表面附着
粘和黏的用法
粘和黏的用法一、粘的含义和用法1.1 粘的基本概念粘(zhān)是汉语词汇中一个常用的动词,意为物体之间相互附着、黏连。
粘可以用来描述物体表面有黏性,可以将两个物体黏在一起,也可以表示黏稠的液体或物质。
1.2 常见用法粘在日常生活中多用于描述物体之间的附着或贴合状态。
以下是粘的常见用法:1.接触面粘连:两个物体的接触面上存在黏性,使它们能够相互附着。
2.黏贴:使用胶水、胶带等黏性物质将物体固定在一起。
3.黏糊糊:形容物体表面或液体黏稠的状态。
4.黏连:物体被粘在一起,难以分开。
粘的用法灵活多样,因材施粘,可以用于描述各种不同的黏附和黏连情况。
二、黏的含义和用法2.1 黏的基本概念黏(nián)是汉语词汇中一个常用的形容词,意为具有粘性、黏稠的状态。
黏可以用来形容物质的黏性或某个物体表面的附着特性。
2.2 常见用法黏在日常生活中主要用于描述物质的粘性或物体表面的附着状态。
以下是黏的常见用法:1.黏糊糊:形容物体表面或液体粘稠、黏稠的状态。
2.黏附:物体表面具有黏性,可以附着其他物体。
3.黏贴:使用具有黏性的物质将物体固定在一起。
4.黏糊:指物体表面附着了黏稠的物质。
黏的用法多样,描述了物质的黏滞特性,以及物体附着的状态。
三、粘和黏的区别和联系粘和黏都用于描述物体之间的附着和黏连。
它们在含义上有所区别,但也存在联系。
3.1 区别粘主要作为动词使用,表示物体之间相互附着、黏连的行为或状态。
它侧重于描述物体表面有黏性,能够将两个物体黏在一起。
黏主要作为形容词使用,表示物体具有黏性、黏稠的状态。
它侧重于形容物质本身的黏滞特性,或物体表面的附着特性。
3.2 联系虽然粘和黏在使用上有所区别,但它们在某些情况下可以相互替换,用于描述相似的情景。
例如,当我们想表达两个物体被黏在一起时,可以使用“粘在一起”或“黏在一起”来描述。
在这种情况下,两者的含义基本相同,只是用词不同。
四、粘和黏的扩展意义和引申用法粘和黏的含义可以进一步引申和扩展,用于描述不仅仅是物体附着和粘连的情况。
涂层表面附着力测试标准
涂层表面附着力测试标准
涂层表面的附着力是指涂层与基底材料之间的牢固程度。
涂层的附着力测试标准通常由国际标准化组织(ISO)和相关行业组织制定。
目前较常使用的涂层附着力测试标准有以下几个:
1. ISO 2409:涂层和涂层系统的划格附着力测试标准。
该标准使用划格工具将涂层表面划割成一系列交叉的划痕,然后使用胶带将划痕处的涂层剥离,并通过划格附着等级进行评定。
2. ISO 4624:涂层的拉伸附着力测试标准。
该标准使用机械装置施加拉力来剥离涂层,并通过测量拉伸力来评定附着力。
3. ASTM D3359:通过切割测试来评估涂层附着力的标准。
该标准使用切割刀将涂层表面切割成一系列几何图案,然后使用胶带剥离切割处的涂层,并通过评定切割附着等级来评定附着力。
4. GB/T 9286:中国国家标准,涂层附着力试验方法。
该标准使用拉力机或拉力计来施加拉力来剥离涂层,并通过测量拉伸力来评定附着力。
以上标准都是通过实验室测试来评定涂层附着力,具体测试方法和评定等级可根据不同需求选择适合的标准。
金属表面附着物
金属表面附着物
金属表面可能附着各种不同的物质,这取决于金属的用途和环境条件。
以下是一些常见的金属表面附着物:
1.氧化物:金属表面可能会出现氧化物,如铁锈、铜绿锈等,这是金属与氧气反应生成的化合物。
2.油污:在工业生产和机械制造过程中,金属表面可能会受到油脂、润滑剂等油污的污染。
3.污垢:金属表面可能会附着各种污垢,如灰尘、泥土、沙粒等,这些都会影响金属的美观和性能。
4.水垢:在水质硬度较高的地区,金属表面可能会出现水垢,影响金属的光洁度和表面质量。
5.涂层:金属表面可能会被涂覆上各种涂层,如油漆、喷涂层、镀层等,用于保护金属表面或赋予金属新的性能。
6.金属粉尘:在金属加工或车间作业中,金属表面可能会附着金属粉尘,例如铁粉、铜粉等。
7.腐蚀产物:金属表面可能会产生各种腐蚀产物,如锈、铜绿锈等,这是金属与环境中的化学物质反应产生的物质。
针对不同的金属表面附着物,需要采取不同的清洁、防护或处理措施,以保证金属的性能和美观。
碳纤维复合材料表面涂层附着力测试方法
碳纤维复合材料表面涂层附着力测试方法
碳纤维复合材料表面涂层附着力的测试方法有多种,具体如下:
1. 拉拔试验:这是一种常用的测试方法,通过将涂层从基材上拉拔出来,测量所需的力量来评估附着力。
2. 划痕试验:在涂层表面划出一系列划痕,然后通过观察涂层是否从划痕处剥离来评估附着力。
3. 冲击试验:通过对涂层施加冲击力,观察涂层是否脱落来评估其耐冲击性和附着力。
4. 弯曲试验:将涂有涂层的样品弯曲到一定程度,检查涂层是否出现裂纹或剥离。
5. 湿热循环试验:通过模拟涂层在实际使用环境中可能遇到的湿热条件,对涂层的耐久性和附着力进行测试。
6. 盐雾试验:用于评估涂层在海洋或含盐环境中的耐腐蚀性和附着力。
在选择测试方法时,需要考虑到碳纤维复合材料的具体应用环境和预期的使用条件。
通常,结合多种测试方法可以得到更为全面的评估结果。
疏水材料原理
疏水材料原理
疏水材料是指具有自洁能力的材料,其主要原理是利用材料表面的微观结构和化学性质,使水无法在其表面附着和滞留。
在这种材料表面,水滴会形成球状,滚落下来,将污物沾附在表面一并带走,从而实现了材料的自洁效果。
其中,微观结构的作用是关键。
疏水材料通常具有高度多孔的表面结构,包括微米级的凹凸、纳米级的纳米柱或纳米颗粒,这些结构能够增加表面的粗糙度和接触面积。
当水滴接触到这样的表面时,相对于表面的微观结构,水滴的体积较大,从而使得水滴与表面之间的接触面积较小。
这导致了一个表面张力的效应,使得水滴倾向于呈现出球状,从而保持较少的接触面积,减少了与材料表面的接触,进而使得水滴无法附着在材料上。
此外,疏水材料的化学性质也会影响水滴在其表面的行为。
疏水材料通常具有低表面能和高界面能,这意味着材料表面具有较低的吸湿性和亲水性,不易吸附水分分子。
相比之下,水滴内部的分子间相互吸引力要强于水滴与材料表面的相互作用力。
因此,水滴更倾向于维持自身的完整性,而不会在疏水材料上附着和渗透。
综上所述,疏水材料的原理主要包括表面微观结构的作用和化学性质的影响。
通过利用这些原理,疏水材料能够有效地抵抗水分附着和污染物的沾附,实现自洁效果。
油漆表面质量符合国家标准
油漆表面质量符合国家标准油漆表面质量符合国家标准近年来,随着房地产行业的发展和人们对于居住环境要求的提高,油漆的表面质量成为了一个备受关注的话题。
一个房间的油漆表面质量不仅关系到房屋的美观度,更直接影响到居住者的舒适感和健康状况。
为了确保油漆表面质量的合格性,国家对于油漆施工和检测制定了一系列的标准。
1. 表面平整度与外观油漆表面的平整度是指其平滑程度和没有凸凹表面的特点。
根据国家标准,油漆表面的平整度应符合一定的要求,比如墙面应平整光滑,不得有明显的凹凸不平或破损。
2. 表面附着力油漆面层与基层的附着力是油漆表面质量的一个重要指标。
根据国家标准,油漆表面的附着力应达到一定的强度要求,以保证油漆不易脱落或剥离。
3. 表面颜色与光泽度油漆表面的颜色和光泽度是衡量其质量的重要指标之一。
国家标准规定了油漆的颜色稳定性和光泽度的要求,以确保油漆的色彩鲜艳并且具有一定的光泽。
4. 表面耐候性油漆表面的耐候性是指其在不同环境条件下的稳定性和耐久性。
根据国家标准,油漆表面应具有一定的耐候性,能够抵御阳光、雨水、温度变化等外部因素的侵蚀,保持长久的美观度和功能性。
5. 表面无有害物质释放随着人们对于室内空气质量的关注,油漆表面的有害物质释放成为一个重要的考虑因素。
国家对于油漆表面的有害物质释放做出了一系列的限制和要求,以确保室内空气的健康和安全。
总结与回顾在本文中,我们对油漆表面质量符合国家标准这一主题进行了探讨。
我们首先介绍了油漆表面质量的多个方面,包括表面平整度、附着力、颜色与光泽度、耐候性以及无有害物质释放等。
这些方面是确保油漆表面质量合格的重要指标。
在评估油漆表面质量时,我们应该按照国家标准的要求进行检测和评估。
只有达到国家标准规定的要求,油漆表面质量才能够符合国家标准。
然而,我们也要意识到,国家标准并不是唯一的衡量油漆表面质量的标准。
在实际施工和使用中,还需要考虑到不同环境条件和个人需求的差异,有些房主可能会有不同的要求和期望。
PCB印制电路板表面镀层毛刺、附着力验收标准
1 表面擴展通則理想、奈件-1、2、3級接組片上沒有麻店、年十孔和表面結瘤。
﹒焊料涂屋或阻焊膜勻插接失鍍屋之間既沒有露個也沒有涂屋重疊。
可接收奈件-1、2、3級(接插美鍵區).在接插美鍵區內表面缺陷沒有曝露底金屑。
.在接插夫提區內沒有滅出的焊料或站埸鍍屋.在接插美鍵區內沒有結瘤和金肩突出。
﹒麻店、、凹坑,或凹陷赴的最長尺寸不超迂0.15mm﹝0. 00591 in﹞。
每小插失上的缺陷不超迂3娃,且有送些缺陷的插�不超i立插!k忌數的30%。
可接收奈件-3級(露銅/童畫區域)﹒露桐/鍍屋重疊區小于等于0.8 mm﹝0. 031 in﹞可接收奈件一2級(露銅/童畫區域)﹒露鋼/鍍屋重臺區不超迂1.25 mm﹝0. 04921in﹞。
可接收奈件-1鈑(露銅/童畫區域)﹒露桐/鍍屋重蠱區不超迂2.5 mm[O. 0984 in﹞。
不符合奈件-1、2、3級﹒缺陷不符合或超出上述准則的狀況。
注1:迋些荼件不造用于固繞包括插拔部位在內的印制插:*0. 15阻﹝0.00591in﹞寬的迪生象匠。
注2:鍍居重疊區允許斐色。
1表面擴展一一引鐵鏈合盎理想奈件-1、2、3級﹒接她面在美提區內沒有超泣0.8 µm﹝32µin﹞RMS C均方根值)的表面結瘤、粗糙、屯司t式強氾左手或划痕,美提區依揖供需攻方商定的測武方法。
如使用IPC TM 650方法2.4. 15,方了荻得失鍵E內的均方根值,建坎把粗糙度的截取寬度i周廿至釣方引或提合盡最大長度的80%。
美于表面粗糙度的更多信息清參考ASME B46. 1。
﹒夫提匠的定文是以引全是健合盎中心方准,焊盎t乏度的80%和寬度的80%范圍內的區域。
美儷區︱︱長度的B側囡l引鐵鏈合盎夫提區不符合奈件-1、2、3級﹒缺陷不符合或超出上述准則的狀況。
2印制接蝕片一一迪韓毛刺理想奈件-1、2、3級﹒接融片迫緣狀況一一光滑。
可接收奈件-1、2、3級﹒接融片垃緣狀況一一平滑、元毛刺、充粗迪、印制接她片的鍍居不起姐,印制接她片勻基材充分高(分居)。
划叉法测附着力标准
划叉法测附着力标准
划叉法是一种常见的测量材料表面附着力的方法。
其测量标准是通过划X形线条(交叉切割)在材料表面,然后使用透明胶带把X形线条从材料表面撕开,通过比较剥离的情况来评估其附着力的好坏。
划叉法常用于测试涂层、油漆、胶水等材料的附着力。
测试方法如下:
1.准备两张光滑、干燥、无杂质的试验板,分别放置在水平台面上。
2.在一张试验板上划一条长度为10cm的竖直线,然后在这条线上划一条长度为10cm的水平线,形成一个"L"形。
3.在另一张试验板上同样划出一个"L"形。
4.在第二张试验板的"L"形上,再沿着L形线条两条直线的交叉点处划一条15度的斜线,以形成一个"X"形。
5.在X形交叉点处放置一张透明胶带,注意胶带尺寸应覆盖住X 形。
6.用手轻轻压实胶带,确保胶带和试验板的贴合紧密。
7.迅速地、用力地拉起透明胶带,注意从试验板的中心向两端拉,并保持胶带的牢固性。
8.观察胶带中的X形图案,评估材料表面的附着力。
评估标准如下:
a. X形图案撕裂的长度距离在1mm以内的为极好;
b. X形图案撕裂的长度距离在1-3mm之间的为好;
c. X形图案撕裂的长度距离在3-5mm之间的为一般;
d. X形图案撕裂的长度距离大于5mm的为不合格。
以上是划叉法测量附着力的基本方法和标准,具体的测量条件和参数应根据具体的材料类型、工艺要求和实验目的而定。
电镀铜排表面验收标准
电镀铜排表面验收标准
电镀铜排是一种广泛应用于电子电气领域的铜制品,其表面质量的验收标准对
产品质量和使用性能具有重要影响。
下面将介绍电镀铜排表面验收标准的相关内容。
首先,对于电镀铜排的表面平整度要求,通常要求表面应平整,不得有凹凸不平、波浪状、皱纹、气泡等缺陷。
在验收时,可以通过肉眼观察和手感检测来判断表面平整度是否符合标准要求。
