2019江苏省高考数学试卷答题卡

合集下载

2019江苏高考数学试卷含答案(校正精确版)

2019江苏高考数学试卷含答案(校正精确版)

2019年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ .3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ . 6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k>0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求2A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求,A B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|21|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =. (1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N L 令n n n n M A B C =U U .从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数(3)n n ≥,求概率()P x n ≤(用n 表示)2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,6}2.23.54.[1,7]-5.536.7107.y =8.169.10 10.411.(e, 1)14.1,34⎡⎢⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以3c =.(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭.16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分. 证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC -A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置. 由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+. 19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.所以()f x 的极大值1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N.②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =x e.+–因为ln 2ln82663=<=,所以max ()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅰ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N L令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅰ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,π),B π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥L ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤X n >当且仅当AB =时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤X n >当且仅当AB =时0 a c n ==,或 a n =,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年高考真题——数学(江苏卷)+Word版含答案

2019年高考真题——数学(江苏卷)+Word版含答案

2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。

本卷满分为 160 分,考试时 间为 120 分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答 题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据x , x ,…, x1 2n的方差s2x x ni 12,其中1 nxx n i 1.柱体的体积V Sh ,其中 S 是柱体的底面积, h 是柱体的高.锥体的体积V 1 3Sh,其中 S 是锥体的底面积, h 是锥体的高.一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位 置上. 1.已知集合 A {1,0,1,6}, B {x | x 0, x R },则 A B▲.2.已知复数 (a 2i)(1 i)的实部为 0,其中 i 为虚数单位,则实数 a 的值是 ▲.3.下图是一个算法流程图,则输出的 S 的值是 ▲.1 n ii ...... ..4.函数 y7 6 x x 2的定义域是 ▲.5.已知一组数据 6,7,8,8,9,10,则该组数据的方差是 ▲.6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学的概率是 ▲.7.在平面直角坐标系 xOy中,若双曲线x 2y b2 2 1(b 0)经过点(3,4),则该双曲线的渐近线方程是 ▲.8.已知数列{a }(n N ) n是等差数列,S n是其前 n 项和.若a a a0, S27 2 589,则S 8的值是 ▲.9.如图,长方体积是 ▲.ABCD A B C D 1 1 1 1的体积是 120,E 为C C 的中点,则三棱锥 E -BCD 的体110.在平面直角坐标系 xOy中,P 是曲线y x4x( x 0)上的一个动点,则点 P 到直线 x +y =0的距离的最小值是 ▲11.在平面直角坐标系 xOy.中,点 A 在曲线 y =ln x 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点 A 的坐标是 ▲.*12.如图,在△ABC中,D 是 BC 的中点,E 在边 AB 上,BE =2EA ,AD 与 CE 交于点O.若AB AC 6 A O EC,则 AB AC的值是 ▲.13.已知tantan2 π 3,则 sin 2 π 4的值是 ▲.14.设 f ( x ), g ( x )是定义在 R 上的两个周期函数, f ( x )的周期为 4, g ( x )的周期为 2,且f ( x )是奇函数 .当 x (0, 2] 时, f ( x ) 1( x 1)2 , g ( x )k ( x 2),0 x 1 1,1 x 2 2,其中 k >0.若在区间(0,9]上,关于 x 的方程 f ( x ) g ( x )有 8 个不同的实数根,则 k 的取值范围是 ▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字 说明、证明过程或演算步骤.15.(本小题满分 14 分)在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b =2,cos B =2 3,求 c 的值;(2)若sin A cos B ,求 sin( B ) a 2b 2的值. 16.(本小题满分 14 分)如图,在直三棱柱 ABC -A B C 中,D ,E 分别为 BC ,AC 的中点,AB =BC .1 1 1 求证:(1)A B ∥平面 DEC ;1 11(2)BE ⊥C E .14.......17.(本小题满分 14 分)如图,在平面直角坐标系 xOy 中,椭圆 C :x 2 y 21(a b 0) a 2 b 2的焦点为 F (–1、0),1F (1,0).过 F 作 x 轴的垂线 l ,在 x 轴的上方,l 与圆 F : 2 22( x 1)2y 2 4a 2交于点A ,与椭圆 C 交于点 D .连结 AF 并延长交圆 F 于点B ,连结 BF 交椭圆C 于点 E ,连结 122DF .1已知 DF = 15 2.(1)求椭圆 C 的标准方程; (2)求点 E 的坐标.18.(本小题满分 16 分)如图,一个湖的边界是圆心为 O 的圆,湖的一侧有一条直线型公路 l ,湖上有桥 AB (AB 是圆 O 的直径).规划在公路 l 上选两个点 P 、Q ,并修建两段直线型道路 PB 、QA .规 划要求:线段 PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到直线 l 的距离分别为 AC 和 BD (C 、D 为垂足),测得 AB =10,AC =6,BD =12(单位:百米). (1)若道路 PB 与桥 AB 垂直,求道路 PB 的长;(2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由;....(3)对规划要求下,若道路 P B 和 QA 的长度均为 d (单位:百米).求当 d 最小时,P 、 Q 两点间的距离.19.