThe regulated output voltage depends on the precision band gap voltage reference in the IC. By adding an error amplifier into the feedback loop, the output voltage is maintained within ±4.0% over temperature and supply variation.Output StageThe composite PNP−NPN output structure (Figure 4) provides 500 mA (min) of output current while maintaining a low drop out voltage (1.25 V) and drawing little quiescent current (7.0 mA).Figure 4. Composite Output Stage of the NCV8141V OUTThe NPN pass device prevents deep saturation of the output stage which in turn improves the IC’s efficiency by preventing excess current from being used and dissipated by the IC.Output Stage ProtectionThe output stage is protected against overvoltage, short circuit and thermal runaway conditions (Figure 5).If the input voltage rises above 30 V (e.g. load dump), the output shuts down. This response protects the internal circuitry and enables the IC to survive unexpected voltage transients.Using an emitter sense scheme, the amount of current through the NPN pass transistor is monitored. Feedback circuitry insures that the output current never exceeds a preset limit.Figure 5. Typical Circuit Waveforms for OutputStage ProtectionILoad DumpV V Thermal ShutdownShort CircuitShould the junction temperature of the power device exceed 180°C (typ), the power transistor is turned off.Thermal shutdown is an effective means to prevent die overheating since the power transistor is the principle heat source in the IC.REGULATOR CONTROL FUNCTIONSThe NCV8141 differs from all other linear regulators in its unique combination of control features.Watchdog and ENABLE FunctionV OUT is controlled by the logic functions ENABLE and Watchdog (Table 1).Table 1. Vas a Function of ENABLE and WatchdogAs long as ENABLE is high or ENABLE is low and the Watchdog signal is normal, V OUT will be at 5.0 V (typ). If ENABLE is low and the Watchdog signal moves outside programmable limits, the output transistor turns off and the IC goes into SLEEP mode. Only the ENABLE circuitry in the IC remains powered up, drawing a quiescent current of less than 50 m A.The Watchdog monitors the frequency of an incoming WDI signal. If the signal falls outside of the WDI window,a frequency programmable pulse train is generated at the RESET lead (Figure 6) until the correct Watchdog input signal reappears at the lead (ENABLE = HIGH).The lower and upper window threshold limits of the watchdog function are set by the value of C DELAY . The limits are determined according to the following equations for the NCV8141:t WDI +(1.3 105)C DELAY or f WDI +(7.69 10−6)C DELAY −1The capacitor C DELAY also determines the frequency of the RESET signal and the POWER−ON−RESET (POR)delay period.RESET FunctionThe RESET function is activated when the Watchdog signal is outside of its preset window (Figure 6), when the regulator is in its power up state (Figure 7) or when V OUT drops below V OUT −4.5% for more than 2.0 m s (Figure 8)If the Watchdog signal falls outside of the preset voltage and frequency window, a frequency programmable pulse train is generated at the RESET lead (Figure 6) until the correct Watchdog input signal reappears at the lead. The duration of the RESET pulse is determined by C DELAY according to the following equation:t WDI(RESET)+(1.0 104)C DELAY RESET CIRCUIT WAVEFORMS WITH DELAYSINDICATEDIf an undervoltage condition exists, the voltage on the RESET lead goes low and the delay capacitor, C DELAY , is discharged. RESET remains low until output is in regulation, the voltage on C DELAY exceeds the upper switching threshold and the Watchdog input signal is within its set window limits (Figures 7 and 8). The delay after the output is in regulation is:t POR(typ)+(4.75 105)C DELAYThe RESET delay circuit is also programmed with the external cap C DELAY .The output of the reset circuit is an open collector NPN.RESET is operational down to V OUT = 1.0 V . Both RESET and its delay are governed by comparators with hysteresis to avoid undesirable oscillations.V OUT When Watchdog is Held High and ENABLE = HIGHPOR Normal OperationWDI held HighV INENABLEWDI RESET V OUT 0 V0 V 0 V BattBattPOR Normal OperationWDI held LowV INENABLEWDI RESET V OUT 0 V0 V 0 V BattBattPOR Normal OperationSlow WDI signalV INENABLEWDI RESET V OUT 0 V0 V 0 V BattBattPOR Normal OperationSleep Mode V INENABLEWDI RESET V OUT 0 V0 V 0 V BattBattWDI highPOR Normal OperationV OUT When Watchdog is Held Lowand ENABLE = HIGHV OUT When Watchdog is too Slowand ENABLE = HIGHWDI Held High After a Normal Periodof Operation; ENABLE = LOWWDI Held Low or is too Slow after a Normal Period of Operation;ENABLE = LOWPORNormal OperationSleep ModeV INENABLEWDI RESET V OUT 0 V0 V 0 V BattBattWDI lowPOR Normal OperationFigure 6. Timing Diagrams for Watchdog and ENABLE FunctionsFigure 7. Power RESET and Power DownFigure 8. Undervoltage Triggered RESETVAPPLICATION NOTES NCV8141 DESIGN EXAMPLEThe NCV8141 with its unique integration of linearregulator and control features: RESET, ENABLE and WATCHDOG, provides a single IC solution for a microprocessor power supply. The reset delay, resetduration and watchdog frequency limit are all determined bya single capacitor. For a particular microprocessor theoverriding requirement is usually the reset delay (alsoknown as power on reset). The capacitor is chosen to meetthis requirement and the reset duration and watchdogfrequency follow.The reset delay is given by:t POR(typ)+(4.75105)C DELAYAssume that the reset delay must be 200 ms minimum.From the NCV8141 data sheet the reset delay has a $37%tolerance due to the regulator.Assume the capacitor tolerance is $10%.t POR(min)+(4.751050.63)C DELAY0.9C DELAY(min)+t POR(min) 2.69105C DELAY(min)+0.743m FClosest standard value is 0.82 m F.Minimum and maximum delays using 0.82 m F are 220 ms and 586 ms.The duration of the reset pulse is given by:T WDI(RESET)(typ)+(1.0104)C DELAYThis has a tolerance of ±50% due to the IC, and ±10% due to the capacitor.The duration of the reset pulse ranges from 3.69 ms to 13.5 ms.The watchdog signal can be expressed as a frequency or time. From a programmers point of view, time is more useful since they must ensure that a watchdog signal is issued consistently several times per second.The watchdog time is given by:t WDI+(1.3105)C DELAYThere is a tolerance of ±20% due to the NCV8141.With a capacitor tolerance of ±10%:t WDI+(1.3105) 1.2 1.1C Delayt WDI+141ms(max)t WDI+(1.3105)0.80.9C DELAYt WDI+76ms(min)The software must be written so that a watchdog signal arrives at least every 76 ms.Figure 9. WDI Signal for C Delay = 0.82 m F usingNCV8141ms14176ENERGY CONSERVATION AND SMART FEATURES Energy conservation is another benefit of using a regulator with integrated microprocessor control features. Using the NCV8141 as indicated in Figure 10, the microprocessor can control its own power down sequence. The momentary contact switch quickly charges C1 through R1.When the voltage across C1 reaches 3.95 V ( the enable threshold), the output switches on and V OUT rises to 5.0 V. After a delay period determined by C Delay, a frequency programmable reset pulse train is generated at the reset output. The pulse train continues until the correct watchdog signal appears at the WDI lead. C1 is now left to discharge through the input impedance of the enable lead (approximately 150 k W) and the enable signal disappears. The output voltage remains at 5.0 V as long as the NCV8141 continues to receive the correct watchdog signal.The microprocessor can power itself down by terminating its watchdog signal. When the microprocessor finishes its housekeeping or power down software routine, it stops sending a watchdog signal. In response, the regulator generates a reset signal and goes into a sleep mode where V OUT drops to 0 V, shutting down the microprocessor.9.0 VFigure 10. Application Diagram for NCV8141. The NCV8141 Provides a 5.0 V Tightly Regulated Supply and Control Function to the Microprocessor. In this Application, the Microprocessor Controls its own Power Down Sequence (see text).Figure 11. Application DiagramBatteryIgnition***R ≤ 80 k W .STABILITY CONSIDERATIONSThe output or compensation capacitor C 2 in Figure 11helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability.The capacitor value and type should be based on cost,availability, size and temperature constraints. An aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (−25°C to −40°C),both the value and ESR of the capacitor will vary considerably. The capacitor manufacturers data sheet usually provides this information.The value for the output capacitor C 2 shown in Figure 11should work for most applications, however it is not necessarily the optimized solution.To determine an acceptable value for C 2 for a particular application, start with a tantalum capacitor of the recommended value and work towards a less expensive alternative part.Step 1: Place the completed circuit with a tantalum capacitor of the recommended value in an environmental chamber at the lowest specified operating temperature and monitor the outputs with an oscilloscope. A decade box connected in series with the capacitor will simulate the higher ESR of an aluminum capacitor. Leave the decade box outside the chamber, the small resistance added by the longer leads is negligible.Step 2: With the input voltage at its maximum value,increase the load current slowly from zero to full load while observing the output for any oscillations. If no oscillations are observed, the capacitor is large enough to ensure a stable design under steady state conditions.Step 3: Increase the ESR of the capacitor from zero using the decade box and vary the load current until oscillations appear. Record the values of load current and ESR that cause the greatest oscillation. This represents the worst case load conditions for the regulator