其次,对于电镀铜排的表面光洁度要求,一般要求表面应光洁,不得有氧化层、污渍、水痕等现象。
可以通过观察表面反光情况和使用光洁度仪来进行验收。
另外,对于电镀铜排的表面粗糙度要求,一般要求表面应光滑,不得有明显的
划痕、磨痕、磨痕、麻点等缺陷。
可以通过使用表面粗糙度仪来进行检测和验收。
此外,对于电镀铜排的表面覆盖层厚度要求,一般要求表面覆盖层应均匀、致密,不得有漏镀、脱镀等现象。
可以通过使用镀层厚度仪来进行检测和验收。
最后,对于电镀铜排的表面附着力要求,一般要求表面覆盖层与基材之间的附
着力应牢固,不得有脱落、剥离等现象。
可以通过使用附着力测试仪来进行检测和验收。
总之,电镀铜排表面验收标准是保证产品质量和使用性能的重要依据,只有严
格按照标准要求进行验收,才能保证产品的质量和可靠性。
希望本文介绍的内容能够对大家有所帮助,谢谢阅读!。
表面涂层结合力检验方法
划叉法
1.6
3.2
5A
4A
3A
2A
1A
0A
5A
没有剥落
4A
沿着划痕边缘有少量剥落
3A
交叉处有剥落,不超过1.6mm
2A
交叉处有剥落,不超过3.2mm
1A
交叉划痕处的油漆全部剥落
0A
划痕处以外的油漆也被胶带剥落
其中5A—3A为附着力可接受状态。
拉开法
拉开法:主要应用于建筑涂层附着力的检测
试验工具:
3
部分或全部脱落,受影响的交叉切割面积明显大于15%,但不能
明显大于35%
4
涂层沿切割边缘大碎片剥落,或一些方格部分或全部脱落,受影 响的交叉切割面积明显大于35%,但不能明显大于65%
5
剥落的程度超过4级
,
划格法
在ISO 12944 中规定,附着力须达到1 级才能认定为合格:在GB中,附着 力达到1~2级时认定为合格,很多重大项目的防腐蚀涂装规格书中,规定测试 样板的涂层附着力必须达到1级。
检测步骤:
1、将样板夹在弯曲仪上,然后向漆膜外部方向对折180°,用弯曲仪加紧使 之完全平行,用胶带粘一下从而考察其漆膜的附着力是否OK,如果漆膜没有 裂开,计做0T。 2、如果发现开裂,再在此基础上进行对弯,如果这次没有破损,弯曲计做1T, 依次类推可得到2T、3T。
划格法
试验器材:
百格刀(6个切割刃的多刃切割刀具,刀刃间隔为1mm)、软毛刷、3M胶带 (采用的胶带宽度为15mm左右)、目视放大镜(手把式的,放大倍数为2倍 到3倍)、涂漆膜的样板
ISO 2409中规定了不同的漆膜厚度以及底材的软硬对应的不同的划格间距:
膜厚 0~60μm 0~60μm 61~120μm 121~250μm
涂层表面附着力测试标准(1)
发行日期:
2014.5.15
1.目的:指导涂层表面附着力测试工作,规范和统一涂层表面附着力检验标准;
2.范围:应用涂层厚度大于50μm;
3.定义:符合BS 3900-E6、ISO2409、DIN53 151和ASTM D3359-B测试方法;
4.流程:无
5.内容:
5.1设备要求:划线器刀口由碳钨合金材料制成,齿数x齿间距 6齿x2mm;胶带用3M 600号2cm宽胶带;
5.2操作步骤
-用划格器在涂层上切出十字格子图形,切口直至基材;
-用毛刷对角线方向各刷五次,用胶带贴在切口上再拉开;
-观察格子区域的情况,可用放大镜观察;
划格结果附着力按照以下的标准等级
ISO等级:0
ASTM等级:5B
切口的边缘完全光滑,格子边缘没有任何剥落
ISO等级:1
ASTM等级:4B
在切口的相交处有小片剥落,划格区内实际破损
不超过5%
ISO等级:2
ASTM等级:3B
切口的边缘和/或相交处有被剥落,其面积大于
5%,但不到15%
发行日期:
2014.5.15
ISO等级:3
ASTM等级:2B
沿切口边缘有部分剥落或整大片剥落,及/或者部
分格子被整片剥落。
被剥落的面积超过15%,但
不到35%
ISO等级:4
ASTM等级:1B
切口边缘大片剥落/或者一些方格部分部分或全
部剥落,其面积大于划格区的35%,但不超过65%
ISO等级:5
ASTM等级:0B超过上一等级
5.3测试结果判定:如果没有客人特殊要求,目标的产品要求达到ISO等级:1、ASTM等级:4B以上级别可以接受。
制作批准实施日期2013年5月17日。
附着力作业指导书
附着力测试指导书1.目的通过对表面处理附着力的控制,为明确附着力测试方法及判定标准,特制定本规范。
2.适用范围适用于质检部对产品附着力的检验和测试。
3.定义附着力:对产品表面其防护作用的涂成与产品基材结合力的大小。
百格实验:对产品表面附着力进行实验的方法。
4.职责质检部:负责对加工产品的附着力测试、结果判定及联络。
5.工作程序5.1判定标准35%我公司表面处理的产品,附着力要求达到4B及以上,不达标拒收,需返工处理。
5.2测试前准备5.2.1切割图形每个方向的切割数应是10。
5.2.2切割的间距每个方向切割的间距应相等。
5.3切割涂层5.3.1将样板放置在坚硬、平直的物面上,以防在试验过程中样板的任何变形。
5.3.2按下述规定的程序完成切割。
试验前,检查刀具的切割刀刃,并通过磨刃或更换刀片使其保持良好的状态。
5.3.3握住切割刀具(使刀刃垂直于样板表面对切割刀具均匀施力),用均匀的切割速率在涂层上形成规定的切割数。
5.3.4重复上述动作。
再做相同数量的平行切割线,与原先切割线成90°角相交,以形成网格图形。
5.3.5用软毛刷沿网格图形每一条对角线,轻轻的扫几次,再向前、后扫几次,除掉切割脱落涂层。
5.3.6按均匀的速度拉出一段胶黏带,除去最前面的一段,然后剪下长约75mm的胶黏带。
把该胶黏带的中心点放在网格上方,方向与一组切割线平行,然后用手指把胶黏带在网格区上方的部位压平,胶黏带长度至少超过网络20mm。
为了确保胶黏带与涂层接触良好,用手指尖用力蹭胶黏带。
透过胶黏带看到涂层颜色全面接触。
在贴上胶黏带5分钟内,拿住胶黏带悬空的一端,并在尽可能接近60°的角度,在0.5秒~1.0秒内平稳的撕掉胶黏带。
5.4 不良品处理测试后,当发现测试不合格时,对不合格产品进行标识、隔离并通知生产进行返修处理。
5.4 注意事项所有切割都应划透至底材表面,否则测试结果不准确,需重新测试。
喷漆的要求
喷漆的要求
喷漆的要求
一、面漆的要求
1、面漆表面平整度要求:PB面为2.5米范围内变化不大于0.2m,单位面积变化不大于30mm;。
2、表面附着力要求:用盐水试验,水中盐浓度为2~3%,3个小时后无剥离现象;。
3、表面光洁度要求:涂膜厚度一米范围内变化不大于±0.1mm,初始光洁度大于等于85,平均光洁度大于等于90,单位面积变化率不大于5%;
4、表面无起泡、无褶皱、无劈裂、无漏涂、无色差、无涂层起皮现象。
二、底漆的要求
1、底漆要求:底漆用量200g以上,表面无滴落,无松散沙粒,无手痕,无浮渣,表面光滑,有涂料的弹力;
2、框体表面漆层要求:涂层厚度为0.4mm~0.5mm,严格控制底漆和面漆厚度以及外观效果;
3、底漆表面要求:表面平整度要求PB面为2.5米范围内变化不大于0.1m,单位面积变化率不大于20mm;
4、底漆和面漆的结合力要求:用盐水试验,水中盐浓度为2~3%,3个小时内底漆和面漆不分离;
三、喷漆要求
1、喷漆人员应熟悉喷漆技术,喷涂均匀,均匀性达到要求。
2、喷漆压力要求:平均压力要求以及面漆厚度控制符合技术要求;
3、喷漆前的除尘处理要求:喷漆前先用湿布擦净表面,再用车载式吸尘机吸尘;
4、垃圾处理要求:垃圾、喷枪和清洁液定期收集处理,以减少污染;
5、温度要求:喷漆前应把涂料放在温度在20~25℃的室内,使之降温到适宜喷漆温度。
自流平验收标准
自流平验收标准自流平是一种常用的地面修复材料,广泛应用于建筑、装饰等领域。
为了确保自流平施工质量,需要进行严格的验收。
下面将介绍自流平验收的标准和要求。
一、表面平整度。
自流平施工后,首先需要对表面的平整度进行验收。
使用直尺或者水平仪对地面进行检测,要求表面平整度误差在规定范围内,通常为2mm以内。
二、表面硬度。
自流平施工完成后,还需要对表面硬度进行验收。
使用硬度计对地面进行测试,要求地面硬度符合规定标准,通常要求硬度在50-70之间。
三、表面光泽度。
自流平施工完成后,还需要对表面的光泽度进行验收。
通过目视检测或者光泽度仪进行测试,要求地面光泽度均匀一致,无明显的色差和斑点。
四、表面附着力。
自流平施工完成后,需要对表面的附着力进行验收。
使用附着力测试仪进行测试,要求自流平与地面之间的附着力符合规定标准,通常要求附着力在1.5Mpa以上。
五、表面耐磨性。
自流平施工完成后,需要对表面的耐磨性进行验收。
通过耐磨性测试仪进行测试,要求地面的耐磨性符合规定标准,通常要求磨损量在0.02g以下。
六、施工环境。
自流平施工需要在一定的温度和湿度条件下进行,因此还需要对施工环境进行验收。
要求施工现场温度和湿度符合规定要求,确保自流平施工质量。
七、施工工艺。
自流平施工需要按照规定的工艺进行,包括搅拌、倒料、铺设、抹平等环节。
需要对施工工艺进行验收,确保每个环节都符合规定要求。
综上所述,自流平验收标准涉及到表面平整度、硬度、光泽度、附着力、耐磨性、施工环境和工艺等多个方面。
只有严格按照标准要求进行验收,才能确保自流平施工质量达到预期效果。
希望施工人员能够严格按照要求进行验收,确保自流平施工质量,提升工程质量,保障使用效果。
附着力测试标准
附着力测试标准1. 引言附着力测试是一种常见的测试方法,用于评估物体表面的附着力能力。
附着力的好坏直接影响物体的性能和持久度,在许多行业中都有广泛应用。
因此,为了确保产品的质量和安全性,制定一套附着力测试标准是必要的。
本文将介绍附着力测试的标准,包括测试原理、测试方法、测试仪器以及结果评估等内容。
2. 测试原理附着力测试的原理是通过施加特定的力或压力,来评估物体表面与其他物体之间的粘性或附着性能。
通过测量物体在施加外力后的移位或脱落情况,可以判断附着力的强弱。
3. 测试方法附着力测试可以采用多种不同的方法,根据不同的应用场景和具体要求选择适合的方法。
3.1. 划格法划格法是一种常用的附着力测试方法。
它通过利用划格工具在物体表面划上一定深度的刻痕,然后测量刻痕的长度来评估附着力强度。
划格法适用于硬质物体的附着力测试。
3.2. 拉伸法拉伸法是一种常见的附着力测试方法,适用于柔软物体的附着力测试。
它通过将物体固定在一端,然后施加拉力,并测量物体在施加拉力后的伸长量或断裂力来评估附着力。
3.3. 剪切法剪切法是适用于平面接触的附着力测试方法。
它通过施加一定的剪切力在物体表面进行切割,并测量切割的力度和剪切面的变化来评估附着力。
3.4. 粘度法粘度法是适用于液体或半固体物质的附着力测试方法。
它通过测量物质在施加外力后的流动性和黏度变化来评估附着力。
4. 测试仪器附着力测试需要使用特定的仪器来进行测量和评估。
常见的测试仪器包括:•划格工具•拉伸仪•剪切机•黏度计根据不同的附着力测试方法和具体要求,选择合适的测试仪器进行测量。
5. 结果评估附着力测试的结果评估需要根据具体的测试方法和标准来进行。
根据测试结果的不同,可以进行定性或定量的评估。
在定性评估中,根据附着力的强弱进行简单的分级,如优、良、中、差等。
在定量评估中,需要根据具体的测试数据进行数值分析和统计。
6. 结论附着力测试是一种重要的测试方法,用于评估物体表面的附着力能力。
混凝土外观质量控制
混凝土外观质量控制一、引言混凝土是建造工程中常用的一种材料,其外观质量对于工程的美观度和耐久性具有重要影响。
因此,混凝土外观质量控制是确保工程质量的重要环节。
本文将详细介绍混凝土外观质量控制的标准格式文本,包括混凝土外观质量的要求、检测方法、评定标准等内容。
二、混凝土外观质量要求1. 表面平整度要求:混凝土表面应平整、光滑,不得有明显的凹凸不平、麻面、鱼肚等缺陷。
2. 颜色要求:混凝土的颜色应均匀,不得有明显的色差。
颜色可以根据设计要求进行调整,但应与周围环境协调一致。
3. 表面疏松、裂缝要求:混凝土表面不得有疏松、裂缝等缺陷。
疏松是指混凝土表面存在空洞、松散的现象,裂缝是指混凝土表面浮现的线状或者网状的开裂现象。
4. 混凝土表面附着力要求:混凝土表面与其他材料的附着力应符合相关标准要求。
在涂装或者粘贴其他材料时,混凝土表面应做好预处理,确保附着力良好。