(本小题满分 16 分)设函数 f ( x ) ( x a )( x b )( xc ), a , b , c R(1)若 a =b =c ,f (4)=8,求 a 的值;、 f ' ( x ) 为 f (x )的导函数.(2)若 a ≠b ,b =c ,且 f (x )和 f ' (x ) 的零点均在集合{3,1,3} 值;中,求 f (x )的极小(3)若 a 0,0 b 1, c 1,且 f (x )的极大值为 M ,求证:M ≤4 27.20.(本小满分 16 分)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a } n(nN * )满足:a aa , a4a4a0 2 45324,求证:数列{a }为n“M -数列”;(2)已知数列{b }满足: nb1, 112 2Sb b nnn 1,其中 S 为数列{b }的前 n 项和. n n①求数列{b }的通项公式;n②设 m 为正整数,若存在“M -数列”{c } nc 剟b c 都有 成立,求 m 的最大值. k k k 1(nN * ),对任意正整数 k ,当 k ≤m 时,数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修 4-2:矩阵与变换](本小题满分 10 分).....................已知矩阵 A3 1(1)求A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点 A 3,,B 2, ,直线l 的方程为 sin3.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分)设 x R ,解不等式 |x |+|2 x 1|>2.【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分.请在答题卡指定区域内作答,解 答时应写出文字说明、证明过程或演算步骤.22. ( 本 小 题 满 分 10 分 ) 设 (1 x )naa x a x122a x nn, n …4, n N*. 已 知a2 32 a a .24(1)求n 的值;(2)设 (1 3)na b 3 ,其中 a , b N *,求 a 2 3b 2的值.23.(本小题满分10分)在平面直角坐标系x Oy 中,设点集A{(0,0),(1,0),(2,0), ,( n ,0)} n,B(0,1),(n ,1)},C{(0,2),(1,2),(2,2),nn,( n ,2)}, n N .令M AnnBnC n.从集合M 中任取两个不同的点,用随机变量X 表示它们之间的距n离.(1)当n =1时,求X 的概率分布;2 2 242 4 .......2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答 案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.{1,6}[ 1,7]1. 2.2 3.54.(e, 1)8.169.10 10.411.12.35. 5 313.6.2107 1014.y 2 x7.1 2 ,二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为 a3c, b2,cos B2 3,由余弦定理cos Ba 2 c 2b 22 (3c ) 2 c 2 ( 2) ,得2ac3 2 3c c2,即 c 21 3.所以c3 3.(2)因为sin A cos Ba 2b,由正弦定理 a b cos B sin B,得 ,所以 sin A sin B 2b bcos B 2sin B .从而cos 2 B (2sin B ) 2 ,即 cos 2 B 4 1cos 2B ,故cos 2 B4 5.因为sin B 0,所以cos B 2sin B 0,从而cos B2 5 5.因此sin Bπ 2 5cos B25.16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分 14 分.证明:(1)因为 D ,E 分别为 BC ,AC 的中点,所以 ED ∥AB .在直三棱柱 ABCA B C 中,AB ∥A B ,1 1 1 1 1所以 A B ∥ED .1 13 4又因为ED⊂平面DEC ,A B1 1 1平面DEC,所以A B∥平面DEC.1 1 1(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABCA B C是直棱柱,所以CC⊥平面ABC.1 1 1 1又因为BE⊂平面ABC,所以CC⊥BE.1因为C C⊂平面A ACC,AC⊂平面A ACC,C C∩AC=C,1 1 1 1 1 1所以BE⊥平面A ACC.1 1因为C E⊂平面A ACC,所以BE⊥C E.1 1 1 117.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14 分.解:(1)设椭圆C的焦距为2c.因为F(-1,0),F(1,0),所以F F=2,c=1.1 2 1 2又因为DF=152,AF⊥x轴,所以DF=2 253DF2F F2( )22222,因此2a=DF+DF=4,从而a=2.1 2由b =a-c,得b =3.因此,椭圆C的标准方程为(2)解法一:x2y21. 43x2y2由(1)知,椭圆C:143,a=2,因为AF ⊥x轴,所以点A的横坐标为1.2将x=1代入圆F的方程(x-1)+y =16,解得y=±4.2因为点A在x轴上方,所以A(1,4).又F(-1,0),所以直线AF:y=2x+2.1 1由y 2x 2(x 1)2y216,得5x26x 110,解得x 1或x 11 5.将x1112代入y 2x 2,得y55,1112 2 2 2 22 2因此B(11123 ,).又F(1,0),所以直线BF:y (x 1) 554. 3y (x 1)4由x2y2143,得7x26x 130 ,解得x1或x137.又因为E是线段BF 与椭圆的交点,所以2x1.将x1代入y333(x 1),得y .因此E(1,)422.解法二:由(1)知,椭圆C:x2y21.如图,连结EF. 43因为BF=2a,EF+EF=2a,所以EF =EB,2 1 2 1从而∠BF E=∠B.1因为F A=F B,所以∠A=∠B,2 2所以∠A=∠BF E,从而EF∥F A.1 1 2因为AF ⊥x轴,所以EF⊥x轴.2 1x 1因为F(-1,0),由x2y2,得143y32.又因为E是线段BF 与椭圆的交点,所以22E(1,)因此.2y32.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A作AE B D,垂足为E.由已知条件得,四边形A CDE为矩形,DE BE AC 6,AE CD 8因为P B⊥AB,.'所以cos PBD sin ABE84 105.221 1所以PBBD1215 cos PBD45.因此道路P B的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段B E上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连结A D,由(1)知AD AE2ED210,从而cos BAD AD2AB2BD272A D AB25,所以∠BAD为锐角.所以线段A D上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段P B上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P为l上一点,且1PB A B1,由(1)知,P B=15,1此时PD PB sin PBD PB cos EBA 15 1111359;当∠OBP>90°时,在△PPB1中,PB PB 151.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得Q A≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ QA2AC215262321于圆O的半径..此时,线段QA上所有点到点O的距离均不小综上,当P B⊥AB,点Q位于点C右侧,且C Q=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+321.因此,d最小时,P,Q两点间的距离为17+321(百米).解法二:(1)如图,过O作O H⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为B D=12,AC=6,所以O H=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为A B为圆O的直径,AB=10,所以圆O的方程为x+y=25.从而A(4,3),B(−4,−3),直线A B的斜率为3 4 .因为P B⊥AB,所以直线P B的斜率为4 3,直线P B的方程为y 425 x33.所以P(−13,9),PB (134)2(93)215.因此道路P B的长为15(百米).(2)①若P在D处,取线段B D上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结A D,由(1)知D(−4,9),又A(4,3),所以线段A D:y 34x 6(4剟x4).15在线段AD上取点M(3,),因为4OM 3215324425,所以线段A D上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.2 22(3)先讨论点P的位置.