at low temperature.Step 4: Maintain the worst case load conditions set in Step 3 and vary the input voltage until the oscillations increase. This point represents the worst case input voltage conditions.Step 5: If the capacitor is adequate, repeat Steps 3 and 4with the next smaller valued capacitor. A smaller capacitor will usually cost less and occupy less board space. If the output oscillates within the range of expected operating conditions, repeat Steps 3 and 4 with the next larger standard capacitor value.Step 6: Test the load transient response by switching in various loads at several frequencies to simulate its real working environment. Vary the ESR to reduce ringing.Step 7: Increase the temperature to the highest specified operating temperature. V ary the load current as instructed in Step 5 to test for any oscillations.Once the minimum capacitor value with the maximum ESR is found, a safety factor should be added to allow for the tolerance of the capacitor and any variations in regulator performance. Most good quality aluminum electrolytic capacitors have a tolerance of ± 20% so the minimum value found should be increased by at least 50% to allow for this tolerance plus the variation which will occur at low temperatures. The ESR of the capacitor should be less than 50% of the maximum allowable ESR found in Step 3 above.CALCULATING POWER DISSIPATION IN A SINGLEOUTPUT LINEAR REGULATORThe maximum power dissipation for a single output regulator (Figure 12) is:P D(max)+NJV IN(max)*V OUT(min)NjI OUT(max))V IN(max)I Q(1)where:V IN(max) is the maximum input voltage,V OUT(min) is the minimum output voltage,I OUT(max) is the maximum output current for the application, and11I Q is the quiescent current the regulator consumes at I OUT(max).Figure 12. Single Output Regulator With KeyPerformance Parameters LabeledV INV OUTOnce the value of P D(max) is known, the maximum permissible value of R q JA can be calculated:R q JA +150°C *T AP D(2)The value of R q JA can then be compared with those in the package section of the data sheet. Those packages with R q JA ’s less than the calculated value in Equation 2 will keep the die temperature below 150°C.In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.HEATSINKSA heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of R q JA .R q JA +R q JC )R q CS )R q SA(3)where:R q JC = the junction−to−case thermal resistance,R q CS = the case−to−heatsink thermal resistance, and R q SA = the heatsink−to−ambient thermal resistance.R q JC appears in the package section of the data sheet. Like R q JA , it too is a function of package type. R q CS and R q SA are functions of the package type, heatsink and the interface between them. These values appear in heatsink data sheets of heatsink manufacturers.PACKAGE DIMENSIONSD 2PAK−7 (SHORT LEAD)CASE 936AB−01ISSUE ODIM MIN MAX MIN MAX MILLIMETERS INCHES A 0.3960.40610.0510.31B 0.3260.3368.288.53C 0.1700.180 4.31 4.57D 0.0260.0360.660.91E 0.0450.0551.14 1.40G 0.050 REF 1.27 REF H 0.5390.57913.6914.71K L 0.0000.0100.000.25M 0.1000.1102.54 2.79N 0.0170.0230.430.58NOTES:1.DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.0.0550.066 1.40 1.68P 0.0580.078 1.47 1.98R S 0.0950.105 2.41 2.67U 0.256 REF 6.50 REF V0.305 REF 7.75 REF0 8 °°0 8 °°ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATIONSMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).。
PC814A中文资料
NOTICEG The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.G Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.G Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:(i)The devices in this publication are designed for use in general electronic equipment designs such as:--- Personal computers--- Office automation equipment--- Telecommunication equipment [terminal]--- Test and measurement equipment--- Industrial control--- Audio visual equipment--- Consumer electronics(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)--- Traffic signals--- Gas leakage sensor breakers--- Alarm equipment--- Various safety devices, etc.(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:--- Space applications--- Telecommunication equipment [trunk lines]--- Nuclear power control equipment--- Medical and other life support equipment (e.g., scuba).G If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.G This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.G Contact and consult with a SHARP representative if there are any questions about the contents of this publication.。
托利多8142说明书
信号名称 25 芯 D 型插头
信号名称
25 芯 D 型插头
STORE-
1
BUSY
11
DATABIT0
2
PAPEREMPTY
12
DATABIT1
3
SELECT
13
DATABIT2
4
AFEED
14
DATABIT3
5
ERROR-
15
DATABIT4
6
INIT-
16
DATABIT5
7
SELECT-
17
DATABIT6
9 芯 D 型插头 1
2
3
4
5
7
8
9
2.2.2
串行口 COM1 COM1有RS232和20mA电流环接口。 RS232最远传输距离为:15m。 20mA电流环最远传输距离为:300m。 25芯插头管脚定义:
信号名称 屏蔽地 Shield RS232 发送 TXD RS232 接收 RXD
地 报警输出 Alarm 20mA 电流环接收+ 20mA 电流环发送+ 20mA 电流环接收-
8142Pro+ 单显示仪表最多能带8个350欧姆的模拟式传感器。 仪表到接线盒的电缆线请使用本公司的六芯双屏蔽电缆线。
推荐最长电缆长度 (使用本公司的六芯双屏蔽电缆线)
350Ω传感器个数
1
4
6
8
长度(米)
600
180
130
90
9 芯插头管脚定义: 信号名称 正激励 正反馈 屏蔽地 负反馈 负激励 正信号 负信号 屏蔽地 +EXC +SEN 内屏蔽 -SEN -EXC +SIG -SIG 外屏蔽
海爾 RW-A814SF 中文使用手册说明书
RW-A814SF(僅適用於家庭適用)閱讀本說明書使用前請閱讀所有安裝說明和解釋。
請仔細按照說明進行操作。
並請妥善保存以備日後參考查閱。
目錄安全守則■安全須知 2 安裝■產品介紹5■安裝步驟6操作■快速操作10■每次洗滌之前11■洗滌劑分配器12■控制面板13■選項14■其他程序15■程序17■洗滌程序表18維修保養■清潔和保養19■疑難排解21 ■技術規格22安全須知 ◼安全預防措施為了您的安全,請您務必遵守本說明書中所提供的訊息,以盡量減少火災、 爆炸、電擊、財產損失、人身傷害或生命損失的風險。
本產品只可作家庭或類似環境使用,如:商店內部﹑辦事處以及其他類似工作環境的廚房區域;客戶在旅館﹑汽車旅館和其他住宅類型的環境。
符號說明:警告 小心 注意 警告觸電危險⚫如果電源線損壞,則必須由製造商,其維修代理商或類似合格人員進行更換,以避免發生危險。
⚫請使用隨洗衣機所附送的新軟管套件,舊軟管套件不得重複使用。
⚫對洗衣機進行任何維護工作之前,請拔下電源插頭。
⚫使用洗衣機後請務必拔下設備電源並關閉供水。
⚫為確保您的安全,請務必將電源插頭插入接地的插座。
仔細檢查並確保您的插座正確穩固地接地。
⚫請確保水和電氣設備必須由合格的技術人員根據製造商的說明和當地的安全規定進行連接。
請注意兒童安全⚫如果已經在安全的情況下接受了有關洗衣機使用的監督或指導並且了解所涉及的危險,那麼 8 歲及以上的兒童、身心障礙人士(身體,感官或精神能力衰退的人士)或缺乏相關經驗和知識的人士皆可以使用洗衣機。
兒童不得玩弄洗衣機。
未經監督的情況下,兒童亦不得對洗衣機進行清潔和維護。
符號和警告詞的組合表示潛在的危險情況。
否則可能導致死亡或嚴重傷害。
符號和警告詞的組合表示可能導致傷害以及財產或環境損害的潛在危險。
符號和警告詞的組合表示可能導致輕微或微弱傷害的潛在危險。
⚫低於3歲的兒童應受到監督,以確保他們遠離洗衣機及不會隨意玩弄洗衣機。
⚫由於動物和兒童可能爬入洗衣機,在每次操作前請檢查洗衣機。
N79E815_814_8132系列中文资料
2*UART/2*SPI pins are switched by S/W setting Support 2KB independent LD ROM as ISP or can be as data flash
" #$
%$
&
Memory
512KB 256KB 128KB
M0-core, USB,CAN,I²S I²C,PI,UART, DMA,RTC,PWM,NVM
))(.&)(.&.;7. =
&:
IR signal
GPIO
PMU
Motor LED
Power Management
Advantage:
>= ? @2 . B 6 #(
Ʋ1% internal BOR 22/11 MHz RC
EE PROM
INT
Function
Full 16K~4KB Flash
N79E814AT20 8K
4KB
512 15/17 3*16-bit
11
1 7*10-bit 4*10-bit 1% 22MHz TSSOP20
N79E814AS20 8K
4KB
512 15/17 3*16-bit
11
1 7*10-bit 4*10-bit 1% 22MHz SOP20
N79E814AD20 8K
M0-core, I²C,SPI, UART PWM,NVM,12-bit ADC
ᠬ1% internal RC
8051 UART,SPI,I²C PWM & NVM,ISP
1% internal RC
4T 8051 I²C,SPI,UART,
安规电容 102K 400V
东莞市旭枫电子科技有限公司Dongguan Xufeng Electronic Technology Co.,Ltd 客戶名稱:No. 承認書SPECIFICATION FOR APPROVAL Description:交流安規圓板陶瓷電容器CERAMIC DISC CAPACITORS SAFETY RECOGNIZEDXYCC SERIES X1:400VAC,Y1:400VACYour Part No. Your Model No. Maker Part No. Manufacturer: Approved By Date:Y1安规电容:Y1102K400V Y5P::::广东省東莞市橋頭鎮朗厦村华厦一環路22号Tel:86(769)-86290585Fax:86(769)-86290585貴公司承認欄Approval By核准Approval審核Check經辦PreparedSPECIFIC ATION SHEETCN12B102KL02NDESCRIPTION:1000PF﹢10%~-10%Y5P CLASS X1,Y1ELECRIPTICAL SPECIFICATIONCAPACITANCE:1000PF+10%~-10%AT1KHZ1.0VrmsWORKING VOLTAGE:X1:440V Y1:400V ACTEMPERATURE COEFFICIENT:Y5P1.LOWTEMPERATUREREQUIREMENT:﹣25℃2.HIGHTEMPERATURE REQUIREMENT:﹢85℃3.MAX.CAPACITANCE CHANGE OVERTEMPERATURE RANGE:﹢10%~-10%OPERATING TEMPERATURE:-25℃~﹢125℃PRODUCT SPECIFIC ATION:DIAMETER(D):9mm MAX THICKNESS(T):3.5--5.5mm MAX. LEAD SPACING(F):10.0﹢0.5/-0.5mm LEAD SIZE(d):0.6﹢0.1/-0.1mm LEAD LENGTH(L):25.0+0.5/-0.5mm LEAD STYLE:STraight DISSPATION FACTOR:2.5%MAX.INSOLUTLON RESISTANCE:10000M COATING:EPOXY TEST VOLTAGE:4KV AC FOR1MINUTES PACKING:BULKStandard No.UL/CSA Certificate No.E509457Rated VoltageF0WX2.E509457TUV CQCX1:400V AC Y1:400V ACIEC60384-14:2013CQC19001234621XYCC Safety Standard Recognized Ceramic Capacitor1.This specification is applied to following Safety Standard Recognized Ceramic Capacitor for Electronics Appliance.TUVX1,Y1Class baned on UL /CSAX1,Y1Class baned on FOWX2.E5094572.Approval Standard and Recognized No.3.Part No.Ex.CR09B221KY2NTypeBody T.C.Nominal Capacitance Lead Lead Lead RoHSDia.CapacitanceTolerance Style Spacin gLength X1:400V AC B:Y5P K:±10%L 0:10mm 2:25mm Min.H:HF Y1:400V ACE:Y5U M:±20%Y 7:7.5mm3:3.5±1mm N:RoHSF:Y5VK 5:5±1mmD4.Rating4.1Operating Temperature:25/125/214.2LeadStyle:Dongguan Xufeng Electronic Technology Co.,LtdMarking:pany Name Code :XYCC2.Type Designation :CR3.Nominal Capacitance:3-digit-system4.Capacitance Tolerance:Code5.Manufactured Date:AbbreviationEx.2019Ex.1(January)912(February)92::10(October)9O 11(November)9N 12(December)9DC:Made in DONG GUAN6.Approval Mark:TUV Approval Mark:UL Approval Mark:CQC Approval Mark:(On the Label)EN/UL F0WX2.E509457:X1,Y1Rated Voltage Mark:400V ~,400V ~XYCC Safety Standard Recognized Ceramic Capacitor :Performance“room condition”temperature :20~35℃,humidity:45~75%,atmospheric pressure 86~106kPa.No.Item SpecificationTest Condition1Dielectric StrengthBetween lead wiresNo failureThe capacitors shall not be damage when AC2600V(for Y2Class)and AC4000V (for Y1Class)are applied between the lead wires for 60sec.(charge/discharge current <50mA)Body insulationNo failureFirst the terminals of the capacitor shall be connected together.Then a metal foil shall be closely wrapped around the body of the capacitor distance of about 3to 4mm from each terminal.Then the capacitor shall be inserted into a container filled with metal balls of about 1mm diameter.Finally AC2600V is applied for 60sec.between the capacitor lead wires and metal balls.