三、混凝土外观质量检测方法1. 目视检查:通过人眼观察混凝土表面,检查是否存在凹凸不平、麻面、鱼肚、裂缝等缺陷。
2. 触摸检查:用手触摸混凝土表面,检查是否存在疏松、松动的现象。
3. 颜色检测:使用颜色检测仪器,对混凝土表面进行颜色测量,判断是否符合要求。
4. 附着力检测:使用附着力测试仪器,对混凝土表面与其他材料的附着力进行测试,判断是否达到标准要求。
四、混凝土外观质量评定标准1. 表面平整度评定标准:根据混凝土表面的凹凸不平程度,可分为平整度优、平整度良、平整度合格和平整度不合格四个等级。
具体评定标准可参考相关国家或者地区的建造标准。
2. 颜色评定标准:根据混凝土表面的颜色差异程度,可分为颜色一致、颜色基本一致、颜色不一致三个等级。
具体评定标准可根据设计要求和相关标准进行确定。
3. 表面疏松、裂缝评定标准:根据混凝土表面的疏松、裂缝程度,可分为疏松、裂缝不明显、疏松、裂缝明显和疏松、裂缝严重四个等级。
具体评定标准可参考相关国家或者地区的建造标准。
附着水平的名词解释
附着水平的名词解释近年来,附着水平在各个领域逐渐引起人们的关注和研究。
附着水平是指物体在表面上附着的程度和方式。
不同的附着水平可以对物体的稳定性、摩擦力和运动产生重要影响。
本文将从物理、生物和工程角度分析附着水平的相关概念和应用。
一、附着水平的物理解释在物理学中,附着水平描述了物体在表面上的粘结和相互作用力。
当物体与表面之间的接触面积增大,接触力也会增加,从而提高附着水平。
而物体质量的增加、表面的粗糙度以及表面之间的化学吸附等因素也可以影响附着水平的高低。
附着水平广泛应用于各种物理实验和技术领域。
例如,在天文学中,研究附着水平可以帮助我们理解宇宙中星体之间的相互作用力和运动方式。
此外,附着水平还在材料科学、纳米技术和涂层工程中起着关键作用。
通过调节表面材料的特性,可以实现不同附着水平的控制和应用。
二、附着水平的生物解释在生物学领域,附着水平描述了生物体在表面上附着和移动的方式。
不同的生物体可以通过独特的附着水平适应各自的生存环境和生活方式。
例如,壁虎利用其特殊的足底结构和附着水平,可以在光滑的墙壁上自由爬行。
研究生物体附着水平对人类科技和医学应用具有重要意义。
了解生物附着水平的机制可以帮助我们改进粘附材料、设计仿生机器人,并提升生物医学领域的药物输送和利用。
三、附着水平的工程解释在工程领域中,附着水平是指物体在表面上的粘附和固定程度。
在生产过程中,工程师需要考虑材料的附着水平,以确保产品能够长期使用并具备所需的性能。
例如,在建筑工程中,选择正确的涂层和黏合剂,可以提高建筑材料的附着水平,增加其耐久性。
研究附着水平在工程领域的应用也是一项重要任务。
比如,在航空航天领域,提高附着水平可以增加飞机和航天器在飞行中的稳定性和安全性。
同样,应用高附着水平材料也可以提高汽车制动系统的效能,减少制动距离。
综上所述,附着水平是一个广泛的概念,涉及物理、生物和工程等多个领域。
通过对附着水平的研究和应用,人类可以进一步探索自然界的规律,改进科技和生产,从而为社会带来更多的便利和发展。
涂层表面附着力测试标准
涂层表面附着力测试标准摘要:一、涂层表面附着力测试标准的重要性二、涂层表面附着力测试的常用方法三、涂层表面附着力测试的步骤四、涂层表面附着力测试的合格标准五、提高涂层附着力的方法正文:一、涂层表面附着力测试标准的重要性涂层表面附着力是指涂料在基材表面的附着程度。
附着力是评价涂层质量的重要指标,直接影响涂层的使用寿命、外观和保护性能。
涂层表面附着力测试标准对于涂料行业和涂装工程具有重要的指导意义。
通过附着力测试,可以确保涂层的质量和性能,提高涂装工程的稳定性和可靠性。
二、涂层表面附着力测试的常用方法涂层表面附着力测试常用的方法包括划圈法、划格法和胶带法等。
这些方法分别对应国家标准GB/T 1720《漆膜附着力测定法》、GB/T 9286《色漆和清漆漆膜的划格实验》和ASTM D1004-03《撕裂强度(双方向)》等。
三、涂层表面附着力测试的步骤1.准备试样:将涂料涂覆在合适的基材上,待涂层干燥后,制作成规定尺寸的试样。
2.表面处理:用锋利的刀片在涂层表面划出10×10 个小网格,每一条划线应深及油漆的底层。
3.清洁测试区域:用毛刷将测试区域的碎片刷干净。
4.粘贴胶带:用粘附力为350g/cm2~400g/cm2 的胶带(3m,600 号胶纸或等同)牢牢粘住被测试小网格,并用橡皮擦用力擦拭胶带,以加大胶带与被测区域的接触面积及力度。
5.扯下胶带:用手抓住胶带一端,在垂直方向(90°)迅速扯下胶纸,同一位置进行2 次相同试验。
6.结果判定:根据胶带与涂层之间的附着程度,判断附着力等级。
要求附着力达到4b 时为合格。
四、涂层表面附着力测试的合格标准根据国家标准和行业规范,涂层表面附着力测试的合格标准为4b 级。
4b 级表示涂层表面附着力较好,能够满足一般涂装工程的需求。
五、提高涂层附着力的方法1.选择合适的涂料和基材:根据涂装工程的需求,选择性能优良的涂料和匹配的基材。
2.严格控制涂装工艺:遵循涂料生产商推荐的涂装工艺,确保涂层厚度均匀,涂覆均匀。
涂层表面附着力测试标准
涂层表面附着力测试标准摘要:1.涂层表面附着力测试标准的背景和重要性2.涂层表面附着力测试方法的分类3.各种涂层表面附着力测试方法的具体步骤和原理4.我国涂层表面附着力测试标准的发展现状5.涂层表面附着力测试在实际应用中的案例分析6.未来涂层表面附着力测试的发展趋势与挑战正文:涂层表面附着力测试是评价涂层质量的重要手段,对于保证产品性能和使用寿命具有重要意义。
本文将介绍涂层表面附着力测试标准的背景和重要性,以及各种测试方法的分类和具体步骤。
首先,涂层表面附着力测试标准的背景和重要性体现在:它是评估涂层附着性能的直接手段,可以有效防止由于涂层附着力不足导致的脱落、起泡等现象。
这些现象不仅影响产品外观,还可能影响产品性能,甚至造成安全隐患。
其次,涂层表面附着力测试方法的分类主要有四大类:划痕法、拉开法、剥离法和压痕法。
每种方法都有其适用的涂层类型和测试范围。
划痕法是一种常用的快速评估涂层附着力的方法。
它通过在涂层表面用硬度较高的划痕器划痕,观察划痕的深度来判断涂层附着力。
划痕法适用于各种涂层类型,尤其适用于较软涂层的测试。
拉开法是另一种常用的涂层附着力测试方法。
它通过将涂层与基材分离,测量分离力来评估涂层附着力。
拉开法适用于较硬涂层的测试,但对于软涂层和多层涂层的测试效果较差。
剥离法是通过将涂层与基材之间的剥离来测试涂层附着力。
剥离法适用于多层涂层的测试,但操作过程相对复杂,对基材和涂层的损伤较大。
压痕法是通过在涂层表面施加一定的压力,观察压痕的形状和深度来评估涂层附着力。
压痕法适用于较软涂层的测试,但对硬涂层的测试效果较差。
在我国,涂层表面附着力测试标准不断发展,已形成了一套较为完善的测试体系。
但与国际先进水平相比,我国涂层表面附着力测试标准还存在一定的差距。
未来,涂层表面附着力测试将面临更多样化的测试需求和更高的测试要求,需要继续研究和完善相关测试方法和技术。
总之,涂层表面附着力测试对于保证涂层产品的质量和性能具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Biosensors and Bioelectronics 31 (2012) 84–89Contents lists available at SciVerse ScienceDirectBiosensors andBioelectronicsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /b i osMolecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target proteinWei Zhang a ,Xi-Wen He a ,Yang Chen a ,Wen-You Li a ,∗,Yu-Kui Zhang a ,ba Department of Chemistry,Nankai University,94Weijin Road,Tianjin 300071,ChinabNational Chromatographic Research and Analysis Center,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116011,Chinaa r t i c l ei n f oArticle history:Received 5July 2011Received in revised form 14September 2011Accepted 29September 2011Available online 6 October 2011Keywords:Molecular imprinting Quantum dotsDenatured bovine serum albumin Artificial receptorsSelective protein recognitiona b s t r a c tA new type of molecularly imprinted polymer (MIP)-based fluorescent artificial receptor was developed by anchoring MIP on the surface of denatured bovine serum albumin (dBSA)modified CdTe quantum dots (QDs)using the surface molecular imprinting process.The approach combined the merits of molecular imprinting technology and the fluorescent property of the CdTe QDs.The dBSA was used not only to mod-ify the surface defects of the CdTe QDs,but also as assistant monomer to create effective recognition sites.Three different proteins,namely lysozyme (Lyz),cytochrome c (Cyt)and methylated bovine serum albu-min (mBSA),were tested as the template molecules and then the receptors were synthesized by sol–gel reaction (imprinting process).The results of fluorescence and binding experiments demonstrated the recognition performance of the receptors toward the corresponding template.Under optimum condi-tions,the linear range for Lyz was from 1.4×10−8to 8.5×10−6M,and the detection limit was 6.8nM.Moreover,the new artificial receptors were applied to separate and detect Lyz in real samples.This fluorescent artificial receptor may serve as a starting point in the design of highly effective synthetic fluorescent receptor for recognition of target protein.