当∠OBP<90°时,线段P B上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段P B上任意一点F,OF≥OB,即线段P B上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且PB A B1,由(1)知,P1B=15,此时P1(−13,9);当∠OBP>90°时,在△PPB1中,PB PB 151.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当Q A=15时,设Q(a,9),由AQ (a 4)2(93)215(a 4),得a=4321,所以Q(4321,9),此时,线段Q A上所有点到点O的距离均不小于圆O的半径.综上,当P(−13,9),Q(4321,9)时,d最小,此时P,Q两点间的距离PQ 4321(13)17321.因此,d最小时,P,Q两点间的距离为17321(百米).19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c,所以f(x)(x a)(x b)(x c)(x a)3.因为f(4)8,所以(4a)38,解得a 2.(2)因为b c,所以f(x)(x a)(x b)2x3(a 2b)x2b(2a b)x ab2,从而f'(x)3(x b)x 2a b3.令f'(x)0,得x b或x2a b3.因为a,b,2a b3,都在集合{3,1,3}中,且a b,所以2a b31,a 3,b3.此时f(x)(x 3)(x 3)2,f'(x)3(x 3)(x 1).令f'(x)0,得x3或x 1.列表如下:xf'(x)(,3)+3(3,1)–1(1,)+f(x)极大值极小值所以f(x)的极小值为f(1)(13)(13)232.(3)因为a 0,c 1,所以f(x)x(x b)(x 1)x3(b 1)x2bx,f'(x)3x22(b 1)x b.因为0b 1,所以4(b 1)212b (2b 1)230,则f'(x)有2个不同的零点,设为x,x12x x12.由f'(x)0,得x1b 1b2b 1b 1b,x332b 1.列表如下:x f'(x)(,x )1+x1x,x12–x2(x,)2+f(x)所以f(x)的极大值极大值M f x.1极小值解法一:M f x x 3(b1)x2bx11113x 22(b 1)x b 11x b 11392b b 1b(b 1)x992 b 2b1(b1)27b(b 1) 2927b2b13b(b 1)2(b 1)2(b 1)2( b(b 1)1) 2727273221b(b 1)244.因此M27272727.解法二:因为0b 1,所以x (0,1)1.当x (0,1)时,f(x)x(x b)(x 1)x(x 1).令g(x)x(x 1)2,x (0,1)1,则g'(x)3x (x 1)3.令g'(x)0,得x 13.列表如下:xg'(x) g(x)1(0,)3+13极大值1( ,1)3–所以当x 13时,g(x)取得极大值,且是最大值,故14g(x)gmax 327.所以当x (0,1)时,f(x)g(x)44,因此M2727.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)设等比数列{a }的公比为q,所以a≠0,q≠0.n 1由a a a245a 4a 4a 0321a2q4,得a q21a q414a q 4a 011a 1,解得.q 2因此数列{a}n为“M—数列”.122(2)①因为,所以n n n 1b 0 n.由b 1,S b111得12211b2,则b 22.122b b由,得S ,S b b2(b b )n n n 1n 1n 211 S b bn n 1n当 n 2时,由b SS nn n 1,得bnb b b bn n 1 n 1 n 2 bb2 bb n 1 nnn 1,整理得b n 1bn 12b n.所以数列{b }是首项和公差均为1的等差数列. n因此,数列{b }的通项公式为b =nn n②由①知,b =k , kN * .kn N*因为数列{c }为“M –数列”,设公比为q ,所以c =1,q >0.n 1因为c ≤b ≤c ,所以 k k k +1q k 1k qk,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln k ln kln q k k 1.设f (x )=ln x x( x 1) ,则 f ' ( x )1ln x x 2.令f ' ( x ) 0,得x =e.列表如下:xf ' ( x )f (x )(1,e)+e极大值(e ,+∞)–因为ln 2 ln8 ln 9 ln 3 ln 3 ,所以 f (k ) f (3) 2 6 6 3 3.取 q 3 3 ,当k =1,2,3,4,5时,ln kkln q,即 k q k ,经检验知q k1k也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q ,且q ≤6,从而q ≥243,且q ≤216, 所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案.max 3 5 15 1521.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为A3 1,所以A 23 1 3 1=33123112115 =.(2)矩阵A 的特征多项式为f ()3212 254.令 f() 0,解得A 的特征值1, 4 1 2.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,),B ( 2 , 42),由余弦定理,得A B = 3( 2)22 3 2 cos() 5 . 2 4(2)因为直线l 的方程为sin() 3 4 ,则直线l 过点(3 2,2),倾斜角为34.又B ( 2, )2,所以点B 到直线l 的距离为(3 2 2) sin(3 ) 24 2.C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x <0时,原不等式2 2 2 2 2 2 10 6 23 2 2 2 12 22可化为x 12x 2,解得x<–1 3:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解;当x >1 2时,原不等式可化为x +2x –1>2,解得x >1.综上,原不等式的解集为1{x | x或x 1} 3.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为 (1x )n C 0 C 1 x C 2 x 2 C n x n ,n 4 ,n n n nn (n 1) n (n 1)(n 2) 所以 a C , a C ,2 6a C 4 4 n n (n 1)(n 2)( n 3) 24.因为a 22a a32 4,所以[ n (n 1)(n 2) n (n 1) n (n 1)(n 2)( n 3) ]2262 24, 解得 n 5 .(2)由(1)知, n5 .(1 3)n(1 3)5C 0 5C 1 53 C 2 5( 3) 2 C 3 5( 3) 3 C 4 5( 3) 4 C 5 5( 3)5a b 3 .解法一:因为a ,b N *,所以a C0 53C2 59C476, b C 1553C3 59C5 544,从而 a 23b 2 76 2 3 44 2 32 .解法二:(1 3) 5C 0 C 1 ( 3) C 2 ( 3) 2 C 3 ( 3) 3 C 4 ( 3) 4 C 5 ( 3) 5555555C 0 5C 1 53 C 2 5( 3) 2 C 3 5( 3) 3 C 4 5( 3) 4 C 5 5( 3)5 .因为a ,b N *,所以(1 3)5a b 3.因此 a23b2(a b 3)( a b 3) (1 3) 5(1 3)5( 2)532.2 3 2 n 3 n23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当n 1时,X的所有可能取值是1,2,2,5.X 的概率分布为P(X 1)7744,P(X 2)C215C215 66,P(X 2)2222,P(X 5)C215C215 66.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X n)1P(X n),所以仅需考虑X n的情况.①若b d,则AB n,不存在X n的取法;②若b 0,d 1,则AB (a c)21n21,所以X n当且仅当AB n21,此时a 0,c n或a n,c 0,有2种取法;③若b 0,d 2,则AB (a c)24n24,因为当n 3时,(n 1)4n,所以X n当且仅当AB n24,此时a 0,c n或a n,c 0,有2种取法;④若b 1,d 2,则AB (a c)21n21,所以X n当且仅当AB n21,此时a 0,c n或a n,c 0,有2种取法.综上,当X n时,X的所有可能取值是n21和n24,且P(X n21)C 422n 4,P(X n24)C222n 4.因此,P(X n)1P(X n21)P(X n24)1C622n 4.2。