(charge/discharge current ≦50mA)2Insulation Resistance (I.R.)10000M ΩminThe insulation resistance shall be measured with500±50VDC with 60±5sec of charging.3CapacitanceWithin specified tolerance.Char Frequency Voltage NPO/SL 1MHz ±20%5.0Vrms MaxY5P/Y5U/Y5V 1KHz ±20%The measurement at reference temperature 25∘C 4Dissipation Factor(D.F.)Char.Specified The Capacitance shall be measured At 25℃with 1±0.1KHZ for X7R&Y5P,with 1±0.1MHZ for COG and 5Vrms max.NPO/SL Q ≧300Y5PD.F ≦2.5%Y5U/Y5V D.F ≦5.0%5Temperature CharacteristicChar.Cap.Change The Capacitance measurement shall be made at each stepspecified in Table.Pre-treatment:Capacitor shall be stored at max.temperature for 1hour.Then placed at room condition for (※)24±2hours before measurements.NPO Within ±60ppm SL +350~1000%Y5P Within ±10%Y5U -56%/+22%Y5V -82%/+22%6Robustness ofTerminationTensileLead wire shall not cut off Capacitor shall not be broken.With the termination in its normal position the specimen is held by its body in such a manner that the axis of the termination isvertical the tensile force of 10N shall be applied to thetermination in the direction of its axis and acting in a direction away from the body of the specimen.Bending Lead wire shall not cut off Capacitor shall not be broken.With the termination in its normal position the specimen is held by its body in such a manner that the axis of the termination isvertical :a mass applying a force of 5N is then suspended from the end of the termination.The body of the specimen is then inclined within a period of 2to 3sec.,through an angle of a approximately 90in the vertical plane and then returned to its initial position over the same period of time;this operation constitutes one bend.One bend immediately followed by a second bend in the opposite direction.StepTemperature P.F1+25±2℃2Min.operation temp.3+25±2℃4Max.operation temp.5+25±2℃1sec)by UL1414and CSA E384-14previous safety standards.(UL1414is deleted in this SPEC11Flame Test The capacitor flame discontinue asfollows.The capacitor shall be subjected to applied for 15sec.And thenremoved for 15sec,until 5cycle.(Unit:mm)12Active FlammabilityThe cheese-cloth shall not be on fireThe specimens shall be individually wrapped in at least one but more than two complete layers of cheese-cloth The specimens shall be subjected to 20discharges.The interval betweensuccessive discharges shall be 5sec.The Uac shall be maintained for 2min.after the last discharge.C1,2:1μF ±10%C3:0.33μF ±5%10KV Ct :3μF ±5%10KV Cx :CapacitorL1-10:1.5mH ±20%16A Rod core choke R :100Ω±2%,Uac :Ur ±5%Ur :Rated working voltage F :Fuse,Rated 10AUt :Voltage applied to CtCycleTime1to 430sec.max.560sec.Max.。
aemh81-814 824 工业级主板 用户手册说明书
AEMH81-814 AEMH81-824 Intel® H81 Express Chipset 工业级主板用户手册User's ManualRev: 2.8Date: 2017.07安全指导01. 务必请仔细通读本安全指导。
02. 务必请妥善保管本手册,以备将来参考。
03. 请保持本设备的干燥。
04. 机箱的开口缝隙是用于通风避免机箱内的部件过热,请勿将此类开口掩盖或堵塞。
05. 在将本设备与电源连接前,请确认电源电压值,将电压调整为110V/220V。
06. 请将电源置于不会被践踏到的地方,并且不要在电源线上堆置任何实物。
07. 插拔任何扩展卡或设备模块前,请将电源线拔下。
08. 请留意手册上提到的所有注意和警告事项。
09. 通电之前请确认主机箱中不要遗留螺丝等金属物件,以免电气短路烧毁其他部件。
10. 不得将任何液体倒入机箱开口的缝隙中,否则会产生严重损坏或电路瘫痪。
11. 如果发生以下情况,请找专业人员处理:a. 电源线或插头损坏b. 液体渗入机器内c. 机器暴露在潮湿的环境中d. 机器工作不正常或用户不能通过本手册的指导使其正常工作e. 机器跌落或受创f. 机器有明显的破损迹象商标声明所有的品牌,产品,徽标,商标和公司名称都是属于商标或注册商标各自的拥有者。
AMI®是AMI公司的注册商标。
Intel®,Celeron®,Pentium®是Intel 公司的注册商标。
Netware®是Novell Inc.的注册商标。
PS/2和OS/2是International Business Machines公司的注册商标。
Windows® 98/2000/NT/XP和Microsoft®是Microsoft 公司的注册商标。
目录安全指导 (1)商标声明 (1)第一章主板简介及规格说明 (4)1.1包装盒内物品清单 (4)1.2工业级主板特色 (4)1.3主板规格简述 (5)1.4主板LAYOUT图及规格表 (6)1.4.1AEMH81-814主板布局图 (6)1.4.2AEMH81-824主板布局图 (7)1.4.3主板规格 (8)第二章硬件设备的安装说明 (10)2.1中央处理器的安装(以1150为例) (10)2.2CPU风扇的安装 (11)2.3内存的安装 (13)2.4视频采集卡的安装 (13)2.5主板跳线的设定说明 (14)2.5.1清除CMOS跳线(CLR_CMOS) (14)2.5.2LVDS电压控制跳线(LVDS_PWR) (14)2.5.3AUTO_ON接口状态选择跳线 (15)2.5.4COM1 / COM2状态控制跳线(JP14 / JP15 / JP16 / JP17) (15)2.5.5COM6与JP8,COM7与JP9功能选择跳线(JP16 / JP17)(仅AEMH81-824) (15)2.6主机板接头说明 (15)2.6.1风扇电源接头 (CPU_FAN1 / SYS_FAN1/2) (15)2.6.2USB扩展接头 (16)2.6.3前置音效输出接口(F_AUDIO1) (16)2.6.4COM插针 (17)2.6.5COM插针的接线方法 (17)2.6.6SATA接口使用说明 (18)2.6.7系统信号 / 控制面板接口(F_PANEL1) (18)2.6.8INVERT 针脚定义(LVDS背光控制接口) (19)2.6.9LVDS针脚定义 (19)2.6.10RS422 / RS485传输接口插针定义(JP8/9)(仅AEMH81-824) (20)2.6.11DEBUG 针脚定义(DEBUG) (21)2.6.12ATX电源接口安装(ATX_12V1 / ATXPWR1) (21)2.6.13AUTO_ON插针定义 (22)2.6.14清除CLR_CMOS1插针定义 (22)第三章BIOS简介 (24)3.1BIOS升级更新 (24)3.2BIOS设定 (24)3.3上电自动开机功能设置方法 (25)第四章看门狗软件使用说明及安装步骤 (27)4.1软件功能 (27)4.2看门狗定义及工作原理 (27)4.3软件安装 (27)第五章驱动程序安装 (29)5.1芯片组驱动程序的安装 (29)5.2板载显卡驱动的安装 (29)5.3板载声卡驱动的安装 (29)5.4板载网卡驱动的安装 (29)5.5Intel管理引擎界面的安装 (29)5.6USB3.0 驱动的安装 (30)第一章主板简介及规格说明为了保证产品品质并适合市场需求,主板都通过了抗老化、低电压、各种温度、湿度环境下的反复测试,并通过市面多款主流视频采集压缩卡的兼容性测试,均能满足行业的需求。
Everlight EL814系列光电耦合器说明书
4 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLERAC INPUT PHOTOCOUPLER EL814 SeriesFeatures• AC input response• Current transfer ratio (CTR: Min. 20% at I F = ±1mA,V CE = 5V) • High isolation voltage between input and output (Viso = 5000 V rms )• Wide Operating temperature range -55~110ºC • High collector -emitter voltage V CEO = 80V • Compact dual -in-line package• The product itself will remain within RoHS compliant version • Compliance with EU REACH• UL and cUL approved (No. E214129) • VDE approved (No. 132249) • SEMKO approved • NEMKO approved • DEMKO approved • FIMKO approved • CQC approvedDescriptionThe EL814 series of devices each consist of two infrared emitting diodes, connected in inverse parallel, optically coupled to a phototransistor detector.They are packaged in a 4-pin DIP package and available in side-lead spacing and SMD option.Applications• AC line monitor• Programmable controllers • Telephone line interface• Unknown polarity DC sensorSchematicPin Configuration 1. Anode / Cathode 2. Cathode / Anode 3. Emitter 4. CollectorAbsolute Maximum Ratings (Ta=25℃)Input Forward current I F±60 mA Peak forward current (t = 10µs) I FM 1 A Power dissipationDerating factor (above 100 ºC)P D100 mW2.9 mW/ºCOutputPower dissipationDerating factor (above 100 ºC) P C150 mW5.8 mW/ºC Collector-Emitter voltage V CEO80 V Emitter-Collector voltage V ECO 6 VTotal Power Dissipation P TOT200 mW Isolation Voltage*1V ISO5000 V rms Operating Temperature T OPR-55 to 110 °C Storage Temperature T STG-55 to 125 °C Soldering Temperature*2T SOL260 °C Notes*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together. *2 For 10 secondsElectro-Optical Characteristics (Ta=25℃unless specified otherwise)Forward Voltage V F- 1.2 1.4 V I F= ± 20mA Input capacitance C in- 50 250 pF V = 0, f = 1KHzCollector-Emitter darkcurrentI CEO- - 100 nA V CE= 20V, I F = 0mACollector-Emitterbreakdown voltageBV CEO80 - - V I C = 0.1mA Emitter-Collectorbreakdown voltageBV ECO 6 - - V I E = 0.1mACurrent Transfer ratioEL814CTR20 - 300% I F= ±1mA ,V CE= 5V EL814A 50 - 150CTR Symmetry 0.7 1.3 I F= ±1mA ,V CE= 5VCollector-emittersaturation voltage V CE(sat)- 0.05 0.2 V I F = ±20mA ,I c = 1mA Isolation resistance R IO5×10101011- ΩV IO = 500Vdc, 40~60%R.HCut-off frequency f c- 80 - kHz V CE=5V, I C=2 mA, R L=100Ω,-3dBFloating capacitance C IO- 0.6 1.0 pF V IO = 0, f = 1MHzRise time T r- - 18 µsV CE=2V, I C=2mA, R L=100ΩFall time T f- - 18 µs* Typical values at T a = 25°CTypical Electro-Optical Characteristics CurvesFigure 9. Switching Time Test Circuit & WaveformsOrder InformationPart NumberEL814X(Y)(Z)-VNotesX = Lead form option (S, S1, M or none)Y = CTR Rank (A or none)Z = Tape and reel option (TA, TB, TU, TD or none) V = VDE safety (optional)Package Dimension (Dimensions in mm) Standard DIP TypeOption M TypeOption S TypeOption S1 TypeRecommended pad layout for surface mount leadformFor S optionFor S1 optionNotesSuggested pad dimension is just for reference only.Please modify the pad dimension based on individual need.Device MarkingNotesEL denotes EVERLIGHT 814 denotes Device Number F denotes Factory Code (G: China and Green part) R denotes CTR Rank (A or none) Y denotes 1 digit Year code WW denotes 2 digit Week code V denotes VDE (optional)EL 814FRYWWVTape dimensionsPrecautions for Use1. Soldering Condition1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow ProfileNotes Reference: IPC/JEDEC J-STD-020DPreheatTemperature min (T smin) 150 °CTemperature max (T smax) 200°CTime (T smin to T smax) (t s) 60-120 secondsAverage ramp-up rate (T smax to T p) 3 °C/second maxOtherLiquidus Temperature (T L) 217 °CTime above Liquidus Temperature (t L)60-100 secPeak Temperature (T P) 260°CTime within 5 °C of Actual Peak Temperature: T P - 5°C 30 sRamp- Down Rate from Peak Temperature 6°C /second max.Time 25°C to peak temperature 8 minutes max.Reflow times 3 times.DISCLAIMER1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change forabove specification.2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined inthese specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’treproduce or cause anyone to reproduce them without EVERLIGHT’s consent.4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any formis prohibited without the specific consent of EVERLIGHT.5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life savingapplications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.6. Statements regarding the suitability of products for certain types of applications are based o n Everlight’sknowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibil ity to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Everlight’s terms and conditions of p urchase, including but not limited to the warranty expressed therein.。
贴片三极管A
MAX6326_R22-T Max MAX6327_R22-T Max MAX6328_R22-T Max MAX809LXR MAX809MXR MAX809TXR MAX809SXR MAX809RXR MAX803ZXR MAX810LXR Max Max Max Max Max Max Max
类型 I I N C C AQ AQ AQ K A A A A A
封装 SCD80 USM SOT323 SOT23 SOT323
参数及代换型号 35V 100mA pin 100V 50mA sw npn RF 8 GHz HP2800 schottky HP2800 schottky modamp MAR 3 Similar modamp MAR 6 Similar modamp MAR 7 Similar HP2800 schottky
A 字贴片参数代号识别代码表示 表示符 号 A A A A0 A0 A03 A06 A07 A1 A1 A1 A1 A1p A1t A1t A1s A1s A1s A1X A2 A2 A2 A2s A2 A2 A2 A22 A2X 生产 厂 Sie Roh Mot HP HP MC MC MC HP Phi Phi Phi Phi Phi Phi Sie Sie Sie Mot HP HP Phi Sie Mot Sie Mot Phi Mot A A A A D D C C A CQ DO C A SOT23 SOT323 SOT23 SOT23 SOT23 SOT143 SOT363 SOD27 SOT23