© 2011 Elsevier B.V. All rights reserved.1.IntroductionMolecular imprinting is a technique providing functional poly-mers able to recognize target molecules of interest.And the process of molecular imprinting involves the formation of polymers under the guidance of a molecular template to produce complementary binding sites with specific recognition ability.In contrast to the biological antibody,the substantial advantages of artificial coun-terparts are their mechanical and chemical stability,low cost of preparation and wide range of operating conditions.To date,MIP has been widely used in the fields of chromatographic separation,as antibody mimetics and artificial receptor,and catalysis (Matsui et al.,2007;Kempe and Mosbach,1995;Yang et al.,2004;Ouyang et al.,2007;Tong et al.,2001;Ye and Mosbach,2001;Bossi et al.,2001;Liu et al.,2011;Zeng et al.,2010).The majority of the MIP has been prepared using small molecules as template,much less attention has been paid to the protein recognition (Rusmini et al.,2007;Gale et al.,2009;Klepamik et al.,2011).This was mainly due to the properties of proteins that are large molecular size,flexi-ble structure,and large number of functional groups available for∗Corresponding author.Tel.:+862223494962;fax:+862223502458.E-mail address:wyli@ (W.-Y.Li).recognition,which makes it impossible to use the same approach as imprinting small molecules for protein imprinting.Therefore,to develop highly selective and efficient analytical methods for identi-fying and quantifying proteins by molecular imprinting technology is of great importance.Recently,QDs as sensing and recognizing element have attracted a prominent attention in the past few years when used as fluorescent labels due to their properties,such as good photosta-bility,high luminescence efficiency and size-dependent emission wavelengths (Bruchez et al.,1998;Chan and Nie,1998).Those prop-erties render these materials suitable for various applications,such as chemical sensor for ion (Tang et al.,2005),small molecules (Tu et al.,2008),and biomacromolecules (Chen et al.,2009a,b;Han et al.,2009;Cao et al.,2009).The molecule imprinting technique is a promising way to improve the selectivity of the QDs through the formation of MIP on the surface of the QDs.Therefore,if we combine the high selectivity of molecular imprinting technology and excellent fluorescent char-acteristics of QDs,a new affinity material,with specific recognition cavity and responding to the binding event with significant fluores-cence intensity change,could be prepared.However,considerable interest has been focused on the development of small molecules imprinted polymer coated QDs,producing protein imprinted poly-mer based QDs was still a challenge (Haupt et al.,1998;Carlson0956-5663/$–see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.bios.2011.09.042W.Zhang et al./Biosensors and Bioelectronics31 (2012) 84–8985Fig.1.Preparative procedures for the fabrication of MIP-coated CdTe QDs asfluorescent artificial receptor.et al.,2006;Li et al.,2010;Lin et al.,2004,2009;Liu et al.,2010; Diltemiz et al.,2008;Wang et al.,2009;Zhang et al.,2011).The objective of the work is to develop a new kind offluores-cent affinity material combining the merits of molecular imprinting technology andfluorescent property of the CdTe QDs for specific recognition of target protein.Herein,the dBSA was used not only to modify the surface of the CdTe QDs,but also as assistant monomer to create effective recognition sites(Kuo et al.,2008;Wang et al., 2006;Guo et al.,2006).Three proteins were chosen as the template molecules and then the receptors were synthesized by sol–gel pro-cess(imprinting process,see Fig.1).To the best of our knowledge, no reports to date have been published on the use of dBSA and QDs for protein imprinting.The performance of the receptors was esti-mated byfluorescence emission spectra,UV–vis absorption spectra and SDS-PAGE analysis.To illustrate the utility of MIP-basedfluo-rescent receptor,Lyz was chosen as the template protein.Lyz exists widely in body tissues and secretions.Its abnormal concentration in serum and urine is related to many diseases,such as renal diseases, leukemia and meningitis.Therefore,development of new methods for the analysis of Lyz in real samples is of considerable impor-tance.In this work,the proposedfluorescent artificial receptor was demonstrated as a simple and selective sensing system for selective separating and detecting of Lyz in real samples.2.Materials and methods2.1.Materials and chemicalsAll chemicals were of analytical grade reagents.Tellurium powder(Beilian Fine Chemical Factory,China),CdCl2·2.5H2O, sodium dodecyl sulfate(SDS)and NaBH4(Guangfu Fine Chem-ical Research Institute,China)were used to prepare CdTe QDs.3-Mercaptopropionic acid(MPA,Alfa Aesar Co.)was used as the capping agent.Tetraethoxysilane(TEOS)and3-aminopropyltriethoxysilane(APTES)were Wuhan University Silicone New Materials Co.,Ltd.(Wuhan,China).Bovine serum albumin(BSA,MW(molecular weight)=67kDa,p I(point iso-electric)=4.9),cytochrome c(MW=12.4kDa,p I=10.2),lysozyme (MW=14.4kDa,p I=11),and methylated bovine serum albumin (MW=68kDa,p I=8.5)were obtained from Sigma–Aldrich Co.