2019年高考真题数学江苏卷

2019年高考真题数学江苏卷

AB ⋅ AC =
6AO ⋅ EC
,则
AB
的值是

.
AC
tan α
13.已知
tan
α
+
π 4
=
−2 3
,则
sin

+
π 4
的值是

.
14.设 f (x), g(x) 是定义在 R 上的两个周期函数, f (x) 的周期为 4, g(x) 的周期为 2,且
k(x + 2), 0 < x ≤ 1
17.(本小题满分 14 分)
如图,在平面直角坐标系
xOy
中,椭圆
C:
x2 a2
+
y2 b2
=
1(a > b > 0) 的焦点为 F1(–1、0),
F2(1,0).过 F2作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: (x −1)2 + y2 = 4a2 交于点
A,与椭圆 C 交于点 D.连结 AF1并延长交圆 F2于点 B,连结 BF2交椭圆 C 于点 E,连结 DF1.
(1)已知等比数列{an} (n ∈ N*) 满足: a2a4 = a5 , a3 − 4a2 + 4a4 = 0 ,求证:数列{an}
为“M-数列”;
(2)已知数列{bn}满足: b=1
1, 1= Sn
2 − 2 ,其中 Sn为数列{bn}的前 n 项和. bn bn+1
①求数列{bn}的通项公式;
设 x ∈ R ,解不等式|x|+|2 x −1|>2 .
【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分.请在答.题.卡.指.定.区.域.内作答,解 答时应写出文字说明、证明过程或演算步骤.

2019年高考江苏卷数学试题(含答案)

2019年高考江苏卷数学试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试江苏卷数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6} 2.2 3.5 4.[1,7]-5.536.7107.2y x =8.169.1010.411.(e, 1)313.21014.1,34⎡⎢⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分. 解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)3c c +-=,即213c =.所以33c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos2B B ⎛⎫+== ⎪⎝⎭16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x轴,所以DF2222211253()222DF F F-=-=,因此2a=DF1+DF2=4,从而a=2. 由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为221 43x y+=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =--=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321因此,d 最小时,P ,Q 两点间的距离为17+321. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+Q (4321+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17321+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()(23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x(1,e)e (e ,+∞)()f 'x+0 –f(x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(13)3na b +=+*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nnn M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:(1)设极点为O .在△OAB 中,A (3,4π),B 2,2π), 由余弦定理,得AB 223(2)232cos()524ππ+-⨯⨯⨯-=(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=02233445555555C C 3C (3)C (3)C (3)C (3)=++++ 3a b =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)=+-+-+-+-+-02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X 的所有可能取值是1225,,X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+X n >当且仅当21AB n +0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则22()44AB a c n =-++3n ≥2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则22()11AB a c n =-+≤+X n >当且仅当21AB n +0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 21n +24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.。

(完整版)2019年江苏卷数学高考试题精校版(含答案)(1),推荐文档

(完整版)2019年江苏卷数学高考试题精校版(含答案)(1),推荐文档

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲ . 2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ .3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则ABAC的值是 ▲ .开始x ←1,S ←0x ←x+1S ←S+结束输出Sx ≥4YN2x13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k>0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分) 如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.数学Ⅰ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求2A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求,A B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|21|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =. (1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N L 令n n n n M A B C =U U .从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数(3)n n ≥,求概率()P x n ≤(用n 表示)2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6} 2.23.54.[1,7]-5.536.710 7.2y x =± 8.169.10 10.411.(e, 1)12.313.21014.12,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)3c c +-=,即213c =.所以3c =.(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =.因此π25sin cos 2B B ⎛⎫+== ⎪⎝⎭.16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分. 证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ∥平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ∥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1∥平面ABC . 又因为BE ∥平面ABC ,所以CC 1∥BE .因为C 1C ∥平面A 1ACC 1,AC ∥平面A 1ACC 1,C 1C ∩AC =C , 所以BE ∥平面A 1ACC 1.因为C 1E ∥平面A 1ACC 1,所以BE ∥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2∥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2∥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∥BF 1E =∥B .因为F 2A =F 2B ,所以∥A =∥B , 所以∥A =∥BF 1E ,从而EF 1∥F 2A . 因为AF 2∥x 轴,所以EF 1∥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令,得或.列表如下:(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.所以的极大值1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下: 所以当3x =时,()g x 取得极大值,且是最大值,故max ()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n ∈N.②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:+–因为ln 2ln82663=<=,所以max ()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k„,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅰ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A(1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N L令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅰ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4nnnn n n n x x x x n +=++++≥L ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=, 从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB ≤,因为当3n ≥n ≤,所以X n>当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当Xn >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年江苏省高考数学试卷及答案(Word版)

2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

2019年江苏高考数学试题及答案

2019年江苏高考数学试题及答案

普通高等学校招生全国统一考试(江苏卷)数学试题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为_______. 【答案】52.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】63.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________. 【答案】75.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】566.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______. 【答案】-37.不等式224x x -<的解集为________. 【答案】(-1,2)8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.【答案】39.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 . 【答案】22(1)2x y -+=11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 .【答案】201112.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 .13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 .【答案】414.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+111)(k k k a a 的值为 .【答案】二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.(第4题图)15.(本小题满分14分)在ABC 中,已知2,3,60.AB AC A === (1)求BC 的长; (2)求sin2C 的值.解:(1)由余弦定理得,7BC =(2)由正弦定理得,43sin 2C =16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,已知1,AC BC BC CC ⊥=,设1AB 的中点为D,11.B C BC E ⋂= 求证:(1)11//DE AACC 平面 (2)11BC AB ⊥ 证明:(1)只需证明DE//AC;(2)需先证AC ⊥平面11BCC B ,再证1BC ⊥平面1AB C .17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C,计划修建的公路为l,如图所示,M,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x,y 轴,建立平面直角坐标系xOy,假设曲线C 符合函数2ay x b=+(其中a,b 为常数)模型. (I)求a,b 的值;(II)设公路l 与曲线C 相切于P 点,P 的横坐标为t.①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 解:(1)由题意知,点,M N 的坐标分别为(5,40),(20,2.5),将其分别代入2ay x b =+中得,10000a b =⎧⎨=(2)由勾股定理得,62410()3,[5,20]4tf t t t =+∈ 由基本不等式可知,当102t =时,min ()153f t =Ml 1y CPl18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>且右焦点F 到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.解:(1)2212x y += (2)分AB 与x 轴垂直和不垂直两种情况讨论, 得直线AB 的方程为10x y --=或10x y +-=19.(本小题满分16分)已知函数32()(,)f x x ax b a b =++∈R ; (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是与a 无关常数),当函数)(x f 有三个不同零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞求c 的值 解:(1)当0a <时,()f x 在2(0,)3a -上递减,在2(,0),(,)3a-∞-+∞上递增; 当0a =时,()f x 在(,)-∞+∞上递增; 当0a >时,()f x 在2(,0)3a -上递减,在2(,),(0,)3a-∞-+∞上递增. (2)1c =20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a依次成等比数列(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由(3)是否存在1,a d 及正整数,n k ,使得351234,,,n n k n kn k a a a a +++依次成等比数列,并说明理由 解:(1)证明:因为11222(1,2,3)2n n n na a a da n ++-===是同一个常数,所以31242,2,2,2a a a a 构成等比数列.(2)用假设法,可证不存在1,a d ,使得2341234,,,a a a a 依次成等比数列.(3)用假设法,可证不存在1,a d 及正整数,n k ,使得351234,,,n n k n kn k a a a a +++依次成等比数列.附加题21、(选做题)本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A 、[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D 求证:ABD ∆≈AEB ∆ 证明:只需证ABD E ∠=∠,而BAE ∠为公共角,易证.B 、[选修4-2:矩阵与变换](本小题满分10分) 已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值. 解:1120A ⎡-⎤=⎢⎥⎦⎣,另一个特征值为1C.[选修4-4:坐标系与参数方程]已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径. 解:r =D .[选修4-5:不等式选讲]解不等式|23|3x x ++≥ 解:1(,5][,)3-∞--+∞22.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长 BQ =23.已知集合*{1,2,3},{1,2,3,,}()n X Y n n N ==∈,设},,|),{(n n Y b X a a b b a b a S ∈∈=整除或整除,令()f n表示集合n S 所含元素个数.A第21——AP A BC DQ 第22题(1)写出(6)f 的值; (6)13f =(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明. 略。