A6 A6p A6 A6A A6B A6C A6D A6E A6F A6G A6H A6J A6K A6L A6X A7s A7s A7s A7s A7 A7 A7 A8 A8 A8 A8 A8A A8B A8C A8D A8E A8F
ADL8142 GaAs, pHEMT, MMIC, 低噪声放大器, 23 GHz至31 GHz R
Data SheetADL8142GaAs, pHEMT, MMIC, Low Noise Amplifier, 23 GHz to 31 GHz FEATURES►Low noise figure: 1.6 dB typical at 27 GHz to 31 GHz►Single positive supply (self biased)►High gain: 27 dB typical at 27 GHz to 31 GHz►High OIP3: 21.5 dBm typical at 27 GHz to 31 GHz►RoHS-compliant, 2 mm × 2 mm, 8-lead LFCSP APPLICATIONS►Satellite communication►Telecommunications►Civilian radarGENERAL DESCRIPTIONThe ADL8142 is a gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), pseudomorphic high electron mobility transistor (pHEMT), low noise wideband amplifier that operates from 23 GHz to 31 GHz. The ADL8142 provides a typical gain of 27 dB, a 1.6 dB typical noise figure, and a typical output third-order intercept (OIP3) of 21.5 dBm at 27 GHz to 31 GHz, requiring only 25 mA from a 2 V supply voltage. Note that the OIP3 can be improved with larger drain currents. The ADL8142 also features inputs and outputs that are ac-coupled and internally matched to 50 Ω, making it ideal for high capacity microwave radio applica-tions.The ADL8142 is housed in a RoHS-compliant, 2 mm × 2 mm,8-lead LFCSP.FUNCTIONAL BLOCK DIAGRAMFigure 1.TABLE OF CONTENTSFeatures (1)Applications (1)General Description (1)Functional Block Diagram (1)Specifications (3)23 GHz to 27 GHz Frequency Range (3)27 GHz to 31 GHz Frequency Range (3)DC Specifications (3)Absolute Maximum Ratings (4)Thermal Resistance (4)Electrostatic Discharge (ESD) Ratings (4)ESD Caution.......................................................4Pin Configuration and Function Descriptions.. (5)Interface Schematics (5)Typical Performance Characteristics (6)Theory of Operation (16)Applications Information (17)Recommended Bias Sequencing (17)Using RBIAS as a Fast Enable and Disable Function (18)Recommended Power Management Circuit (19)Outline Dimensions (20)Ordering Guide (20)Evaluation Boards (20)REVISION HISTORY2/2023—Rev. A to Rev. BChange to Gain Variation over Temperature Parameter, Table 1 (3)Change to Gain Variation over Temperature Parameter, Table 2 (3)11/2022—Rev. 0 to Rev. AChange to Features Section (1)Change to General Description Section (1)Change to IP3 Parameter, Table 2 (3)Changes to Figure 67 (19)4/2022—Revision 0: Initial VersionSPECIFICATIONS23 GHZ TO 27 GHZ FREQUENCY RANGESupply voltage (V DD) = 2 V, quiescent current (I DQ) = 25 mA, bias resistance (R BIAS) = 634 Ω, and T C = 25°C, unless otherwise noted.Table 1.Parameter Min Typ Max Unit Test Conditions/CommentsFREQUENCY RANGE2327GHzGAIN29dBGain Variation over Temperature0.026dB/°CNOISE FIGURE 1.8dBRETURN LOSSInput (S11)10.5dBOutput (S22)16dBOUTPUTPower for 1 dB Compression (P1dB)8.5dBmSaturated Power (P SAT)10dBmIP317.5dBm Measurement taken at output power (P OUT) per tone = −4 dBm Second-Order Intercept (IP2)25dBm Measurement taken at P OUT per tone = −4 dBmPOWER ADDED EFFICIENCY (PAE)18%Measured at P SAT27 GHZ TO 31 GHZ FREQUENCY RANGEV DD = 2 V, I DQ = 25 mA, R BIAS = 634 Ω, and T C = 25°C, unless otherwise noted.Table 2.Parameter Min Typ Max Unit Test Conditions/CommentsFREQUENCY RANGE2731GHzGAIN24.527dBGain Variation over Temperature0.019dB/°CNOISE FIGURE 1.6dBRETURN LOSSS1113dBS2215dBOUTPUTP1dB7.510dBmP SAT11dBmIP321.5dBm Measurement taken at P OUT per tone = −4 dBmIP235dBm Measurement taken at P OUT per tone = −4 dBmPAE21%Measured at P SATDC SPECIFICATIONSTable 3.Parameter Min Typ Max Unit SUPPLY CURRENTI DQ25mA Amplifier Current (I DQ_AMP)23mA RBIAS Current (I RBIAS)2mA SUPPLY VOLTAGEV DD 1.52 3.5VABSOLUTE MAXIMUM RATINGSTable 4.Parameter RatingV DD 4.5 VRF Input Power (RFIN)20 dBmPulsed RFIN (Duty Cycle = 10%, Pulse Width = 100 μs)22 dBm Continuous Power Dissipation (P DISS), T CASE = 85°C(Derate 5.99 mW/°C Above 85°C)0.54 W TemperatureStorage Range−65°C to +150°C Operating Range−40°C to +85°C Nominal Junction (T A = 85°C, V DD = 2 V, I DQ = 25mA, Input Power (P IN) = Off)93.4°CMaximum Junction175°CStresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operat-ing conditions for extended periods may affect product reliability.THERMAL RESISTANCEThermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.θJC is the junction to case thermal resistance.Table 5. Thermal ResistancePackage TypeθJC UnitCP-8-30Quiescent, T BASE = 25°C 134.3°C/WWorst Case1, T BASE = 85°C 167°C/W1Worst case across all specified operating conditions. ELECTROSTATIC DISCHARGE (ESD) RATINGS The following ESD information is provided for handling of ESD-sen-sitive devices in an ESD protected area only.Human body model (HBM) per ANSI/ESDA/JEDEC JS-001. ESD Ratings for ADL8142Table 6. ADL8142, 8-Lead LFCSPESD Model Withstand Threshold (V)ClassHBM±2501AESD CAUTIONPIN CONFIGURATION AND FUNCTION DESCRIPTIONSFigure 2. Pin ConfigurationTable 7. Pin Function Descriptions Pin No.Mnemonic Description1RBIAS Bias Setting Resistor. Connect a resistor between RBIAS and VDD to set the I DQ . See Figure 64 and Table 8 for more details. See Figure 3 for the interface schematic.2, 4, 5, 7GND Ground. Connect the GND pins to a ground plane that has low electrical and thermal impedance. See Figure 6 for the interface schematic.3RFIN RF Input. The RFIN pin is ac-coupled and matched to 50 Ω. See Figure 4 for the interface schematic.6RFOUT RF Output. The RFOUT pin is ac-coupled and matched to 50 Ω. See Figure 5 for the interface schematic.8VDDDrain Bias. Connect the VDD pin to the supply voltage. SeeFigure 5 for the interface schematic.EXPOSED PADDLEExposed Paddle. Connect the exposed paddle to a ground plane that has low electrical and thermal impedance.INTERFACE SCHEMATICSFigure 3. RBIAS Interface SchematicFigure 4. RFIN Interface SchematicFigure 5. RFOUT/VDD Interface SchematicFigure 6. GND Interface SchematicFigure 7. Broadband Gain and Return Loss vs. Frequency, V DD = 2 V,I DQ= 25 mAFigure 8. Gain vs. Frequency for Various Supply Voltages and I DQ,R BIAS= 634 ΩFigure 9. Gain vs. Frequency for Various Supply Voltages and R BIAS Values,I DQ= 25 mAFigure 10. Gain vs. Frequency for Various Temperatures, V DD = 2 V,I DQ = 25 mA, R BIAS= 634 ΩFigure 11. Gain vs. Frequency for Various I DQ and R BIAS Values, V DD= 2 V Figure 12. Input Return Loss vs. Frequency forVarious Supply Voltages and I DQ, R BIAS = 634 ΩFigure 13. Input Return Loss vs. Frequency for Various Temperatures,V DD = 2 V, I DQ = 25 mA, R BIAS= 634 ΩFigure 14. Input Return Loss vs. Frequency for Various Supply Voltages andR BIAS Values, I DQ= 25 mAFigure 15. Output Return Loss vs. Frequency for Various Temperatures,V DD = 2 V, I DQ = 25 mA, R BIAS= 634 ΩFigure 16. Input Return Loss vs. Frequency for Various I DQ and R BIAS Values,V DD= 2 VFigure 17. Output Return Loss vs. Frequency for Various Supply Voltagesand I DQ, R BIAS= 634 ΩFigure 18. Output Return Loss vs. Frequency for Various I DQ and R BIASValues, V DD = 2 VFigure 19. Output Return Loss vs. Frequency for Various Supply Voltagesand R BIAS Values, I DQ= 25 mAFigure 20. Reverse Isolation vs. Frequency for Various Temperatures,V DD = 2 V, I DQ = 25 mA, R BIAS= 634 ΩFigure 21. Reverse Isolation vs. Frequency forVarious Supply Voltages and R BIAS Values, I DQ= 25 mAFigure 22. Reverse Isolation vs. Frequency forVarious Supply Voltages and I DQ, R BIAS= 634 ΩFigure 23. Reverse Isolation vs. Frequency for Various R BIAS Values and I DQ,V DD= 2 VFigure 24. Noise Figure vs. Frequency for Various Supply Voltages and I DQ,R BIAS = 634 ΩFigure 25. Noise Figure vs. Frequency for Various Temperatures, V DD = 2 V,I DQ = 25 mA, R BIAS= 634 ΩFigure 26. Noise Figure vs. Frequency for Various Supply Voltages and R BIASValues, I DQ= 25 mAFigure 27. OP1dB vs. Frequency for Various Temperatures,V DD = 2 V, I DQ = 25 mA, R BIAS= 634 ΩFigure 28. Noise Figure vs. Frequency for Various I DQ and R BIAS Values,V DD= 2 VFigure 29. OP1dB vs. Frequency for Various Supply Voltages and I DQ,R BIAS= 634 ΩFigure 30. OP1dB vs. Frequency for Various I DQ and R BIAS Values, V DD = 2 VFigure 31. OP1dB vs. Frequency for Various Supply Voltages andR BIAS Values, I DQ= 25 mAFigure 32. P SAT vs. Frequency for Various Temperatures, V DD = 2 V,I DQ = 25 mA, R BIAS= 634 ΩFigure 33. P SAT vs. Frequency for Various Supply Voltages andR BIAS Values, I DQ= 25 mAFigure 34. P SAT vs. Frequency for Various Supply Voltages and I DQ,R BIAS= 634 ΩFigure 35. P SAT vs. Frequency for Various I DQ and R BIAS Values, V DD= 2 V Figure 36. PAE Measured at P SAT vs. Frequency forVarious Supply Voltages and I DQ, R BIAS = 634 ΩFigure 37. PAE Measured at P SAT vs. Frequency for Various Temperatures,V DD = 2 V, I DQ = 25 mA, R BIAS= 634 ΩFigure 38. PAE Measured at P SAT vs. Frequency for Various Supply Voltagesand R BIAS Values, I DQ= 25 mAFigure 39. P OUT, Gain, PAE, and Power Supply Current (I DD) vs. P IN at 27 GHz,V DD = 2 V, R BIAS= 634 ΩFigure 40. PAE Measured at P SAT vs. Frequency for Various I DQ andR BIAS Values, V DD= 2 VFigure 41. P OUT, Gain, PAE, and I DD vs. P IN at 24 GHz, V DD = 2 V, R BIAS= 634 ΩFigure 42. P OUT, Gain, PAE, and I DD vs. P IN at 31 GHz, V DD = 2 V, R BIAS = 634 ΩFigure 43. OP1dB, P SAT, Gain, and I DD vs. Supply Voltage at 24 GHz,R BIAS= 634 ΩFigure 44. OP1dB, P SAT, Gain, and I DD vs. Supply Voltage at 31 GHz,R BIAS= 634 ΩFigure 45. I DD vs. P IN for Various Frequencies, V DD= 2 V Figure 46. OP1dB, P SAT, Gain, and I DD vs. Supply Voltage at 27 GHz,R BIAS= 634 ΩFigure 47. P DISS vs. P INat Various FrequenciesFigure 48. OIP2 vs. Frequency for Various Supply Voltages and I DQ,R BIAS = 634 ΩFigure 49. OIP2 vs. Frequency for Various Temperatures, V DD = 2 V,I DQ = 25 mA, R BIAS= 634 ΩFigure 50. OIP2 vs. Frequency for Various Supply Voltages andR BIAS Values, I DQ= 25 mAFigure 51. OIP3 vs. Frequency for Various Temperatures, V DD = 2 V,I DQ = 25 mA, R BIAS= 634 ΩFigure 52. OIP2 