(St. Louis,MO).2.2.Preparation of dBSA-coated CdTe QDsThe dBSA was prepared by treating BSA with NaBH4on the basis of a previous literature report(Kuo et al.,2008;Chen et al.,2009a,b). NaBH4was added to the BSA solution with stirring,with aim to reduce the disulfide bonds to sulfhydryl groups(–SH).After being stirred for1h at room temperature,the BSA solution was heated to 60–80◦C in water bath for20min to decompose the excess NaBH4. The water-soluble CdTe QDs were synthesized based on previous publication(Li et al.,2008;Zhang et al.,2011).The solution of CdTe QDs was mixed with the dBSA solution in proper molar ratios.The mixture was heated to60–80◦C in a water bath for15min.The solution was then incubated at room temperature for3days and the results were identified byfluorescence scan and SDS-PAGE.2.3.Synthesis offluorescent artificial receptorIn a typical synthesis of the MIP-based receptor,to a25-mL flask,10mg of template protein,10mL of dBSA coated-CdTe QDs and60L of APTES(functional precursor)were added and stirred for30min.Then,0.10mL of TEOS(cross-linker)was added.Next, 0.10mL of the NH3·H2O(25%,w/v)was added and stirred for12h. The resultant MIP-coated QDs were centrifuged and washed with 0.5%SDS,which was repeated several times until no template was detected.Finally,the precipitate of MIP-coated QDs was redis-persed in buffer solution and then stored at4◦C prior to use.The NIP was prepared using the same procedure but without addition of the template molecule.2.4.Protein adsorption experimentsA mass of50mg of the particles was dispersed in certain vol-ume of protein solution and the mixtures were agitated in a shaken bed.At different time intervals,the mixtures were centrifuged and the concentration of protein in the supernatant was measured by a UV–vis spectrophotometer at a wavelength of280nm.The amount of adsorbed protein can be determined by the difference in concen-tration before and after the adsorption.The adsorption capacity(Q,expressed in units of mg/g)of the protein or analogue bound to the MIP-coated QDs is calculated by Q=(C0−C t)VWwhere C0and C t(mg/mL)are the initial concentration and the resid-ual concentration of the protein or analogue,respectively,V(mL) is the volume of the initial solution,and W(g)is the weight of the MIP-coated QDs.2.5.CharacterizationFluorescence measurements were performed on an F-4500 spectrofluorometer(Hitachi,Japan)equipped with a quartz cell (1cm×1cm),the slit widths of the excitation and emission were both5nm,and the excitation wavelength was set at470nm with a recording emission range of490–700nm.The photomultiplier tube voltage was set at950V.UV–vis spectra(200–800nm)were recorded on a UV-2450spectrophotometer(Shimadzu,Japan). Transmission electron microscopy(TEM)was obtained by a Tec-nai G220S-TWIN microscope(Philips,Holland).Fourier transform infrared(FT-IR)spectra(4000–400cm−1)in KBr were recorded using the AVATRA360FT-IR spectrophotometer(Nicolet,Waltham,86W.Zhang et al./Biosensors and Bioelectronics 31 (2012) 84–89Fig.2.Effects of the concentration of the monomer APTES (a)and the cross-linker TEOS (b)on the fluorescence intensity of MIP-coated QDs and the fluorescence change of MIP-coated QDs with template protein.USA).X-ray photoelectron spectroscopy (XPS)measurements were performed with an ESCALAB 250spectrometer (Thermo-VG Scien-tific)with ultra-high vacuum generators.2.6.Analysis of real samplesIn the sample analysis,chicken egg white was separated from a fresh egg and diluted to 50%(v/v)with Tris–HCl buffer (50mM,pH 7.0).After the diluted solution was immersed in an ice bath and centrifuged at 10,000rpm for 30min,the supernatant solu-tion was used as a Lyz source (Qin et al.,2009).The imprinted nanoparticles were applied to purify the Lyz from a 20-fold diluted real sample of egg white at room temperature.The imprinted nanoparticles were then treated with washing procedure to elute the specifically adsorbed protein.The eluate was desalted and concentrated 10-fold,using an ultrafiltration membrane (molec-ular weight cutoff =3000),and 10L of each sample was used for SDS-PAGE analysis,using 12.0%polyacrylamide gel (Mini-protean,Bio-Rad,Hercules,CA).3.Results and discussion3.1.Preparation and characterization of MIP-and NIP-coated CdTe QDsThe MIP-based dBSA modified CdTe QDs were prepared via a surface molecular imprinting process similar to a previously reported approach (Wang et al.,2009;Zhang et al.,2011).The 3-aminopropyltriethoxysilane (APTES)was used as a functional monomer which had a noncovalent interaction with the tem-plate protein.The concentrations of the reactants were reduced to obtain a thin MIP layer and to minimize the homogeneous self-condensation of tetraethoxysilane (TEOS)and APTES.To determine the most favorable conditions for synthesizing the receptor,the amounts of the functional monomer APTES and cross-linker TEOS were investigated (Fig.2).It can be seen from Fig.2that the flu-orescence intensity was gradually decreased with increasing the amount of APTES,which may be due to the native structure of the QDs was destroyed by the APTES through forming the silica shell on the surface of the QDs.Considering the effect of the APTES on the fluorescence intensity of the MIP-coated QDs (curve 1of Fig.2a)and fluorescence change of the receptor