2019年江苏卷数学高考试题

2019年江苏卷数学高考试题

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B xx x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.y =8.16 9.10 10.4 11.(e, 1)13.1014.1,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC -A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

(完整word)2019年高考真题数学(江苏卷含答案),推荐文档

(完整word)2019年高考真题数学(江苏卷含答案),推荐文档

2019年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:样本数据X1,X2,…,X n的方差S2 1 x X 2,其中X - X i •n i 1 n i 1柱体的体积V Sh,其中S是柱体的底面积,h是柱体的咼.锥体的体积V 1Sh,其中S是锥体的底面积,h是锥体的咼. 3一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.1 •已知集合A { 1,0,1,6} , B {x|x 0,X R},则AI B ▲.2•已知复数(a 2i)(1 i)的实部为0,其中i为虚数单位,则实数a的值是▲.3•下图是一个算法流程图,则输出的S的值是▲4•函数y 7 6x x2的定义域是▲.5.已知一组数据6, 7, 8, 8, 9, 10,则该组数据的方差是▲.6•从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.27.在平面直角坐标系xOy中,若双曲线x2每1(b 0)经过点(3, 4),则该双曲线的b渐近线方程是▲.&已知数列{a n}( n N*)是等差数列,S n是其前n项和若a?a5 a* 0,S9 27 ,则S*的值是▲.A iB iC iD i的体积是120, E为CC i的中点,则三棱锥E-BCD的9•如图,长方体ABCD体积是▲10•在平面直角坐标系xOy中,P是曲线y x -(x 0)上的一个动点,则点P至煩线xx+y=0的距离的最小值是▲.11. 在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是厶12. 如图,在 A ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA , AD 与CE 交于点O .14.设f(x), g(x)是定义在R 上的两个周期函数,f (x)的周期为 4, g(x)的周期为2,且f (x)是奇函数.当 x (0,2]时,f (x). 1 (x 1) , g(x)k(x 2),0 x 11 , -,1 x2 2其中k>0•若在区间(0,9]上,关于x 的方程f(x) g(x)有8个不同的实数根,则 k 的 取值范围是▲.二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分)在厶ABC 中,角A , B , C 的对边分别为 a , b , c .― 2(1) 若 a=3c , b= •• 2 , cosB=,求 c 的值;3…sin A cosB(2) 若,求sin(B -)的值.a 2b216. (本小题满分14分)如图,在直三棱柱 ABC — A 1B 1C 1中,D , E 分别为BC , AC 的中点,AB=BC .UJU UULT 若 AB AC uuu 6AO UJU EC ,则 AB 的值是 AC13.已知tan tan-,则sin 2-的值是 ▲3 4求证:(1) A1B1// 平面DEC1;(2) BE 丄C1E.17. (本小题满分14分)2 2 2F 2 (1, 0).过F 2作x 轴的垂线I ,在x 轴的上方,I 与圆F 2:(X 1) y 4a 交于点A ,与椭圆C 交于点D •连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E , 连结DF 1. 已知DF 1= 5 .2(1) 求椭圆C 的标准方程;(2) 求点E 的坐标.18. (本小题满分16分)如图,一个湖的边界是圆心为 O 的圆,湖的一侧有一条直线型公路 l ,湖上有桥AB( AB 是圆O 的直径).规划在公路I 上选两个点P 、Q ,并修建两段直线型道路 PB 、QA .规 划要求:线段PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到 直线l 的距离分别为 AC 和BD (C 、D 为垂足),测得 AB=10, AC=6, BD=12 (单位: 百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;如图,在平面直角坐标系 xOy 中,椭圆C: 2x ~~2 a2右1(a b 0)的焦点为F (-4、°),(2) 在规划要求下,P 和Q 中能否有一个点选在 D 处?并说明理由;(3) 对规划要求下,若道路 PB 和QA 的长度均为d (单位:百米)•求当d 最小时,P 、Q 两点间的距离.19. (本小题满分16分)设函数 f(x) (x a)(x b)(x c),a,b,c R 、f'(x)为 f (x )的导函数. (1) 若 a=b=c , f (4) =8,求 a 的值;(2) 若a 丰b , b=c ,且f (x )和f'(x)的零点均在集合{ 3,1,3}中,求f (x )的极小值;4(3)若a 0,0 b, 1,c 1,且f (x )的极大值为M ,求证:M <.2720. (本小满分 16分)定义首项为1且公比为正数的等比数列为“M -数列”.*(1)已知等比数列{a n } (n N )满足:a ?a 4 a 5,a 3 4a ? 4a 4 0 ,求证 澈列{a n } 为“ M —数列”;① 求数列{b n }的通项公式;② 设m 为正整数,若存在“ M —数列” {c n }(n N *),对任意正整数k ,当k < m 时, 都有c k 剟b k c k 1成立,求m 的最大值.数学H (附加题)(2)已知数列{bn }满足:01 1,s n2 b n2bn 1,其中S n 为数列{b n }的前n 项和.21. 【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4-2 :矩阵与变换](本小题满分10 分)已知矩阵A(1 )求 A 2;(2)求矩阵A 的特征值.B. [选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点 A 3,— ,B .2,,直线I 的方程为 sin -3.4 24(1 )求A ,B 两点间的距离;(2)求点B 到直线I 的距离. C. [选修4-5 :不等式选讲](本小题满分10分) 设x R ,解不等式|x|+|2 x 1|>2.【必做题】第22题、第23题,每题10分,共计20分•请在答题卡指定区域 内作答,解答时应写出文字说明、证明过程或演算步骤.a b.3,其中 a,b N *,求 a 2 3b 2 的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集A n {(0,0),(1,0),(2,0),,(n,0)}B n (0,1),(n,1)},C n {(0,2),(1 ,2),(2,2), L ,(n,2)}, n N .令M n A n U B n U C ..从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1 )当n=1时,求X 的概率分布;22.(本小题满分10分)设(1 x)na 0 a 1x2a 2xn *a .x , n-4, n N .已知2 a32a 2a 4.(1 )求门的值;(2)设(1 x3)n2019年普通高等学校招生全国统一考试(江苏卷)数学I 答案、填空题:本题考查基础知识、基本运算和基本思想方法•每小题5分,共计70分.571.