vs. Frequency for Various I DQ and R BIAS Values, V DD= 2 V Figure 53. OIP3 vs. Frequency for Various Supply Voltages and I DQ,R BIAS= 634 ΩFigure 54. OIP3 vs. Frequency for Various I DQ and R BIAS Values, V DD = 2 VFigure 55. OIP3 vs. Frequency for Various Supply Voltages andR BIAS Values, I DQ= 25 mAFigure 56. Third-Order Intermodulation (IM3) vs. P OUT per Tone for Various Frequencies, V DD = 2 V, R BIAS= 634 ΩFigure 57. IM3 vs. P OUT per Tone for Various Frequencies, V DD = 3 V,R BIAS= 634 ΩFigure 58. IM3 vs. P OUT per Tone for Various Frequencies, V DD = 1.5 V,R BIAS= 634 ΩFigure 59. IM3 vs. P OUT per Tone for Various Frequencies, V DD = 2.5 V,R BIAS= 634 ΩFigure 60. IM3 vs. P OUT per Tone for Various Frequencies, V DD = 3.5 V,R BIAS = 634 ΩFigure 61. I DQ vs. V DD, R BIAS = 634 ΩFigure 62. I DQ vs. R BIAS Value, V DD = 2 VTHEORY OF OPERATIONThe ADL8142 is a GaAs, MMIC, pHEMT, low noise wideband am-plifier with an integrated bias inductor and ac-coupling capacitors.The simplified schematic is shown in Figure 63.To adjust the drain bias current, connect an external resistor be-tween the RBIAS and VDD pins.The ADL8142 has ac-coupled, single-ended input and output portswith impedances that are nominally equal to 50 Ω over the 23 GHzto 31 GHz frequency range. No external matching components arerequired. While the RF output path is ac-coupled, there is a dc pathFigure 63. Simplified Schematic to ground on the RFOUT side of the ac coupling capacitor.APPLICATIONS INFORMATIONThe basic connections for operating the ADL8142 over the speci-fied frequency range are shown in Figure 64. No external biasing inductor is required, allowing the 2 V supply to be connectedto the VDD pin. It is recommended to use 0.1 µF and 100 pF power supply decoupling capacitors. The power supply decoupling capacitors shown in Figure 64 represent the configuration used to characterize and qualify the ADL8142.To set I DQ, connect a resistor (R2) between the RBIAS and VDD pins. A default value of 634 Ω is recommended, which results ina nominal I DQ of 25 mA. The RBIAS pin also draws a current that varies with the value of R BIAS, and this current is typically a few mA. Do not leave the RBIAS pin open.The RFIN and RFOUT pins are internally ac-coupled. If the RFOUT pin is connected to a dc bias level other than 0 V, ac-couple this pinbecause of the internal dc path to ground on RFOUT.Figure 64. Typical Application Circuit RECOMMENDED BIAS SEQUENCINGSee the ADL8142-EVALZ user guide for the recommended bias sequencing information.Table 8. Recommended Bias Resistor Values for V DD = 2 VR BIAS (Ω)I DQ (mA)I DQ_AMP (mA)I RBIAS (mA) 20350455 3014036.2 3.8 4873027.5 2.5 6342523.0 2.0 9092018.5 1.5 15001514.10.9USING RBIAS AS A FAST ENABLE AND DISABLE FUNCTION The RBIAS pin can be used as a fast enable and disable controlinput. In the schematic in Figure 65, a single-pole, double throwswitch is used to switch the voltage on the RBIAS resistor between0 V and 2.5 V. When the voltage on the RBIAS pin is equal to0 V, I DQ reduces to less than 1 mA with P IN set to −20 dBm. Theresponse time of this circuit is shown in Figure 66.Figure 65. Fast Enable and Disable Using a 0 V to 2.5 V Pulse on the RBIASResistor Figure 66. On and/or Off Response of the RF Output Envelope When the IN Pin of the ADG719 Is Pulsed, P OUT = 6 dBm at 27 GHzRECOMMENDED POWER MANAGEMENT CIRCUITFigure 67 shows a recommended power management circuit that uses the LT3083 low dropout (LDO) regulator. With the IN andV CONTROL pins tied together, the minimum input voltage (V IN) is3.6 V when an output voltage (V OUT) of 2 V is required along witha current draw of up to 3 A. Assuming that the ADL8142 is being used in a large array, a single LT3083 can easily provide power to the low noise amplifiers in a 64-element array. For applications that require a lower dropout voltage, LT3033 can be used.Table 9 provides recommended resistor values to set the otherV DD voltages. In each case, the minimum external supply is the minimum dropout voltage from the V CONTROL input to V OUT.Table 9. Recommended Resistor Values for the Various LDO Output VoltagesLDO V OUT (V)R1 (kΩ)Minimum V DD (V) 1.530.1 3.1240.2 3.62.549.9 4.13.366.54.9Figure 67. Recommended Power Management CircuitOUTLINE DIMENSIONSFigure 68. 8-Lead Lead Frame Chip Scale Package [LFCSP]2 mm × 2 mm Body and 0.85 mm Package Height(CP-8-30)Dimensions shown in millimetersUpdated: October 25, 2022 ORDERING GUIDEModel1Temperature Range Package Description Packing Quantity Package OptionADL8142ACPZN-40°C to +85°C8-lead LFCSP 2 mm × 2 mm × 0.85Reel, 500CP-8-30 ADL8142ACPZN-R7-40°C to +85°C8-lead LFCSP 2 mm × 2 mm × 0.85Reel, 500CP-8-301Z = RoHS Compliant Part.EVALUATION BOARDSModel1DescriptionADL8142-EVALZ Evaluation Board1Z = RoHS Compliant Part.。
鸿志电子科技有限公司 HEL 14D102K 级别 K 普通型 K Series 压敏电阻商品说明书
版本号:A/01压敏电阻承认书APPROVED SHEET FOR VARISTOR规格型号Part No.HEL 14D102K级别Class K 普通型 K SeriesUL认证号UL File No.E324904CSA认证号CSA File No.215101VDE认证号VDE File No.40037512CQC认证号CQC File No.CQC04001010845 (5D)CQC04001010847 (7D)CQC04001010846 (10D)CQC04001010844 (14D)CQC04001010848 (20D)(各规格压敏电阻对应的安规认证参见本承认书第14页)广东鸿志电子科技有限公司地址:广东省汕头市龙湖区浦江路6号GUANGDONG HONGZHI ELECTRONICS TECHNOLOGY CO., LTD.No.6 Pujiang Rd., Longhu district, Shantou City, Guangdong Province, China TEL: +86-754-88831426 ext. 0 / +86-754-88784177 / +86-754-89659651FAX: +86-754-88888417E-mail:*****************/****************一、 特殊要求和变更记录 (3)二、 HEL产品规格型号说明 (4)三、 尺寸和电性能 (5)四、 产品结构、材料及制造工艺流程 (6)五、 浪涌电流冲击级别 (7)六、 脉冲降额曲线图和伏安特性图、温度降额曲线 (8)七、 HEL压敏电阻技术术语及安全可靠性…………………………………………………… 9~13八、 安规认证 (14)九、 包装方法及储存条件…………………………………………………………………… 15~18十、 使用注意事项....................................................................................... 19~21十一、附录1:关于压敏电阻不同标准中浪涌冲击条款的简要说明 (22)十二、附录2:压敏电阻选型原则与方法 (23)十三、附录3:第三方检测报告……………………………………………………………… 24~37十四、附录:体系证书 (38)(承认书其它页内容与此表不一致时,以此表为准)HEL产品规格型号说明产品外型尺寸和电性能一、产品尺寸二、产品电性能型号规格压敏电压最大允许使用电压最大限制电压通流容量静态功率能量耐量静态电容量(参考值)V1mA(V)AC(V)DC(V)V50A(V)Imax(8/20μs)(A)In(15次)(8/20μs)(A)(W)(10/1000μs)(J)1kHz(PF)HEL 14D102K1000(900~1100)6258251,65045003,0000.6210180产品结构、材料及制造工艺流程(一)产品结构图(二)材料(三)制造工艺流程材料主要成分 化学式CAS No.瓷片ZnO, Bi 2O 3, Co 2O 3等1314-13-2内电极金属导电材料/焊锡Sn, Ag,Cu 7440-31-5导线Fe, Cu,Sn7439-89-63包封层环氧树脂C 21H 24O 4或有机硅树脂H 4Si9003-36-5 / 67763-03-5浪涌电流冲击级别Remark: the Impluse voltage testing standards(1.2/50μs) with 40 times are only applicable to the products whichwith the varistor voltage more than 430V.脉冲降额曲线图和伏安特性图温度降额曲线最大连续交流电压或最大连续直流电压降额曲线安规认证包装方法及储存条件 Packaging methods and storage conditions 一、编带包装方法 Taping Packaging Method(一)插件编带包装方式 Plug-in taping packaging method外箱尺寸Carton size:540mm×350mm×300mm注:内盒*即为最小包装Note:The inner box packing is the smallest package(二)平脚编带包装方式 Flat foot taping packaging外箱尺寸 Carton size:355mm×350mm×365mmNote:The Reel packing is the smallest package二、散装包装方式 Bulk Packin外箱尺寸 Carton size:435mm×280mm×200mm注:内盒*即为最小包装Note:The inner box packing is the smallest package三、储存条件 storage conditions储存条件 Storage conditions温度 temperature: -40℃~+125℃湿度 humidity: < 65%RH推荐条件 Recommended storage conditions温度 temperature:-10℃~+45℃湿度 humidity: < 55%RH插件编带尺寸 Plug-in Tape Packing平脚编带尺寸 Flat Knitting Tape Packing使用注意事项 Precautions for use附录1:关于压敏电阻不同标准中浪涌冲击条款的简要说明附录2:压敏电阻选型原则与方法附录3:第三方检测报告(一)赛宝实验室年度确认检测报告 完整版(二)国网检测报告 封面(完整版共28页)(三)RoHS测试报告 首页(完整版共7页)(四)Reach测试报告 首页(完整版共19页)(需要详细报告请与业务员联系)(需要详细报告请与业务员联系)(需要详细报告请与业务员联系)(需要详细报告请与业务员联系)(需要详细报告请与业务员联系)(需要详细报告请与业务员联系)附录4:体系证书。
S-814资料
Rev.2.1_00LOW DROPOUT CMOS VOLTAGE REGULATORS-814 SeriesThe S-814 Series is a low dropout voltage, high output voltage accuracy and low current consumption positive voltage regulator developed utilizing CMOS technology.Built-in low ON-resistance transistors provide low dropout voltage and large output current. A shutdown circuit ensures long battery life.Various types of output capacitors can be used in the S-814 Series compared with the past CMOS voltage regulators.(i.e., Small ceramic capacitors can also be used in the S-814 Series.)The SOT-23-5 miniaturized package and the SOT-89-5 packages are recommended to use for configuring portable devices and large output current applications, respectively.Features• Low current consumption At operation mode: Typ. 30 μA, Max. 40 μA At shutdown mode: Typ. 100 nA, Max. 500 nA • Output voltage: 0.1 V steps between 2.0 and 6.0 V • High accuracy output voltage: ±2.0 % • Output current: 110 mA capable: 3.0 V output product, at V IN =4 V *1 180 mA capable: 5.0 V output product, at V IN =6 V *1 • Low dropout voltage: Typ. 170 mV: 5.0 V output product, at I OUT =60 mA • Built-in shutdown circuit • Built-in short-circuit protection• Low ESR capacitor, e.g. a ceramic capacitor of 0.47 μF or more, can be used as the output capacitor. • Small package: SOT-23-5 and SOT-89-5 • Lead-free products*1. Attention should be paid to the power dissipation of the package when the output current is large.Applications• Power source for battery-powered devices, personal communication devices, and home electric/electronic appliances.PackagesDrawing CodePackage NamePackage Tape ReelSOT-23-5 MP005-A MP005-A MP005-A SOT-89-5 UP005-A UP005-A UP005-ALOW DROPOUT CMOS VOLTAGE REGULATORS-814 Series Rev.2.1_00 Block DiagramVOUT*1. Parasitic diodeFigure 1LOW DROPOUT CMOS VOLTAGE REGULATOR Rev.2.1_00S-814 Series Product Name Structure1. Product Name*1.*2. Refer to the Table 1 in “2. Product name list”.