with template protein (curve 2of Fig.2a),40L of the monomer was chosen for the synthesis of the MIP-based receptor.According to the same consideration,60L of the cross-linker was selected for producing the receptor (Fig.2b).Moreover,a method to functionalize the QDs by coating with dBSA and the influence of the dBSA on the enhancement of flu-orescence intensity for the QDs were investigated (Fig.S1).In orderto obtain dBSA,the BSA was denatured by NaBH 4.By this reaction,the disulfide bonds of BSA were opened,which made it possible for the stabilizing agent MPA on the surface of CdTe QDs to be substi-tuted by the thiol-group of dBSA through ligand exchange.Because of the high degree of surface defects of the CdTe QDs,dBSA was used to modify the surface via ligand exchange to increase the stability of CdTe QDs (Kuo et al.,2008).And utilizing the dBSA to modify the surface of CdTe QDs could not only improve the chemical stability and photoluminescence quantum yield of the QDs effectively,but also serve as assistant recognition peptide chains as an additional element of monomer to create effective recognition sites.After synthesis of the receptor,the fluorescence uniformity of the receptor or the control particles (non-imprinted polymer (NIP)-coated QDs)was investigated (Fig.S2).It can be seen from Fig.S2that a linear fluorescence intensity (MIP-and NIP-coated QDs)–concentration relationships were attained with a correlation of 0.996and 0.998,respectively.The results shown in Fig.S2indi-cated the stable emission of the MIP-and NIP-coated QDs.And the main reason for the stable emission was that the particles were protected by the silica shell layer (Liu et al.,2010).3.2.Characterization of the nanoparticles3.2.1.Characterization of IRFT-IR spectra of QDs,MIP-coated QDs and NIP-coated QDs are compared in Fig.S3.The strong and broad peak around 1063cm −1indicates the Si–O–Si asymmetric stretching.Other observed bands about 797cm −1showed the Si–O vibration.The presence of the bands around 2966cm −1was the C–H stretching band.The bands at 3426cm −1and 1542cm −1were the N–H stretch,suggesting the copolymer was successfully modified onto the surface of the QDs.All those bands showed that the MIP layer generated from sol–gel condensation was grafted on the surface of the QDs.In addition,the NIP-and MIP-QDs showed similar locations and appearance of the major bands,which was because the main compositions of MIP and NIP were similar.3.2.2.XPS characterization of the MIP-and NIP-coated QDsXPS is a state-of-the-art technique that is well-known as a quantification tool for determining surface elemental compositions (Fig.S4).As shown in Fig.S4,the XPS survey showed intense sig-nals of Si 2p at 103eV,C 1s at 285eV,N 1s at 398eV and O 1s at 531eV,which indicated that the MIP layer generated from sol–gel condensation of APTES and TEOS was copolymerized and anchored onto the surface of the QDs.W.Zhang et al./Biosensors and Bioelectronics31 (2012) 84–8987Fig.3.Fluorescence emission spectra of(a)MIP-and(c)NIP-coated QDs with addition of the indicated concentration of protein Lyz solution.Stern–Volmer plots from(b) MIP-and(d)NIP-coated QDs with protein Lyz.3.2.3.TEM characterization of MIP-and NIP-coated QDsTo characterize the morphology of the nanoparticles,the TEM images of MIP-and NIP-coated QDs were investigated(Fig.S5).As shown in Fig.S5,it can be seen that the particles were nearly uni-form in size,and the mean diameter of the MIP-coated QDs was not distinctly different from that of the NIP-coated QDs.Therefore, the difference of recognition performance between the MIP-coated QDs and NIP-coated QDs in the subsequent study could not be attributed to the morphological difference of the MIP-coated QDs and NIP-coated QDs,but to the imprinting effect.3.3.Optosensing of template protein by MIP-coated QDs3.3.1.Effect of pHThe recognition ability of the receptor was investigated through the changes of thefluorescence signal.The effect of pH on the fluorescence changes of receptor is given in Table S1.As can be seen from Table S1,the change offluorescence intensity for the MIP-coated QDs was larger than that of NIP-coated QDs.The best imprinting effect was observed at pH6.2with an imprinting fac-tor IF1of2.33(Table S1),so a pH of6.2was selected for further experiments.3.3.2.MIP-and NIP-coated QDs with template protein of different concentrationsCompared the response of MIP-coated QDs or control par-ticles with template protein,the specific recognition ability was evaluated(Fig.3).It can be seen from Fig.3that the fluorescence intensity of the MIP-coated QDs was quenched grad-ually with the increasing concentration of template Lyz.Generally, thefluorescence quenching depends on the adsorptive affinity of the particles with the template.In the case of the MIP-coated QDs,thefluorescence quenching was mainly achieved by the affinity of the imprinted cavities with the template due to the specific inter-actions.The imprinting factor(IF),which is the ratio of the K SV,MIP and K SV,NIP(K SV,MIP and K SV,NIP was the linear slopes of Fig.3b and d,respectively),was used to evaluate the selectivity of the mate-rials.Under optimum conditions,the IF(K SV,MIP/K