{1,6}2.23.54.[ 1,7]5.-6.—7.y -23108.169.10 10.411.(e, 1) 12. 313.- 1 14.-辽J10 3 4二、解答题15•本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力•满分14分. 解:(1)因为a 3c, b3sin A cos(2)因为a2b由正弦定理ab得cosBsin B,所以cosB2s inBsin A sin B2bb从而 cos 2B (2sin B)2, 2即 cos B 24 1 cos B ,故 cos2B 单516•本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力•满分14分.证明:(1)因为D , E 分别为BC , AC 的中点, 所以 ED // AB. 在直三棱柱 ABC-A 1B 1C 1 中,AB // A 1B 1,由余弦定理cos B2 2 , 2a c bac(3c)2 c 2 (迈)23c c,即c 2因为 sinB 0,所以 cosB 2sinB 0,从而cos BncosB所以c所以A1B1 // ED.ii 5将x=i 代入圆F 2的方程(x-i) 2+y 2=i6,解得y= ± 4.因为点A 在x 轴上方,所以A(i , 4). 又 F i (-i , 0),所以直线 AF i : y=2x+2. 由;x2x 2 i)2y 2i6,得 5x26x 11 0 ,解得xii代入2x 2,得i2 T ,又因为ED?平面DEC i , A 1B 1 平面DEC i , 所以A i B i //平面DEC i . (2)因为AB=BC , E 为AC 的中点,所以 BE 丄AC.因为三棱柱ABC-A i B i C i 是直棱柱,所以 CC i 丄平面ABC. 又因为BE?平面ABC ,所以CC i 丄BE.因为 C i C?平面 A i ACC i , AC?平面 A i ACC i , C i C n AC=C , 所以BE 丄平面A i ACC i .因为C i E?平面A i ACC i ,所以BE 丄C i E.i7.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力满分i4分.解:(i )设椭圆C 的焦距为2c.因为 F i ( — i , 0), F 2(i , 0),所以 F i F 2=2, c=i.5又因为DF i =, AF 2丄x 轴,所以2DF 2= DF i 2 F i F 225)2 22因此 2a=DF i +DF 2=4,从而 a=2.由 b 2=a 2-c 2,得 b 2=3.因此,椭圆C 的标准方程为(2 )解法一:x 2由(i )知,椭圆C :—4i , a =2,因为AF 2丄x 轴,所以点A 的横坐标为i.因此B(11 J5).又 F 2(1 ,0), 所以直线BF 2:y|(x1).3“ 1)y -(x由24 2得7x 26x 13解得x1或x 13x y 1743又因为E 是线段BF 2与椭圆的交点,所以 X 1 .3 33 将 x 1 代入 y —(x 1),得 y -.因此 E( 1,-).4 22解法二:x 2由(1)知,椭圆C :—4因为 BF 2=2a , EF 1+EF 2=2a ,所以 EF 1=EB , 从而/ BF 1E= / B. 因为 F 2A=F 2B ,所以/ A= / B , 所以/ A= / BF 1E ,从而 EF 1// F 2A. 因为AF 2丄x 轴,所以EF 1丄x 轴.X 13 因为 F1(-1, 0),由 x 2 y 2,得 y -.124 33又因为E 是线段BF 2与椭圆的交点,所以 y .23因此 E( 1,―).218.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法(1)过A 作AE BD ,垂足为E. 由已知条件得,四边形ACDE 为矩形,DE BE AC 6, AE CD 8因为PB 丄AB ,所以 cos PBD sinABE —410 5 .1•如图,连结EF 1.因此道路PB 的长为15 (百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B , E )到点O 的距离均 小于圆O 的半径,所以P 选在D 处不满足规划要求②若Q 在D 处,连结AD ,由(1)知AD .. ―ED^ 10,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求• 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当/ OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当/ OBP > 90时,对线段PB 上任意一点F , OF 俎B ,即线段PB 上所有点到点O 的距离均 不小于圆O 的半径,点P 符合规划要求•设R 为I 上一点,且RB AB ,由(1)知,R B=15,3此时 PD PBsin PBD PB cos EBA 15 —9 ;5当/ OBP>90° 时,在△ PPB 中,PB PB 15. 由上可知,d > 15. 再讨论点Q 的位置•由(2 )知,要使得QA > 15点Q 只有位于点C 的右侧,才能符合规划要求 •当QA=15时,CQ QA 2 AC 2 . 152 62 3、、21 .此时,线段QA 上所有点到点O 的距离均不小于所以PBBD cos PBD12a15.从而cos BAD2 2 2AD AB BD2 AD AB7 250 ,所以/ BAD 为锐角.综上,当PB 丄AB ,点Q 位于点C 右侧,且CQ=3「21时,d 最小,此时P , Q 两点间的距离 PQ=PD+CD + CQ=17+ 3 21.因此,d 最小时,P , Q 两点间的距离为17+3 21 (百米)• 解法二:(1)如图,过0作0H 丄I ,垂足为H.以0为坐标原点,直线 0H 为y 轴,建立平面直角坐标系.因为BD=12, AC=6,所以0H=9,直线I 的方程为y=9,点A , B 的纵坐标分别为3, -3. 因为AB 为圆0的直径,AB=10,所以圆0的方程为x 2+y 2=25.3从而A ( 4, 3), B (-4, -3),直线AB 的斜率为—.4因为PB 丄AB ,所以直线PB 的斜率为所以 P (-13, 9), PB ( 13 4)2 (9 3)2 15.因此道路PB 的长为15 (百米)(2)①若P 在D 处,取线段BD 上一点E (-4, 0),则EO=4<5,所以P 选在D 处不满足规 划要求• ②若 Q 在 D 处,连结 AD ,由(1)知 D (-4, 9),又 A (4, 3),3所以线段AD : y —x 6( 4剟x 4).4在线段AD 上取点M (3, 15),因为0M , 321 5. 32 42 5 ,4 V 4所以线段AD 上存在点到点0的距离小于圆0的半径.因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处.直线PB 的方程为y253此时f(x) (x 3)(x 3)2, f'(x) 3(x 3)(x 1) •(3)先讨论点P的位置.当/ OBP<90°时,线段PB上存在点到点0的距离小于圆0的半径,点P不符合规划要求;当/ OBP >90 °寸,对线段PB上任意一点F , OF RB,即线段PB上所有点到点0的距离均不小于圆0的半径,点P符合规划要求•设R 为I上一点,且RB AB,由(1)知,R B=15,此时R (-13, 9);当/ OBP>90°时,在△ PRB 中,PB RB 15.由上可知,d > 15.再讨论点Q的位置•由(2)知,要使得QAM5,点Q只有位于点C的右侧,才能符合规划要求•当QA=15时,设Q(a, 9),由AQ ,. (a 4)2 (9 3)2 15(a 4),得a= 4 3一21,所以Q( 4 3 21 ,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P (- 13, 9), Q ( 4 3 21 , 9)时,d最小,此时P, Q两点间的距离PQ 4 3 何(13) 17 3何.