*3. Refer to “3. ON/OFF pin (Shutdown pin)” in “ Operation”.LOW DROPOUT CMOS VOLTAGE REGULATORS-814 Series Rev.2.1_002. Product Name ListTable1Output voltage SOT-23-5 SOT-89-52.0 V±2.0 % S-814A20AMC-BCKT2G S-814A20AUC-BCKT2G2.1 V±2.0 % S-814A21AMC-BCLT2G S-814A21AUC-BCLT2G2.2 V±2.0 % S-814A22AMC-BCMT2G S-814A22AUC-BCMT2G2.3 V±2.0 % S-814A23AMC-BCNT2G S-814A23AUC-BCNT2G2.4 V±2.0 % S-814A24AMC-BCOT2G S-814A24AUC-BCOT2G2.5 V±2.0 % S-814A25AMC-BCPT2G S-814A25AUC-BCPT2G2.6 V±2.0 % S-814A26AMC-BCQT2G S-814A26AUC-BCQT2G2.7 V±2.0 % S-814A27AMC-BCRT2G S-814A27AUC-BCRT2G2.8 V±2.0 % S-814A28AMC-BCST2G S-814A28AUC-BCST2G2.9 V±2.0 % S-814A29AMC-BCTT2G S-814A29AUC-BCTT2G3.0 V±2.0 % S-814A30AMC-BCUT2G S-814A30AUC-BCUT2G3.1 V±2.0 % S-814A31AMC-BCVT2G S-814A31AUC-BCVT2G3.2 V±2.0 % S-814A32AMC-BCWT2G S-814A32AUC-BCWT2G3.3 V±2.0 % S-814A33AMC-BCXT2G S-814A33AUC-BCXT2G3.4 V±2.0 % S-814A34AMC-BCYT2G S-814A34AUC-BCYT2G3.5 V±2.0 % S-814A35AMC-BCZT2G S-814A35AUC-BCZT2G3.6 V±2.0 % S-814A36AMC-BDAT2G S-814A36AUC-BDAT2G3.7 V±2.0 % S-814A37AMC-BDBT2G S-814A37AUC-BDBT2G3.8 V±2.0 % S-814A38AMC-BDCT2G S-814A38AUC-BDCT2G3.9 V±2.0 % S-814A39AMC-BDDT2G S-814A39AUC-BDDT2G4.0 V±2.0 % S-814A40AMC-BDET2G S-814A40AUC-BDET2G4.1 V±2.0 % S-814A41AMC-BDFT2G S-814A41AUC-BDFT2G4.2 V±2.0 % S-814A42AMC-BDGT2G S-814A42AUC-BDGT2G4.3 V±2.0 % S-814A43AMC-BDHT2G S-814A43AUC-BDHT2G4.4 V±2.0 % S-814A44AMC-BDIT2G S-814A44AUC-BDIT2G4.5 V±2.0 % S-814A45AMC-BDJT2G S-814A45AUC-BDJT2G4.6 V±2.0 % S-814A46AMC-BDKT2G S-814A46AUC-BDKT2G4.7 V±2.0 % S-814A47AMC-BDLT2G S-814A47AUC-BDLT2G4.8 V±2.0 % S-814A48AMC-BDMT2G S-814A48AUC-BDMT2G4.9 V±2.0 % S-814A49AMC-BDNT2G S-814A49AUC-BDNT2G5.0 V±2.0 % S-814A50AMC-BDOT2G S-814A50AUC-BDOT2G5.1 V±2.0 % S-814A51AMC-BDPT2G S-814A51AUC-BDPT2G5.2 V±2.0 % S-814A52AMC-BDQT2G S-814A52AUC-BDQT2G5.3 V±2.0 % S-814A53AMC-BDRT2G S-814A53AUC-BDRT2G5.4 V±2.0 % S-814A54AMC-BDST2G S-814A54AUC-BDST2G5.5 V±2.0 % S-814A55AMC-BDTT2G S-814A55AUC-BDTT2G5.6 V±2.0 % S-814A56AMC-BDUT2G S-814A56AUC-BDUT2G5.7 V±2.0 % S-814A57AMC-BDVT2G S-814A57AUC-BDVT2G5.8 V±2.0 % S-814A58AMC-BDWT2G S-814A58AUC-BDWT2G5.9 V±2.0 % S-814A59AMC-BDXT2G S-814A59AUC-BDXT2G6.0 V±2.0 % S-814A60AMC-BDYT2G S-814A60AUC-BDYT2GRemark Please contact the SII marketing department for type B products.LOW DROPOUT CMOS VOLTAGE REGULATORRev.2.1_00S-814 SeriesPin ConfigurationsTable 2Pin No. Symbol Pin description 1 VIN Voltage input pin 2 VSS GND pin 3 ON/OFF Shutdown pin4 NC *1No connection 5 VOUT Voltage output pin *1. The NC pin is electrically open.The NC pin can be connected to VIN or VSS.Figure 2Table 3Pin No. Symbol Pin description 1 VOUT Voltage output pin 2 VSS GND pin3 NC *1No connection 4 ON/OFF Shutdown pin 5 VIN Voltage input pin SOT-89-5 Top view 1 32 45*1. The NC pin is electrically open.The NC pin can be connected to VIN or VSS.Figure 3LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 SeriesRev.2.1_00Absolute Maximum RatingsTable 4(Ta =25°C unless otherwise specified)ItemSymbol Absolute maximum rating UnitV IN V SS −0.3 to V SS +12V Input voltage V ON/OFF V SS −0.3 to V SS +12V Output voltageV OUTV SS −0.3 to V IN +0.3V 250 (When not mounted on board) mWSOT-23-5600*1mW500 (When not mounted on board) mWPower dissipationSOT-89-5P D 1000*1mWOperating ambient temperature T opr −40 to +85°C Storage temperature T stg −40 to +125°C *1. When mounted on board[Mounted on board](1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7Caution The absolute maximum ratings are rated values exceeding which the product could sufferphysical damage. These values must therefore not be exceeded under any conditions.0P o w e r D i s s i p a t i o n (P D ) [m W ] 050100150Ambient Temperature (Ta) [°C]1000Figure 4 Power Dissipation of Package (When Mounted on Board)LOW DROPOUT CMOS VOLTAGE REGULATOR Rev.2.1_00S-814 Series Electrical CharacteristicsTable 5OUT(E)i.e., The output voltage when fixing I OUT(=30 mA) and inputting V OUT(S)+1.0 V.V OUT(S): Specified output voltage*2.Output amperage when output voltage goes below 95 % of V OUT(E) after gradually increasing output current. *3. The output current can be at least this value.Use load amperage not exceeding this value.LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 SeriesRev.2.1_00*4. V drop =V IN1*1−(V OUT(E)×0.98)*1. Input voltage at which the output voltage falls 98 % of V OUT(E) after gradually decreasing the inputvoltage.*5. The change in temperature [mV/°C] is calculated using the following equation.[][][]1000 C /ppm V Ta ΔV Δ V V C /mV Ta ΔV ΔOUTOUT)S (OUT OUT ÷°•×=°3*2**1 *1. Change in temperature of the dropout voltage *2. Specified output voltage*3. Output voltage temperature coefficientLOW DROPOUT CMOS VOLTAGE REGULATORRev.2.1_00S-814 SeriesTest Circuits1.2.Figure 5Figure 63.4.LFigure 7 Figure 85.LFigure 9LOW DROPOUT CMOS VOLTAGE REGULATORS-814 Series Rev.2.1_00 Standard CircuitOUTPUT*1. C IN is a capacitor used to stabilize input.*2. In addition to a tantalum capacitor, a ceramic capacitor of 0.47 μF or more can be used in C L.Figure 10Caution The above connection diagram and constant will not guarantees successful operation.Perform through evaluation using the actual application to set the constant.Technical Terms1. Low dropout voltage regulatorThe low dropout voltage regulator is a voltage regulator featuring a low dropout voltage characteristic due to its internal low ON-resistance characteristic transistors.2. Low ESRESR is the abbreviation for Equivalent Series Resistance. The low ESR output capacitor (C L) can be used in the S-814 Series.3. Output voltage (V OUT)The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions*1 of input voltage, output current, and temperature, which differ depending upon the product items.*1. The condition differs depending upon each product.Caution If you change the above conditions, the output voltage value may vary out of the accuracy range of the output voltage. Refer to the “ Electrical Characteristics” and “Characteristics” for details.4. Line regulation 1 (ΔV OUT1) and Line regulation 2 (ΔV OUT2)Indicate the input voltage dependencies of output voltage. That is, the value shows how much the output voltage changes due to a change in the input voltage with the output current remained unchanged.5. Load regulation (ΔV OUT3)Indicates the output current dependencies of output voltage. That is, the value shows how much the output voltage changes due to a change in the output current with the input voltage remained unchanged.6. Dropout voltage (V drop )Indicates a difference between input voltage (V IN1) and output voltage when output voltage falls by 98 % of V OUT(E) by gradually decreasing the input voltage. V drop =V IN1−(V OUT(E)×0.98)7. Temperature coefficient of output voltage ⎟⎠⎞⎜⎝⎛•ΔΔOUT OUT V Ta VThe shadowed area in Figure 11 is the range where V OUT varies in the operating temperature range when the temperature coefficient of the output voltage is ±100 ppm/°C.−4025°CV OUT [V]V OUT(E)*185 Ta [°C]°C*1. The mesurement value of output voltage at 25°C.Figure 11 Typical example of S-814A28AA change in temperatures of output voltage [mV/°C] is calculated using the following equation. [][][]1000 C /ppm V Ta V V V C /mV TaV OUT OUT)S (OUT OUT ÷°•ΔΔ×=°ΔΔ3*2**1*1. The change in temperature of the dropout voltage *2. Specified output voltage*3. Output voltage temperature coefficientOperation1. Basic operationFigure 12 shows the block diagram of the S-814 Series.The error amplifier compares a reference voltage V ref with part of the output voltage divided by the feedback resistors R s and R f. It supplies the output transistor with the gate voltage, necessary to ensure certain output voltage free of any fluctuations of input voltage and temperature.VOUT*1. Parasitic diodeFigure 122. Output transistorThe S-814 Series uses a low on-resistance Pch MOS FET as the output transistor.Be sure that V OUT does not exceed V IN+0.3 V to prevent the voltage regulator from being broken due to inverse current flowing from VOUT pin through a parasitic diode to VIN pin.3. ON/OFF pin (Shutdown pin)This pin starts and stops the regulator.When the shutdown pin is switched to the shutdown level, the operation of all internal circuits stops, the built-in Pch MOSFET output transistor between VIN pin and VOUT pin is shutdown, allowing current consumption to be drastically reduced. The VOUT pin enters the Vss level due to internally divided resistance of several MΩ between VOUT pin and VSS pin.Furthermore, the structure of the ON/OFF pin is as shown in Figure 13. Since the ON/OFF pin is neither pulled down nor pulled up internally, do not use it in the floating state. In addition, please note that current consumption increases if a voltage of 0.3 V to V IN−0.3 V is applied to the shutdown pin. When the ON/OFF pin is not used, connect it to the VIN pin in case of the product type is ‘”A” and to the VSS pin in case of “B”.Figure 13Table 6Product type ON/OFF pin Internal circuit VOUT pin voltage Current consumptionA “H”: Power on Operating Set value I SS1A “L”:Shutdown Stop V SS level I SS2B “H”: Shutdown Stop V SS level I SS2B “L”: Power on Operating Set value I SS14. Short-circuit protection circuitThe S-814 Series incorporates a short-circuit protection circuit to protect the output transistor against short-circuiting between VOUT pin and VSS pin.The short-circuit protection circuit controls output current as shown in “1. Output voltage vs. Output current (When load current increases)” curve in “ Characteristics”, and prevents output current of approx. 70 mA or more from flowing even if VOUT pin and VSS pin are shorted. However, the short-circuit protection circuit does not protect thermal shutdown. Be sure that input voltage and load current do not exceed the specified power dissipation level.When output current is large and a difference between input and output voltages is large even if not shorted, the short-circuit protection circuit may start functioning and the output current may be controlled to the specified amperage. For details, refer to “3. Maximum output current vs. Input voltage” curve in “ Characteristics”.Selection of Output Capacitor (C L)Mount an output capacitor between VOUT pin and VSS pin for phase compensation. The S-814 Series enables customers to use a ceramic capacitor as well as a tantalum or an aluminum electrolytic capacitor.