SV,NIP)was2.74, which indicated that the receptor can greatly enhance the quench-ing efficiency offluorescence,enlarging the spectral sensitivity of the MIP-coated QDs to the template protein.Fig.3b and d is plotted by the Stern–Volmer equation analysis for the MIP-and NIP-coated QDs with protein,respectively.F0F=1+K SV[Q]F0and F were thefluorescence intensity of QDs in the absence and presence of template,respectively,K SV was the Stern–Volmer constant,and[Q]was the quencher concentration.In order to show the generality of the imprinting method,the Cyt or mBSA was chosen as the template protein producing Cyt-or mBSA-receptors,respectively.And those results demonstrated the specific recognition ability of the receptors(Figs.S6and S7).3.4.Affinity adsorption experimentThe binding performance of the receptor was investigated through affinity adsorption experiment(Fig.4).Fig.4a shows the UV–vis spectra of the protein solution before and after the adsorption by MIP-or NIP-coated QDs,respectively.And the great difference between MIP-and NIP-coated demonstrates a good recognition ability of the receptor.Fig.4b compares the pro-tein adsorption amounts onto the MIP-or NIP-coated QDs,which directly exhibited the recognition ability of the receptor.88W.Zhang et al./Biosensors and Bioelectronics 31 (2012) 84–89Fig.4.The UV–vis spectra of the protein solution before (curve 1)and after the adsorption by MIP-(curve 3)or NIP (curve 2)-coated QDs,respectively (a)and the adsorption capacity of MIP-and NIP-coated QDs (b).Fig.S8shows the binding performance of the receptor with dif-ferent concentrations of the target protein.A constant amount of MIP-or NIP-coated QDs was incubated with increasing concen-trations of template and allowed to equilibrate for 12h at room temperature.After equilibration,the amount of protein remain-ing in the supernatant was measured by UV–vis analysis.In all of the concentrations studied,the MIP-coated QDs exhibited higher adsorption capacity to Lyz than the NIP-coated QDs.In the lower concentration of Lyz,the amount of Lyz was not enough to saturate the specific binding cavities.However,with the Lyz concentration increasing,almost all the specific imprinted sites were occupied by the Lyz and the adsorption capacity of the receptor was the highest.3.5.Cross-reactivity of the MIP-coated QDsThe specific recognition ability was further investigated through the cross-reactivity test of the receptors (Table 1).And the Cyt-and mBSA-receptors were synthesized in the same way with that of the Lyz receptor.To investigate the recognition ability of the Lyz-,Cyt-and mBSA-receptors,the aforementioned three types of imprinted particles were dedicated to the adsorption of the protein solution of the Lyz,Cyt,mBSA or BSA,respectively.And the results are summarized in Table 1.It can be seen from Table 1that each type of imprinted particles exhibited specific affinity adsorption of the template protein over structurally related proteins,which clearly showed that the receptors displayed selectivity to the template protein and exhibited lower cross-reactivity toward structurally related species,and also demonstrated that the imprinting cavities were discriminating proteins on the basis of molecular shape rather than its size.3.6.Recycling of the MIP-coated QDsRecyclability,with this capability of being used again to bind the template,is one of the important strong points of MIP.In theTable 1Specificity of the bnding of homologous proteins to MIP-coated QDs.a ,bImprinted QDsProtein binding amounts (mg protein/g imprinted QDs)LyzCytmBSABSALyz-imprinted QDs 33.2±1.3 3.7±0.37.2±0.5 4.5±0.2Cyt-imprinted QDs 6.7±0.628.2±2.18.2±1.0 4.7±0.7mBSA-imprinted QDs6.4±0.54.5±0.637.4±2.64.3±0.4aExperiment was conducted by the addition of 50mg of MIP-coated QDs in 0.5mg/mL protein solution at room temperature.bThe results was obtained from three parallel experiments.test of MIP-coated QDs recyclability,the MIP-coated QDs were used to extract Lyz through six extraction/washing cycles.The wash-ing agent used in this experiment was 0.5M NaCl.The results of the recyclability studies are shown in Table S2.It can be seen that the receptor could be repeated many times with minimal binding capacity loss,which indicated that this receptor could be reused for many cycles rather than just as a one-time-use assay.3.7.Detection range and limitThe MIP-based dBSA modified CdTe QDs have distinctly linear fluorescent quenching toward Lyz in the concentration range of 1.4×10−8–8.5×10−6M with a correlation coefficient of 0.992.The detection limit,which was calculated as the concentration of Lyz that quenched three times the standard deviation of the blank sig-nal,was 6.8nM.And the precision for three replicate detections of 0.56M Lyz was 2.8%(RSD).Fig.5.SDS-PAGE analysis of the results for selective recognition of lysozyme from egg ne 1:molecular weight standards (markers are in kDa);lane 2:10L of 20-fold dilution of egg white before adsorption;lane 3:10L of 20-fold dilution of egg white after adsorption by MIP-coated QDs;and lane 4:10L of the eluate from the receptor.W.Zhang et al./Biosensors and Bioelectronics31 (2012) 84–89893.8.Application to real sample analysisTo illustrate