因此,d最小时,P, Q两点间的距离为17 ^21 (百米)•19 •本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力•满分16分.解:(1 )因为a b c,所以 f (x) (x a)(:x b)(x c) (x\3a) •因为f(4)8,所以(4 a)38,解得a 2(2)因为b c,所以f(x)2(x a)(x b) x 3 2(a 2b)x2b(2a b)x ab ,从而f'(x)3(x b) x-•令f'(x)0 ,得x b或x2a b332 a b因为a,b,旦卫,都在集合{ 3,1,3}中,且a b ,32a b 所以2^-b1,a 3,b 3•3272 b 2 b1 (b 1)b(b 1) 9所以f(x)的极小值为f(l) (1 3)(1 3)232 .32(3)因为 a 0,c 1,所以 f(x) x(x b)(x 1) x (b 1)x bx ,f'(x) 3x 2 2(b 1)x b .因为 0 b 1,所以 4(b 1)2 12b (2 b 1)2 3 0,则f'(x)有2个不同的零点,设为 x 1,x 2x 2 .由 f'(x) 0,得 x , 口必 L 一b b 1 .33所以f(x)的极大值M f x 1解法一:b(b 1) 2(b 1)2(b 1)2727M f x-!x ; (b 1)x :3x f 2(b 1)为 bb(b 1)92b(b 1)2 4 4 •因此M -2727 2727解法二:因为0 b 1,所以x , (0,1) • 当 x (0,1)时,f(x)x(x b)(x 1)x(x 1)2 •2 1令g(x) x(x1),x W),则 g '(x)3 x3 (x1)•1令g'(x) 0,得x.列表如下:11 所以当x —时,g ( x)取得极大值,且是最大值,故g(X )max g —3344所以当x (0,1)时,f(x) g(x) ,因此M -272720.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力•满分解:(1)设等比数列{a n }的公比为q ,所以a 1M 0, q^0.4 2716分.a 2a 4 a 5a 3 4a ? 4a 〔0,得 2 4 a 1 q2a 〔q 4a 1q,解得4®q 4a 1 0a 1 1 q 2因此数列{a n }为 M —数列”(2) ①因为1 S n2 b n2b n -,所以 1b n1 由—S n2b nb n1,得b n 6 12(b n 1 b n),1S2J,则b2 2.b22当n 2时, b n bn 1bn 1bn 由 b nSn S i 1,得 n 2 bb2 bb,2 bn 1bn2 bnbn 1整理得b n 1 b n 1 2b n . 所以数列{b n }是首项和公差均为1的等差数列因此,数列{b n }的通项公式为b n =n n N ②由①知,b k =k , k N .因为数列{c n }为M -数列”设公比为q ,所以c i =1, q>0.因为 C k<b k<c k+1,所以 q k 1 kk q ,其中 k=1 , 2, 3,…,m 当k=1时,有q > 1;, ,亠 ln kln k 当k=2, 3,…,m 时,有 -ln qkk 1In x1 In x 设f (x )= (x 1),则 f'(x)— xx令f'(x)0,得X=e.列表如下:经检验知q k 1 k 也成立. 因此所求m 的最大值不小于5.若m 》6,分别取k=3 , 6,得3角3,且q 5<6从而q 15> 243且q 15< 216所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.f(k)max罟,所以3f ⑶罟ln8 In 9 6 6取 q 3 3,当 k=1,2, 3, 4, 5时,ln k ,k=lnq ,即 k q ,数学H (附加题)参考答案10分.10分.21.【选做题】A .[选修4 - 2 :矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分3 1解:(1)因为A2 23 3 1 2 3 1 1 2 11 52 3 2 2 2 1 2 2 : =10 6(2)矩阵A 的特征多项式为f()令f ( ) 0 ,解得A 的特征值11, 2 4 .B •[选修4 - 4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力•满分解:(1 )设极点为 0•在△ OAB 中,A (3, ), B (、3 , ),42由余弦定理,得 AB=,. 32( /2)2 2 3 2 cosq J(2)因为直线I 的方程为 sin( -) 3 ,又BC-2—),所以点B 到直线I 的距离为(3\2 .2) sin(3)242C .[选修4吒:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分所以A 23 13 1 2 2 2 210分.4.10分.则直线I 过点 (3-2,-) ,倾斜角为3_42.1解:当x<0时,原不等式可化为x 1 2x 2,解得x< -10分.1当O$w —时,原不等式可化为 x+1 -x>2,即x< 无解;2 1当x>_时,原不等式可化为x+2x-1>2,解得x>1.2综上,原不等式的解集为 {x|x(2)由(1)知,n 5 .a b 、3 .解法一:因为 a,b N *,所以 a C 0 3C 5 9C ; 76, b C 5 3C 5 9C 5 44, 从而 a 2 3b 2 762 3 442 32 .解法二:(1 .3)5 c ; c 5( .3)c 5( .3)2 c ;( .3)3 c ;( G )4 c :(、3)5c ; c 5,3c fe ,3)2 &(「3)3C ;(.3)4C 5C -3)5.因为 a,b N *,所以(1 、.3)5 a b 、3 . 因此 a 2 3b 2(a b . 3)(a b . 3) (1、、3)5 (1 .3)5 ( 2)5 32 .22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求 解能力,满分10分.解:所以 (1)因为(1 x)n C 0 Qx Ux 2 Lc n x n ,n 4 ,n(n 1)(n 2)a 2a 4C:c 2 n(n " acn2n(n24因为a ; 2a ?a 4,1)(n 2)]2 26解得n 5.n(n1) 2n(n 1)(n 2)(n 3)24 c 2(.3)2 c ;c3)3c :( 一3)4c :(、(2)设A(a ,b)和B(c , d)是从M n 中取出的两个点.因为P(X n) 1 P(X n),所以仅需考虑X n 的情况. ① 若b d ,则AB n ,不存在X n 的取法;② 若 b 0 ,d 1,则 AB , (a c)2 1 、n 2 1,所以 X n 当且仅当 ABn 2 1, 此时a 0, c n 或a n ,c 0,有2种取法; ③ 若 b 0,d 2,则 AB (a c)2 4 \ n 2 4 ,因为当 n 3 时,、(n 1)2 4 n ,所以X n 当且仅当AB .... n 2 4 ,此时a 0, c n 或解: (1 )当n 1时,X 的所有可能取值是1,2 ,2,5 •23 .【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识, 考查逻辑思维能力和推理论证能力•满分 10分.X 的概率分布为P (x 1)C 2右P(X ①44 C 215,P(X2)2 C 6215,p (x 2 2 2 C615④若b1 ,d 2,则 AB(a c)21 •一 n 21 ,所以X n 当且仅当 此时a0, cn 或a n ,c 0,有2种取法•综上,当当Xn 时,X 的所有可能取值是、n 21 和 n 24,且P(Xn 2 1)24,P(Xn 24)2 2C 2n 4C2n 4 1赞P(X n) 1 P(X n 2 1)P(X-n 2 4)c 0,有2种取法;AB因此,2n 4a n , n 2 1 ,。