• A ceramic capacitor or an OS capacitor:Use a capacitor of 0.47 μF or more.• A tantalum or an aluminum electrolytic capacitor:Use a capacitor of 0.47 μF or more and ESR of 10 Ω or less.Pay special attention not to cause an oscillation due to an increase in ESR at low temperatures, when you use the aluminum electrolytic capacitor. Evaluate the capacitor taking into consideration its performance including temperature characteristics.Overshoot and undershoot characteristics differ depending upon the type of the output capacitor you select. Refer to “C L dependencies of overshoot” and “C L dependencies of undershoot” in“ Transient Response Characteristics”.Precautions•Wiring patterns for VIN pin, VOUT pin and GND pin should be designed so that the impedance is low.When mounting an output capacitor, the distance from the capacitor to the VOUT pin and the VSS pin should be as short as possible.•Note that output voltage may increase when a series regulator is used at low load current (Less than 10 μA).•Generally, a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions to select the series regulator.Output capacitor (C L): 0.47 μF or moreEquivalent Series Resistance (ESR): 10 Ω or lessInput series resistance (R IN): 10 Ω or less•The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or an input capacitor is not connected.•The application conditions for input voltage and load current do not exceed the power dissipation level of the package.•In determining the output current, attention should be paid to the output current value specified and footnote *3 in Table 5 in the “ Electrical Characteristics”.•Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.•SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.Characteristics (Typical data)1. Output voltage (V OUT ) vs. Output current (I OUT ) (When load current increases)S-814A20A S-814A30A(Ta =25°C)1.02.00 50 100150 200 250I OUT [mA]V O U T [V ](Ta=25°C)0100200 300 400I OUT [mA] V O U T [V ]S-814A50A(Ta=25°C)0 200 400 600 800I OUT [mA] V O U T [V ]Remark In determining the output current, attention should be paid to the following.1. The minimum output current value and footnote *3in Table 5 in the “ Electrical characteristics ”. 2. The package power dissipation.2. Output voltage (V OUT ) vs. Input voltage (V IN )V O U T (V )V O U T (V )V O U T (V )3. Maximum output current (I OUTmax ) vs. Input voltage (V IN )S-814A20A S-814A30A100 200 300 1 2 3 4 5 6 7 8 910V IN [V] I O U T m a x [m A ]020*******2345 6 7 8 910V IN [V]I O U T m a x [m A ]200 400 600 800 4 5 6 7 8 9 10V IN [V] I O U T m a x [m A ]Remark In determining the output current, attention should be paid to the following.1. The minimum output current value and footnote *3in Table 5 in the “ Electrical characteristics ”. 2. The package power dissipation.4. Dropout voltage (V drop ) vs. Output current (I OUT )S-814A20A S-814A30A50 0 5 1015 20 2530I OUT [mA] V d r o p [m V ]3060901200510 15 20 2530I OUT [mA] V d r o p [m V ]40 80 0 10 2030 40 5060I OUT [mA]V d r o p [m V ]5. Output voltage (V OUT ) vs. Ambient temperature (Ta)S-814A20A S-814A30A1.961.982.00 2.02 2.04 −500 50 100Ta [°C] V O U T [V ]2.942.973.003.033.06−50050100Ta [°C]V O U T [V ]S-814A50A4.904.955.00 5.05 5.10 −50 0 50 100Ta [°C] V O U T [V ]6. Line regulation (ΔV OUT1) vs. Ambient temperature (Ta)S-814A20A/S-814A30A/S-814A50A 05 1015 2025 30 35 −500 50 100Ta [°C]V IN =V OUT(S)+0.5↔10 V, I OUT =30 mA ΔV O U T 1 [m V ]7. Load regulation (ΔV OUT3) vs. Ambient temperature (Ta)S-814A20A/S-814A30A/S-814A50A10 20 30 40 50−500 50 100Ta [°C]V IN =V OUT(S)+1 V, I OUT =10 μA ↔80 mA ΔV O U T 3 [m V ]8. Current consumption (ΔI SS1) vs. Input voltage (V IN )9. Threshold voltage of shutdown pin (V SH /V SL ) vs. Input voltage (V IN )S-814A20A S-814A30A0.5 1.0 1.5 2.0 2.5 2 4 6 8 10V IN [V] V S H /V S L[V ]00.51.01.52.02.5357 8 10V IN [V] V S H /V S L[V ]S-814A50A0.5 1.0 1.5 2.0 2.5 5 6 8 9 10V IN [V] V S H /V S L[V ]Reference Data1. Transient Response Characteristics (S-814A30A, Typical data, Ta =25°C)Input voltageorLoad current1-1. At power onOutput voltage (V OUT ) – Time (t)t [50 μs/div]V O U T [0.5V /d i v ]0 VLoad dependencies of overshootC L dependencies of overshoot0.2 0.4 0.6 0.8 1.E −051.E −04 1.E −03 1.E −02 1.E −011.E +00I OUT [A]O v e r s h o o t [V ]0.20.40.60.81.00.1 1 10 100C L [uF]O v e r s h o o t [V ]V DD dependencies of overshoot Temperature dependencies of overshoot0 2 4 6 8 10V DD [V] O v e r s h o o t [V ]V IN =0→V DD , I OUT =30 mA, C L =1 μF−50050 100Ta [°C] O v e r s h o o t [V ]V IN =0→V OUT(S)+1 V, I OUT =30 mA, C L =1 μFLOW DROPOUT CMOS VOLTAGE REGULATORRev.2.1_00S-814 Series1-2. At power on/off control Output voltage (V OUT ) – Time (t)t [50 μs/div] V O U T [0.5 V /d i v ]10 V 0 VLoad dependencies of overshootC L dependencies of overshoot0.20.4 0.6 0.81.E −05 1.E −04 1.E −03 1.E −02 1.E −011.E +00I OUT [A]O v e r s h o o t [V ]V IN =V +1 V , C =1 μF, ON/OFF =0→V +1 V00.20.40.60.81.00.1110 100C L [μF]O v e r s h o o t [V ] V IN =V OUT(S)+1 V, I OUT =30 mA, ON/OFF =0→V OUT(S)+1VV DD dependencies of overshootTemperature dependencies of overshoot0.20.40.60.81.00 2 4 6 810V DD [V]O v e r s h o o t [V ]V IN =V DD , I OUT =30 mA, C L =1 μF, ON/OFF =0→V DD0.20.40.60.81.0−5050 100Ta [°C]O v e r s h o o t [V ]V IN =V OUT(S)+1 V, I OUT =30 mA, C L =1 μF, ON/OFF =0→V OUT(S)+1VLOW DROPOUT CMOS VOLTAGE REGULATOR S-814 SeriesRev.2.1_001-3. At power fluctuation Output voltage (V OUT ) – Time (t)V IN =4.0→10 V, I OUT =30 mAt [50 μs/div] V O U T [0.5 V /d i v ]V IN =10→4.0 V, I OUT =30 mAt [50 μs/div]V O U T [0.5 V /d i v ]Load dependencies of overshootC L dependencies of overshoot0.2 0.4 0.6 0.8 1.E −05 1.E −04 1.E −03 1.E −02 1.E −011.E +00I OUT [A]O v e r s h o o t [V ]V IN =V OUT(S)+1 V →V OUT(S)+2 V, C L =1 μF00.20.40.60.81.01.21.40.1110 100CL [μF]O v e r s h o o t [V ]V IN =V OUT(S)+1 V →V OUT(S)+2 V, I OUT =30 mAV DD dependencies of overshootTemperature dependencies of overshoot0.51.01.52.00 2 4 6 810V DD [V]O v e r s h o o t [V ]V IN =V OUT(S)+1 V →V DD , I OUT =30 mA, C L =1 μF00.20.40.60.81.0−5050100Ta [°C]O v e r s h o o t [V ]V IN =V OUT(S)+1 V →V OUT(S)+2 V, I OUT =30 mA, C L =1 μFLoad dependencies of undershootC L dependencies of undershoot0.2 0.4 0.6 0.81.E −05 1.E −04 1.E −03 1.E −02 1.E −011.E +00I OUT [A]U n d e r s h o o t [V ]V IN =V OUT(S)+2 V →V OUT(S)+1 V, C L =1 μF00.20.40.60.81.01.21.40.1110 100CL [μF]U n d e r s h o o t [V ]V IN =V OUT(S)+2 V →V OUT(S)+1 V, I OUT =30 mALOW DROPOUT CMOS VOLTAGE REGULATORRev.2.1_00S-814 SeriesV DD dependencies of undershootTemperature dependencies of undershoot0.20.40.60.81.0 0 2 4 6 810V DD [V]U n d e r s h o o t [V ]V IN =V DD →V OUT(S)+1 V, I OUT =30 mA, C L =1 μF00.20.40.60.81.0−5050 100Ta [°C]U n d e r s h o o t [V ]V IN =V OUT(S)+2 V →V OUT(S)+1 V, I OUT =30 mA, C L =1 μFLOW DROPOUT CMOS VOLTAGE REGULATOR S-814 SeriesRev.2.1_001-4. At load fluctuation Output voltage (V OUT ) – Time (t)I OUT =10 μA →30 mA, V IN =4 Vt [20 μs/div]V O U T [0.2 V /d i v ]3 V10 μAI OUT =30 mA →10 μA, V IN =4 Vt [20 ms/div]V O U T [0.1 V /d i v ] 10 μLoad current dependencies of overshootC L dependencies of overshoot0 0.2 0.4 0.6 0.8 1 1.E −031.E −021.E −011.E +00ΔI OUT [A]O v e r s h o o t[V ]Remark ΔI OUT shows larger load current at loadcurrent fluctuation. Smaller current at load current fluctuation is fixed to 10 µA.i.e. ΔI OUT =1.E −02 [A] means load currentfluctuation from 10 mA to 10 µA. 00.20.40.60.81.00.1110 100C L [μF]O v e r s h oo t [V ] V IN =V OUT(s)+1 V, I OUT =30 mA →10 μAV DD dependencies of overshootTemperature dependencies of overshoot0.2 0.4 0.6 0.8 1.0 0 2 46 810V DD [V]O v e r s h o o t [V ]0.20.40.60.81.0−50050 100Ta [°C]O v e r s h o o t [V ]V IN =V OUT(S)+1 V, I OUT =30 mA →10 μA, C L =1 μFLOW DROPOUT CMOS VOLTAGE REGULATORRev.2.1_00S-814 SeriesLoad current dependencies of undershootC L dependence of undershoot0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.E −031.E −021.E −011.E +00ΔI OUT [A]U n d e r s h o o t [V ]V=V +1 V, C =1 μFRemark ΔI OUT shows larger load current at loadcurrent fluctuation. Lower current at load current fluctuation is fixed to 10 µA.i.e. ΔI OUT =1.E −02 [A] means load currentfluctuation from 10 µA to 10 mA. 00.20.40.60.81.01.20.1110 100C L [μF]U n d e r s h o o t [V ]V IN =V OUT(S)+1 V, I OUT =10 μA →30 mAV DD dependencies of undershootTemperature dependencies of undershoot0.20.40.60.81.00 2 4 6 810V DD [V]U n d e r s h o o t [V ]00.20.40.60.81.0−5050 100Ta [°C]U n d e r s h o o t [V ]V IN =VOUT(S)+1 V, I OUT =10 μA →30 mA, C L =1 μF。
常用集成块常用集成电路的型号和功能说明