the utility of the MIP-basedfluorescent receptor to discriminate between Lyz and other co-existence proteins,egg white as a real sample was used to separate the Lyz.The SDS-PAGE analysis(see Fig.5)showed that the eluate of the receptor exhib-ited a single band with a molecular mass of∼14.4kDa,in excellent agreement with that of the template Lyz.All other proteins in the egg white,such as ovalbumin and ovotransferrin,displayed no cross-adsorption by the receptor and did not interfere with the binding of Lyz,which suggested the potential practical applica-tion of the receptor.And this high selectivity of the receptor to the template was attributed to its imprinting effect to the tem-plate.Finally,the optimizedfluorescent artificial receptor has been applied to the analysis of Lyz in egg white samples(Sener et al., 2010;Jing et al.,2010).The average value of the three replicate,was 3.9M with a RSD of3.4%.A remarkable merit of using this type of MIP-basedfluorescent receptor for the separation and detection of target molecule in complex biological samples is that expensive antibody and tedious sample treatment procedures can be avoided.4.ConclusionsIn summary,we have demonstrated that the MIP which was anchored on the surface of the dBSA modified CdTe QDs can be used as selective materials for recognition of target protein.The dBSA was used not only to modify the surface defects of the CdTe QDs, but also as assistant monomer to create effective recognition sites. Thefluorescence of the artificial receptors was stronger quenched by the template versus that of control particles,which indicated the receptors could recognize the corresponding template.A series of binding experiments further demonstrated that the materials had good selectivity for template protein over analogues.The results of thefluorescent artificial receptor for egg white analysis further demonstrated its feasibility for target protein recognition.AcknowledgementsThis work was supported by the National Basic Research Program of China(973Program)(Nos.2011CB707703and 2007CB914100),the National Natural Science Foundation of China (Nos.21075069and20875049),and Tianjin Natural Science Foun-dation(No.11JCZDJC21700).Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at doi:10.1016/j.bios.2011.09.042.ReferencesBossi,A.,Piletsky,S.A.,Piletska,E.V.,Righetti,P.G.,Turner,A.P.F.,2001.Anal.Chem.73,5281–5286.Bruchez Jr.,M.,Moronne,M.,Gin,P.,Weiss,S.,Alivisatos,A.P.,1998.Science281, 2013–2016.Chan,W.C.W.,Nie,S.,1998.Science281,2016–2018.Cao,M.,Cao, C.,Liu,M.G.,Wang,P.,Zhu, C.Q.,2009.Microchim.Acta165, 341–346.Carlson,C.A.,Lloyd,J.A.,Dean,S.L.,Walker,N.R.,Edmiston,P.L.,2006.Anal.Chem.78,3537–3542.Chen,C.,Peng,J.,Xia,H.S.,Yang,G.F.,Wu,Q.S.,Chen,L.D.,Zeng,L.B.,Zhang,Z.L.,Pang,D.W.,Li,Y.,2009a.Biomaterials30,2912–2918.Chen,W.,Xu,D.H.,Liu,L.Q.,Peng,C.F.,Zhu,Y.Y.,Ma,W.,Bian,A.,Li,Z.,Yuan, Y.,Jin,Z.Y.,Zhu,S.F.,Xu, C.L.,Wang,L.B.,2009b.Anal.Chem.81,9194–9198.Diltemiz,S.E.,Say,R.,Buyuktiryaki,S.,Hur,D.,Denizli,A.,Ersoz,A.,2008.Talanta75, 890–896.Gale,D.K.,Gutu,T.,Jiao,J.,Chang,C.H.,Rorrer,G.L.,2009.Adv.Funct.Mater.19, 926–933.Guo,M.J.,Zhao,Z.,Fan,Y.G.,Wang,C.H.,Shi,L.Q.,Xia,J.J.,Long,Y.,Mi,H.F.,2006.Biomaterials27,4381–4387.Han,B.Y.,Yuan,J.P.,Wang,E.K.,2009.Anal.Chem.81,5569–5573.Haupt,K.,Mayes,A.G.,Mosbach,K.,1998.Anal.Chem.70,3936–3939.Jing,T.,Du,H.R.,Dai,Q.,Xia,H.,Niu,J.W.,Hao,Q.L.,Mei,S.R.,Zhou,Y.K.,2010.Biosens.Bioelectron.26,301–306.Kempe,M.,Mosbach,K.,1995.J.Chromatogr.A691,317–323.Klepamik,K.,Voracova,I.,Liskova,M.,Prikryl,J.,Hezinova,V.,Foret,F.,2011.Elec-trophoresis32,1217–1223.Kuo,Y.C.,Wang,Q.,Ruengruglikit,C.,Yu,H.L.,Huang,Q.R.,2008.J.Phys.Chem.C 112,4818–4824.Li,J.,Mei,F.,Li,W.Y.,He,X.W.,Zhang,Y.K.,2008.Spectrochim.Acta A70,811–817.Li,H.B.,Li,Y.L.,Cheng,J.,2010.Chem.Mater.22,2451–2457.Lin,C.I.,Joseph,A.K.,Chang,C.K.,Lee,Y.D.,2004.Biosens.Bioelectron.20,127–131. Lin,H.Y.,Ho,M.S.,Lee,M.H.,2009.Biosens.Bioelectron.25,579–586.Liu,J.X.,Chen,H.,Lin,Z.,Lin,J.M.,2010.Anal.Chem.82,7380.Liu,J.X.,Yang,K.G.,Deng,Q.L.,Zhang,L.H.,Liang,Z.,Zhang,Y.K.,-mun.47,3969–3971.Matsui,J.,Goji,S.,Murashima,T.,Miyoshi,D.,Komai,S.,Shigeyasu,A.,Kushida, T.,Miyazawa,T.,Yamada,T.,Tamaki,K.,Sugimoto,N.,2007.Anal.Chem.79, 1749–1757.Ouyang,R.Z.,Lei,J.P.,Ju,H.X.,Xue,Y.D.,2007.Adv.Funct.Mater.17,3223–3430. Qin,L.,He,X.W.,Zhang,W.,Li,W.Y.,Zhang,Y.K.,2009.Anal.Chem.81,7206–7216.Rusmini,F.,Zhong,Z.,Feijen,J.,2007.Biomacromolecules8,1775–1789.Sener,G.,Ozgur,E.,Yılmaz,E.,Uzun,L.,Say,R.,Denizli,A.,2010.Biosens.Bioelectron.26,815–821.Tang,B.,Niu,J.Y.,Yu,C.G.,Zhuo,L.H.,Ge,J.C.,mun.33,4184–4186. Tong,D.,Hetenyi,Cs.,Bikadi,Zs.,Gao,J.P.,Hjerten,S.,2001.Chromatographia54, 7–14.Tu,R.Y.,Liu,B.H.,Wang,Z.Y.,Gao,D.M.,Wang,F.,Fang,Q.L.,Zhang,Z.P.,2008.Anal.Chem.80,3458–3465.Wang,H.F.,He,Y.,Ji,T.R.,Yan,X.P.,2009.Anal.Chem.81,1615–1621.Wang,Q.,Kuo,Y.,Wang,Y.,Shin,G.,Ruengruglikit,C.,Huang,Q.,2006.J.Phys.Chem.B110,16860–16866.Yang,H.H.,Zhang,S.Q.,Yang,W.,Chen,X.L.,Zhuang,Z.X.,Xu,J.G.,Wang,X.R.,2004.J.Am.Chem.Soc.126,4054–4055.Ye,L.,Mosbach,K.,2001.J.Am.Chem.Soc.123,2901–2902.Zeng,Z.,Hoshino,Y.,Rodriguez,A.,Yoo,H.,Shea,K.J.,2010.ACS Nano4,199–204. Zhang,W.,He,X.W.,Chen,Y.,Li,W.Y.,Zhang,Y.K.,2011.Biosens.Bioelectron.26, 2553–2558.。