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B={1,6}.解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是2.解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.(5分)如图是一个算法流程图,则输出的S的值是5.解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.(5分)函数y=的定义域是[﹣1,7].解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=.解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是10.解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD 1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是4.解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是(e,1).解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.(5分)已知=﹣,则sin(2α+)的值是.解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是[,).解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x <﹣,∴不等式的解集为{x|x <﹣或x>1}.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C =,a3=C =,a4=C =,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,(1﹣)5=C+C (﹣)+C (﹣)2+C (﹣)3+C (﹣)4+C (﹣)5=C﹣C+C ()2﹣C ()3+C ()4﹣C ()5,由于a,b∈N*,可得(1﹣)5=a﹣b,第21页(共22页)可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X =)==;P(X=2)==;P(X =)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X 的所有值是或,且P(X =)=,P(X =)=,可得P(X≤n)=1﹣P(X =)﹣P(X =)=1﹣.第22页(共22页)。

2019年江苏卷数学高考真题文档版(含答案)

2019年江苏卷数学高考真题文档版(含答案)
(1)若 a=b=c,f(4)=8,求 a 的值;

(2)若 a≠b,b=c,且 f(x)和 f '(x) 的零点均在集合{ 3,1,3} 中,求 f(x)的极小值;
成 (3)若 a 0,0 b„ 1, c 1 ,且 f(x)的极大值为 M,求证:M≤ 4 . 27
到 20.(本小满分 16 分)
y
3 4
(x
1)
.

y 3 (x 4
x2 y2 43
1) 1
,得
7x2
6x
13
0
,解得
x
1

x
13 7
.
又因为 E 是线段 BF2 与椭圆的交点,所以 x 1 .
将 x 1 代入 y 3 (x 1) ,得 y 3 .因此 E(1, 3) .
4
2
2
解法二:
由(1)知,椭圆 C: x2 y2 1.如图,连结 EF1. 43
! 功
由 b2=a2-c2,得 b2=3.
因此,椭圆 C 的标准方程为 x2 y2 1. 43
(2)解法一:
成 到
由(1)知,椭圆 C: x2 y2 1,a=2, 43

考 因为 AF2⊥x 轴,所以点 A 的横坐标为 1.
将 x=1 代入圆 F2 的方程(x-1) 2+y2=16,解得 y=±4. 因为点 A 在 x 轴上方,所以 A(1,4).
您 因为PB⊥AB,
所以 cos PBD sin ABE 8 4 .
祝 10
所以
PB
BD cos PBD
12 4
15
.
5
5
因此道路PB的长为15(百米).

精品解析:2019年江苏省高考数学试卷(原卷版)

精品解析:2019年江苏省高考数学试卷(原卷版)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑. 柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{1,0,1,6}A =-,{}0,B x x x R =∈,则A B ⋂=_____.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____.3.下图是一个算法流程图,则输出S 的值是_____.4.函数276y x x =+-的定义域是_____.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b -=>经过点(3,4),则该双曲线的渐近线方程是_____. 8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.12.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则AB AC的值是_____.13.已知tan2π3 tan4αα=-⎛⎫+⎪⎝⎭,则πsin24α⎛⎫+⎪⎝⎭的值是_____.14.设(),()f xg x是定义在R上的两个周期函数,()f x的周期为4,()g x的周期为2,且()f x是奇函数.当(0,2]x∈时,2()1(1)f x x=--,(2),01()1,122k x xg xx+<≤⎧⎪=⎨-<≤⎪⎩,其中k>0.若在区间(0,9]上,关于x的方程()()f xg x=有8个不同的实数根,则k的取值范围是_____.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=2,cos B=23,求c的值;(2)若sin cos2A Ba b=,求sin()2Bπ+的值.16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0), F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 19.设函数()()()(),,,R f x x a x b x c a b c =---∈,()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 20.定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值. 数学Ⅱ(附加题)【选做题】本题包括21、22、23三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.22.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.23.设x ∈R ,解不等式||+|2 1|>2x x -. 【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档