常用集成块常用集成电路的型号和功能说明常用集成块常用集成电路的型号和功能说明型号功能资料ACP2371NI 多制式数字音频信号处理电路ACVP2205 梳状滤波、视频信号处理电路AN5071 波段转换控制电路AN5195K 子图像信号处理电路AN5265 伴音功率放大电路AN5274 伴音功率放大电路AN5285K 伴音前置放大电路AN5342K 图像水平轮廓校正、扫描速度调制电路AN5348K AI信号处理电路AN5521 场扫描输出电路AN5551 枕形失真校正电路AN5560 50/60Hz场频自动识别电路AN5612 色差、基色信号变换电路AN5836 双声道前置放大及控制电路AN5858K TV/AV切换电路AN5862K(AN5862S) 视频模拟开关AN5891K 音频信号处理电路AT24C02 2线电可擦、可编程只读存储器AT24C04 2线电可擦、可编程只读存储器AT24C08 2线电可擦、可编程只读存储器ATQ203 扬声器切换继电器电路BA3880S 高分辨率音频信号处理电路BA3884S 高分辨率音频信号处理电路BA4558N 双运算放大器BA7604N 梳状切换开关电路BU9252S 8bitA/D转换电路CAT24C16 2线电可擦、可编程只读存储器CCU-FDTV 微处理器CCU-FDTV-06 微处理器CD54573A/CD54573CS 波段转换控制电路CH0403-5H61 微处理器CH04801-5F43 微处理器CH05001(PCA84C841) 微处理器CH05002 微处理器CH7001C 数字NTSC/PAL编码电路CHT0406 微处理器CHT0803(TMP87CP38N*) 8bit微处理器CHT0807(TMP87CP38N) 8bit微处理器CHT0808(TMP87CP38N) 8bit微处理器CHT0818 微处理器CKP1003C 微处理器CKP1004S(TMP87CK38N) 微处理器CKP1006S(TMP87CH38N) 微处理器CKP1008S(TMP87CK38N/F) 微处理器CKP1009S(TMP87CH38N) 微处理器CKP1105S(Z90231) 微处理器CKP1301S(TMP87CH38N) 微处理器CKP1403S 微处理器CM0006CF 数字会聚校正电路CNX62A 光电耦合器CNX82A 光电耦合器CPF8598 存储器CTV222S.PRC1.2 微处理器CTV225S-PRC1 微处理器CTV591S.GW3 微处理器CXA1545AS TV/AV多路切换电路CXA1642P 背景歌声消除电路CXA1686M 时钟信号发生器CXA1779P 基色信号处理电路CXP1103S-9919EP 微处理器CXP750096 微处理器CXP85332-108A 微处理器DM8361 单片集成TV小信号处理电路DPU2553/DPU2554 偏转信号处理电路DTI2251 数字色信号过渡特性改善电路GAL16V8C 同步信号变换电路GD74LS10 三组3输入与非门GD74LS393 双4位二进制计数器GD74LS74A 双D触发器GM99200B 微处理器HA11508 图像及伴音信号转换控制电路HCF4046B 低功耗通用锁相环电路HCF4052B 双4选1模拟开关HCF4053BE 三组2路模拟开关HCT157 VGA信号与TV/AV同步信号切换电路HCT4046AD 低功耗通用锁相环电路HD14066 四组双向模拟开关HD14066B 四组双向模拟开关HD14066BP 四组双向模拟开关HEF4052 双4选1模拟开关HEF4053 三组2路模拟开关HEF4094 8级移位-存储总线寄存器HIC1015 开关电源稳压控制及保护电路HIC1016 开关电源稳压控制及保护电路HIC1026 保护模块HM4864P-12 随机存取存储器HPD6325C D/A转换电路HS0038 遥控信号接收电路IX0823GE 微处理器IX1763CEN1 单片集成TV小信号处理电路JLC1562BF 总线控制输入/输出口扩展电路K6274K/D 图像中频带通滤波器K9450M 伴音第一中频带通滤波器KA2107 音频控制电路KA2500 宽带视频放大电路KA3S0680R 开关电源专用厚膜电路KA3S0880RFB 开关电源专用厚膜电路KA7630 多路稳压输出电路KB2511B 数字偏转电路KONKA266(P83C266) 微处理器KS88C3216 微处理器KS88C8324 微处理器L7805 5V固定正稳压器L7808 8V固定正稳压器L7812 12V固定正稳压器L78LR05/L78LR05D/L78LR50-MA/L78M05F/L78M05FA/L78MR05/L78MR05FA 5V稳压复位电路L78OSO5FA 5V可控稳压电路L7912 9V固定负稳压器L7918 18V固定负稳压器LA2785 杜比逻辑处理电路LA4225 5W音频功率放大电路LA4261 立体声功率放大电路LA4270 6W×2音频功率放大电路LA4280 10W×2音频功率放大电路LA4282 10W×2音频功率放大电路LA4445 双声道音频功率放大电路LA6358 双运算放大器LA7016 电子开关LA7210 同步检测电路LA7222 二回路、二接点电子开关LA7406 画中画接口电路LA7575 图像中频放大电路LA76810 TV小信号处理电路LA76832N TV小信号处理电路LA7685 中频及图像信号处理电路LA7838 场扫描电路LA7840 场扫描输出电路LA7841 场扫描输出电路LA7845 场扫描输出电路LA7845N 场扫描输出电路LA7846N 场扫描输出电路LA7910 波段转换控制电路LA7950 场频识别控制电路LA7954 视频转换电路LC344250Z 多端动态存储器LC74401E 画中画(PIP)控制电路LC78815M 双通道16bitD/A变换电路LC863316A 微处理器LC863320A 微处理器LC863328A 微处理器LC863348A 微处理器LC864512 微处理器LC864512V-5D18 微处理器LC864512V-5C77 微处理器LC864525 微处理器LC864916A 微处理器LM317 稳压器LM324 四运算放大器LM358 双运算放大器LM567 锁相环电路LUKS-5140-M2 微处理器LV1010N 杜比逻辑处理电路 M32L1632512A 同步图形存储器M34300N-587SP 微处理器M34300N4-555SP 微处理器M37210M3-508SP 微处理器M37210M3-800SP 多制式数字音频信号处理电路M37210M3-902SP 微处理器M37210M4-705SP 微处理器M37211M2-609SP 微处理器M37220M3 微处理器M37221M6-065SP 微处理器M37222M6-084SP 微处理器M37225 微处理器M37270MF-168SP 微处理器M37271MP-209SP 微处理器M37274EFSP 微处理器M37280 微处理器M37551MA-0545SP 微处理器M50436-688SP 微处理器M51131L 话筒演唱及混响音量控制电路M5218AP 双运算放大器M52340SP 单片集成TV小信号处理电路M52470AP 三通道4输入模拟开关M54573L 波段转换控制电路M62354FP 六通道8bitD/A转换电路M62438FP SRSM65839SP 数字式卡拉OK信号处理电路M66312P PIP控制电路M6M80011P 存储器M6M80041P 存储器MALF24C01 存储器MALF24C02 存储器MB3110A 超低音频信号处理电路MB81461-12RS 动态随机存储器MC14066BCP 四组双向模拟开关MC141625A 梳状滤波器MC141628 前置亮、色信号分离梳状滤波器MC144110P D/A转换电路MC14577C 双视频放大电路MC33064D5 复位用欠压检测电路MC44608 开关稳压电源电压模式控制器MC68HC16R1(SC43402CFC) 微处理器MCM6206BBE 32K×8bit快速静态随机存取存储器MCU2600 时钟信号发生器MM1031XS 宽带视频放大电路MM1053XS 多路信号高速切换电路MM1113XS 多路信号高速切换电路MM1495XD A/V切换电路MN1515TWE/TWP 微处理器MN152810TTD5 微处理器MN152811TIX 微处理器MN15282 微处理器MN1871675T6S 微处理器MN1871675T7M 微处理器MN1872432TWI 微处理器MN187-681 微处理器MN3868 1H基带延迟线电路MSP3410 多制式丽音解码电路MSP3410B 多制式丽音解码电路MSP3410D 多制式丽音解码电路MSP3410D-52 多制式丽音解码电路MSP3410D-CS 多制式丽音解码电路MSP3410D-PP-B4 多制式丽音解码电路MSP3410D-P0-B4 多制式丽音解码电路MSP3415D-AI I*IC总线控制多制式音频处理电路MSP3463G 音频信号处理电路NE5532N 内部补偿低噪声双运算放大器NE/SE567 音调与频率解码、锁相环电路NE567N 音调与频率解码、锁相环电路NJM2234L 伴音声道控制开关NJM2700L WOW音频处理电路NJW1103 杜比定向逻辑和音色选择电路NJW1132AL 伴音BBE处理电路NM24C04EN 存储器NN5099K/NN5199K 单片集成多制式TV小信号处理电路NP83C266BRNA 微处理器NV320P 数字视频信号处理电路NVM3060 存储器OM8361 单片集成TV小信号处理电路OM8361-VS0469 单片集成TV小信号处理电路OM8839 I*IC总线控制单片集成TV小信号处理电路OM8839PS I*IC总线控制单片集成TV小信号处理电路OM8839PS-K9G216 I*IC总线控制单片集成TV小信号处理电路ONWA KWEC42.2ONWA KWEC44.1OTT531 +5V稳压复位电路P83C266BDR 微处理器P87C766 微处理器P87C766BDR(CKP1401S) 微处理器P87C766DT 微处理器PC74HT241P 线性驱动数据缓冲电路PC713F6 光耦合器PCA841P-177 微处理器PCA84C122/PCA84C222/PCA84C422/PCA84C622/ PCA84C822PCA84C440P/401 微处理器PCA84C641 微处理器PCA84C840P-054 微处理器PCA8516 字符形成电路PCA8521 遥控编码发射电路PCA8521BT 遥控编码发射电路PCF8581P 存储器PCF8582 存储器PCF8589C-2 存储器PCF8594C-2 存储器PCF8598 E2PROM存储器PCF8598C-2 E2PROM存储器PCF8598E E2PROM存储器PCX8598X-2 E2PROM存储器PIP2250 PIP信号处理电路PQ05RF 受控+5V稳压器PQ09RD11(78HR09) 受控+9V稳压器PQ12RF 受控+12V稳压器PQ12RF2 受控+12V稳压器S24C08A 存储器SAA3010T 遥控信号发射电路SAA4955TJ 场存储器SAA4955TS 数字式场存储器SAA4956TJ 具有降噪功能的场存储器SAA4961 PAL/NTSC兼容梳状滤波器SAA4977H 倍场频处理电路SAA4981 单片集成16:9压缩处理电路SAA4991WP 运动估算和补偿、降低行间闪烁、变焦和降噪电路SAA5284 多媒体视频数据捕获电路SAA5700GP 汉字系统图文电视(CCST)解码电路SAA7280P 丽音信号处理电路SAA7283ZP 丽音解调解码电路SAB9077H PIP控制电路SBX1765-01 数字梳状滤波器SDA9187 PIPSDA9187-2X PIPSDA9189X 1/4屏幕多画面PIP处理电路SDA9205 三路8bitA/D转换电路SDA9220 存储同步控制电路SDA9251 存储器SDA9257 时钟同步发生器SDA9280 显示信号处理电路SDA9288 PIP/POP信号处理电路SDA9288X PIP/POP信号处理电路SDA9290 数字图像处理电路SDA9361 DDC-PLUS偏转控制电路SDA9362 扫描小信号处理电路SDA9400 扫描变换处理电路SE110N 开关电源误差信号放大电路SE116E 开关电源误差信号放大电路SE140N/SE145N 开关电源误差信号放大电路SECL810 音频信号控制电路SID2500-DOBO R、G、B混合处理电路SKW011-829A2202 微处理器SMM-201N 微处理器ST24C02 2线电可擦、可编程只读存储器ST24C04 2线电可擦、可编程只读存储器ST63156 微处理器ST6367B1/FEJ 微处理器ST92196 微处理器STK392-040 三通道会聚校正放大电路STK392-110 三通道会聚校正放大电路STR-6658B 开关电源厚膜电路STR-D1005T 开关电源厚膜电路STR-F6454 开关电源厚膜电路STR-F6653 开关电源厚膜电路STR-F6654 开关电源厚膜电路STR-F6656 开关电源厚膜电路STR-F6658B 开关电源厚膜电路STR-F6707 开关电源厚膜电路STR-G8656 开关电源厚膜电路STR-M6529F04 开关电源厚膜电路STR-M6833BF04 开关电源厚膜电路STR-S5941 开关电源厚膜电路STR-S6308 开关电源厚膜电路STR-S6309 开关电源厚膜电路STR-S6709 开关电源厚膜电路STR-S6709A 开关电源厚膜电路STR-S6709AN 开关电源厚膜电路STR-Z3202 开关电源厚膜电路STR-Z4302 开关电源厚膜电路STR-Z4479 开关电源厚膜电路STV2116 视频解码电路STV2246 I*IC总线控制单片集成TV小信号处理电路STV2248 I*IC总线控制单片集成TV小信号处理电路STV5111 R、G、B高压视频放大电路STV5112 R、G、B高压视频放大电路STV9306 场扫描输出电路STV9379 场扫描输出电路T7808CT 8V固定正稳压器TA1216AN 三通道音频信号处理电路TA1218AN AV/TV切换电路TA1219AN AV/TV切换电路TA1219N AV/TV切换电路TA1222AN 多制式视频、色度、同步、偏转信号处理电路TA1222BN 多制式视频、色度、同步、偏转信号处理电路TA1226N 亮度信号瞬态校正电路TA1229N SECAM制解码电路TA1270BF PAL/NTSC视频和色信号处理电路TA1316AN 逐行扫描倍场频画质增强电路TA1318N 多制式扫描行场振荡电路TA2009P 数字信号滤波电路TA2047N 丽音系统模拟滤波电路TA2136F/N 声音重演信号(SRS)处理电路TA24C04/TA24C08/TL24C04 2线电可擦、可编程只读存储器TA7347P S端子切换电路TA7439 三波段数字控制音频信号切换及处理电路TA7508P 四运算放大器TA75393S 双电压比较器TA75458P 双运算放大器TA7555F/P 时间延时器TA75558P 双运算放大器TA75559P 双运算放大器TA7809S 9V固定正稳压器TA78L09AP 9V固定正稳压器TA8173AP 双声道立体环绕声处理电路TA8200AH 双声道音频功率放大电路TA8211AH 双声道音频功率放大电路TA8213K 重低音功率放大电路TA8218AH 音频功率放大电路TA8256H 6W×3通道音频功率放大电路TA8256HV 三通道音频功率放大电路TA8258H 双通道音频功率放大电路TA8403K 场扫描输出电路TA8427K 场扫描输出电路TA8445K 场扫描输出电路TA8615N 制式转换电路TA8628N 带电子音量控制的AV/TV开关电路TA8659BN 多制式视频、偏转、文字显示信号处理及制式转换电路TA8710S 伴音中频转换电路TA8720AN TV/AV(S-VHS)切换电路TA8765N SECAM解码电路TA8772AN PAL/NTSC/SECAM基带1H延迟电路TA8772CN PAL/NTSC/SECAM基带1H延迟电路TA8776N 环绕声信号处理电路TA8777NFA-1 PIP画面视频信号选择开关TA8795AF PIP画面多制式亮度、色度、同步信号处理电路TA8814N 彩色瞬态特性改善电路TA8815BN 模拟视频信号选择开关TA8851AN 双极型I*IC总线控制AV开关TA8851BN 双极型I*IC总线控制AV开关TA8851CN 双极型I*IC总线控制AV开关TA8859CP 枕形失真校正电路TA8859P 枕形失真校正电路TA8880CN 视频、色度、同步信号处理电路TA8889P I*IC总线控制白平衡调整电路TAIF24C04 存储器TB1204N 丽音信号处理电路TB1212N 丽音信号处理电路TB1227AN PAL/NTSC/SECAM视频、色度、扫描小信号处理电路TB1227N PAL/NTSC/SECAM视频、色度、扫描小信号处理电路TB1227 PAL/NTSC/SECAM视频、色度、扫描小信号处理电路TB1231N 视频、色度、扫描小信号处理电路TB1238AN 视频、色度、扫描小信号处理电路TB1238N 视频、色度、扫描小信号处理电路TB1240N I*IC总线控制TV信号处理电路TB1240AN I*IC总线控制TV信号处理电路TBA2800 遥控信号接收电路TC4052 双4选1模拟开关TC4052B 双4选1模拟开关TC4052BP 双4选1模拟开关TC4053 三组2路双向模拟开关TC4053AP/TC4053BP 三组2路双向模拟开关TC4066AF 四组双向模拟开关TC4094BP 端口扩展电路TC74HC4053AP 三组2路双向模拟开关TC74HC4066AF 四组双向模拟开关TC9028F 遥控信号发射电路TC9083F/P 单片PIP控制电路TC9089 数字Y/C信号分离电路TC9090AN 多制式3行数字Y/C信号分离电路TC9090CN 多制式3行数字Y/C信号分离电路TC9090N/F 多制式3行数字Y/C信号分离电路TC9097F 彩色信号处理电路TC90A49P 多制式3行数字Y/C信号分离电路TC9415N 数字卡拉OK电路TDA1521 双通道伴音功率放大电路TDA1521A 双通道伴音功率放大电路TDA1524A 立体声(音量/音调)控制电路TDA1543 数控变换电路TDA16846 开关电源厚膜电路TDA2007 6W×2音频功率放大电路TDA2007A 6W×2音频功率放大电路TDA2009A 10W×2双路音频功率放大电路TDA2030 14WTDA2595 行、场扫描及同步脉冲发生器TDA2616 带静音功能的12W×2TDA3504 视频控制、矩阵电路TDA3654 场扫描输出电路TDA3857 准分离伴音解码电路TDA4472 TV信号前置处理电路TDA4505 彩色电视小信号处理电路TDA4555 多制式色度解码电路TDA4565 亮度延迟、彩色暂态特性改善电路TDA4601 开关电源厚膜电路TDA4605 开关电源厚膜电路TDA4605-3 开关电源厚膜电路TDA4665 基带彩色信号延迟电路TDA4671 彩色瞬态改善(CTI)电路TDA4681 矩阵变换及亮度控制电路TDA4780 视频信号处理电路TDA4853/TDA4854 I*IC总线自同步偏转控制电路TDA5112 单片视频放大输出电路TDA5330T 高频调谐器专用贴片电路TDA6101Q 视频放大输出电路TDA6103Q 视频放大输出电路TDA6107Q 视频放大输出电路TDA6108JF 单片视频放大输出电路TDA6110Q 视频放大输出电路TDA6111Q 视频放大输出电路TDA6120Q 宽带视频放大输出电路TDA6151 卫星电视接收视频处理电路TDA7056A/TDA7056B 超重低音功率放大电路TDA7057AQ 双声道音频功率放大电路TDA7265 双通道音频功率放大电路TDA7297 双声道功率放大电路TDA7429S 立体声信号切换、处理电路TDA7496 带直流音量控制的双通道音频功率放大电路TDA8133 具有“禁止”和复位功能的+5.1V、+8V稳压器TDA8139 具有CPU复位功能的稳压电路TDA8145 光栅东/西失真校正电路TDA8170 场扫描输出电路TDA8172 场扫描输出电路TDA8177F 场扫描输出电路TDA8179 场扫描输出电路TDA8219 色度信号解码电路TDA8305A 图像中放电路TDA8310 PIPTDA8310A PIP全制式色度信号处理电路TDA8341 内载波中频信号处理电路TDA8350Q 直流耦合场偏转和东/西枕校输出电路TDA8351 场扫描输出电路TDA8351AQ 场扫描输出电路TDA8354 宽范围场扫描输出电路TDA8361 PAL/NTSC单片集成TV小信号处理电路TDA8362 单片集成全制式TV小信号处理电路TDA8366N3D 单片集成TV小信号处理电路TDA8376A I*IC总线控制多制式TV小信号处理电路TDA8395 SECAM色度解码电路TDA8425 Hi-Fi音频信号处理电路TDA8540 视频4×4开关矩阵切换电路TDA8732 丽音信号处理电路TDA8814N 亮度、色度信号处理电路TDA8838 I*IC总线控制单片集成TV小信号处理电路TDA8839 I*IC总线控制单片集成TV小信号处理电路TDA8841 I*IC总线控制多制式TV小信号处理电路TDA8843 I*IC总线控制PAL/NTSC制单片集成TV小信号处理电路TDA8844 I*IC总线控制多制式单片集成TV小信号处理电路TDA8944J Hi-Hi立体声功率放大电路TDA8945J 音频功率放大电路TDA9111 行、场扫描信号处理电路TDA9143 解码/同步信号处理电路TDA9151B 可编程扫描控制电路TDA9160 多制式解码/同步信号处理电路TDA9170 亮度改善和色度信号校正处理电路TDA9177 亮度、色差信号瞬态校正电路TDA9178 YUV画质改善处理电路TDA9181 多制式集成梳状滤波器TDA9302H 场扫描输出电路TDA9321 I*IC总线控制TV小信号处理电路TDA9321H 主画面TV信号处理电路TDA9332H I*IC总线控制TV显示处理电路TDA9370 CPU+TV超级电视信号处理电路TDA9380 MCU+VCD超级芯片电视信号处理电路TDA9383 CPU+TV超级电视信号处理电路TDA9429S 音频信号切换及处理电路TDA9801 中频锁相环解调和鉴频器TDA9808 准声像分离,PLL鉴频中频处理电路TDA9808T 准声像分离,PLL鉴频中频处理电路TDA9815 多路中频信号处理电路TDA9859 Hi-Fi音频信号处理电路TDA9860 Hi-Fi音频信号处理电路TDA9874A 数字伴音解调和解码电路TEA2014A 视频信号切换开关TEA5114A 视频信号切换开关TEA5170 同步、稳压电源电路TEA6415B I*IC总线控制视频矩阵开关TEA6415C I*IC总线控制视频矩阵开关TEA6420 I*IC总线控制音频矩阵开关TEA6430 I*IC总线控制音频矩阵开关TLC29321PWL 高效锁相环电路TLP621 光电耦合器TMP83C266BDR-100 微处理器TMP87CH33N 微处理器TMP87CH36 微处理器TMP87CH38N 微处理器TMP87CK38N-3644 微处理器TMP87CM36N 微处理器TMP87CM38N 微处理器TMP87CP38N 微处理器TMP87CS38N 微处理器TMP87PM36N-R0605 微处理器TMP87PS38N 微处理器TMS73C45TKY2 A1检测(模糊逻辑)电路TNY254P 5V待机电路TPU2735 图文电视处理电路TVSM5218L 双声道音频功率放大电路VCT3803A/01A CPU+TV超级电视信号处理电路VCU2133 视频A/D与D/A编解码电路VCU2136 数字视频信号处理电路VDP3108A 数字视频及偏转信号处理电路VDP3120C 数字视频、显示及偏转信号处理电路VPC3215C 数字视频信号处理电路VSP2860 数字视频及同步信号处理电路WH2000(WUHAN2000) 微处理器WH2000C 微处理器XR1075 BBE音响增强处理电路Z86227 微处理器Z90361 微处理器μPC1830GT 视频、色度及扫描小信号处理电路μPC1853 移相矩阵环绕声处理电路μPC1853-01 移相矩阵环绕声处理电路μPC1891Y/A 矩阵环绕声信号处理电路μPC2412HF +12V稳压电路μPD6124 红外线遥控发射电路μPD6325C 6位D/A转换电路μPD6336C 6位D/A转换电路μPD6375 D/A转换电路μPD6376 D/A转换电路10K2 SRS音效处理器14577B 双通道带宽放大电路24C08 存储器24C04-4A99A819 存储器24WC16P 存储器4052 双4选1模拟开关47-00001-42(29022306) 微处理器47C1638AU353 微处理器47C834N-RB11 微处理器74HC86/74HCT86 四组2输入异或门74HC157/74HCT157 四组2选1数据选择器74HC573D 三态输出8位透明D型锁存器74HC4046A/74HCT4046A 低功耗锁相环VCO电路74HC4066 双向模拟电子开关74HC4538D/74HCT4538D 双路可重新触发单稳态多谐振荡器74HCT241N 线性驱动数据缓冲器74LS9D 六路施密特触发倒向器74LS10 三组3输入与非门74LS74 双D触发器(带置位、复位、正触发)74LS393 双4位二进制计数器。