湖北省十堰市第二中学2019届九年级5月月考数学试题(扫描版,无答案)

合集下载

2019年湖北省十堰市中考数学试卷及答案(Word解析版)

2019年湖北省十堰市中考数学试卷及答案(Word解析版)

湖北省十堰市2019年中考数学试卷一、选择题(本题共10个小题,每小题3分,满分30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在后面的括号里。

2.(3分)(2019•十堰)如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()4.(3分)(2019•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()B C D5.(3分)(2019•十堰)已知关于x的一元二次方程x+2x﹣a=0有两个相等的实数根,则a6.(3分)(2019•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()则下底BC的长为()==8.(3分)(2019•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()9.(3分)(2019•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是(),解得,8=310.(3分)(2019•十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()>二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2019•十堰)我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为 3.5×106.12.(3分)(2019•十堰)计算:+(﹣1)+(﹣2)=2..13.(3分)(2019•十堰)某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数×××14.(3分)(2019•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.EF=15.(3分)(2019•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.=375(米).16.(3分)(2019•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r 为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是﹣1≤S<﹣.DG==﹣××=﹣r=﹣=,∵﹣﹣.的取值范围是:﹣<﹣故答案为:﹣<﹣三、解答题(共9小题,满分72分)17.(6分)(2019•十堰)化简:.×++18.(6分)(2019•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.19.(6分)(2019•十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?由题意得,=20.(9分)(2019•十堰)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.)∵=.21.(6分)(2019•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是﹣2≤a<﹣1.(2)如果[]=3,求满足条件的所有正整数x.[][]22.(7分)(2019•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场23.(10分)(2019•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.(y=y==,上,=,24.(10分)(2019•十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.(1)求证:⊙O与CB相切于点E;(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.AH=BH==4=,即=EF=,BH EF=××=,=﹣,BHE=25.(12分)(2019•十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C 点,抛物线的顶点为D点,点A的坐标为(﹣1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.m,=﹣﹣m)或(﹣,﹣)。

2019年十堰市中考数学模拟试题与答案

2019年十堰市中考数学模拟试题与答案

2019年十堰市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1.我国每年淡水为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500用科学记数法表示为A .275×102B .2.75×103C .2.75×104D .0.275×1052. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是3.下列各式运算中正确的是A.336)2-(y y -=B.0130= C.448a a a -=÷- D.13169±=4. 一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是 A .4 B .5 C .10 D .115.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是A .主视图B .左视图C .俯视图D .主视图和俯视图 6. 函数a ax y -=与)0(≠=a xay 在同一坐标系中的图象可能是7. 已知关于x 的不等式组有四个整数解,则实数a 的取值范围A. -3<a ≤ 2B. -3≤a ≤ 2C.-3<a ≤-2D. -3≤ a <-28.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是A .5B .6C .7D .8 9.对于二次函数y =-14x 2+x -4,下列说法正确的是A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点10. 如图,已知∠AOB=30°,以O 为圆心、a 为半径画弧交OA 、OB 于A 1、B 1,再分别以A 1、B 1为圆心、a 为半径画弧交于点C 1,以上称为一次操作.再以C 1为圆心,a 为半径重新操作,得到C 2.重复以上步骤操作,记最后一个两弧的交点(离点O 最远)为C K ,则点C K 到射线OB 的距离为A.a 2B.32a C .a D.3a 第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11.多项式ab ab b a --222的次数是 .12.函数y=的自变量x 的取值范围为 .13. Rt△ABC 中,∠C =90°,AC =3,BC =4.把它沿边BC 所在的直线旋转一周,所得到的几何体 的全面积为 .14.实数a 在数轴上的位置如图所示,化简()__12=+-a a15. 已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =3cm ,则线段AC =__________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M(m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:(cos --+-︒-0122601.18.(本题8分)先化简,再求值:(x 2-4x 2-4x +4 -2x -2 )÷ x 2+2xx-2 , 然后选取一个你喜欢的数代入求值.19.(本题10分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A (绿博园),B (人民公园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生? (2)补全条形统计图;(3)若该学校共有3 600名学生,试估计该校最想去湿地公园的学生人数.20.(本题10分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作 thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值; (2)若thi A =3,则∠A = °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系 . 21.(本题12分)将△ABC绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .(1得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.22.(本题12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式。

2019年湖北省十堰中考数学试卷含答案

2019年湖北省十堰中考数学试卷含答案

1 a2 1
18.(6
分)先化简,再求值:
1

a



a
2 ,其中 a 3 1。
19.(7 分)如图,拦水坝的横断面为梯形 ABCD, AD 3 m ,坝高 AE DF 6 m ,坡 角 45 °, 30 ,求 BC 的长。
绝密★启用前

2019 年十堰市初中毕业生学业水平考试
数学
一、选择题(本题有 10 个小题。每小题 3 分。共 30 分) 此
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答
题卡中相应的格子内。
1.下列实数中,是无理数的是
1

A.0
B. 3
C. 3
2.如图,直线 a∥b ,直线 AB AC ,若 1 50 ,则 2
(1)求 a 的取值范围; (2)若 x12 x22 x1x2 30 ,且 a 为整数,求 a 的值。
数学试卷 第 4 页(共 6 页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
() D. 3
()

A. 50
B. 45
C. 40
3.如图是一个 L 形状的物体,则它的俯视图是 答
D. 30 ()

A
B
C
D
4.下列计算正确的是
A. 2a a 2a2

C. a 12 a2 1
B. a2 a2 D. ab2 a2b2
5.矩形具有而平行四边形不一定具有的性质是

2019年湖北十堰中考数学试题(word版)(有答案)

2019年湖北十堰中考数学试题(word版)(有答案)

绝密*启用前:湖北省十堰市2019年初中毕业生学业考试数学试题卷注意事项:本试卷分为试题卷和答题卡两部分,考试时间为120分钟,满分120分.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内.注意可以用多种不同的方法选取正确答案. 1.(2019.十堰)-3的绝对值是( C )A .13B .-13C .3D .-32.(2019.十堰)下列运算中正确的是( D )A .a 3a 2=a 6B .(a 3)4= a 7C .a 6 ÷ a 3 = a 2D .a 5 + a 5 =2 a 53.(2019.十堰))据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2019年蓄水至175米水位后库容量,将4947.66亿用科学记数法表示为( C )A .4.94766×1013B .4.94766×1012C .4.94766×1011D .4.94766×10104.(2019.十堰)若一个几何体的三视图如图所示,则这个几何体是( A ) A .三棱柱 B .四棱柱 C .五棱柱 D .长方体5.要了解哪种品牌最畅销,公司经理最关心的是上述数据找( B ) A .平均数 B .众数 C .中位数D.方差6.(2019.十堰)如图,将△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A ’B ’,则∠BAC 等于( A )A .50°B .60°C .70°D .80°主视图 俯视图 左视图(第4题)7.(2019.十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面积为6cm 2,则梯形ABCD的面积为( C )A .12 cm2B .18 cm 2C .24 cm 2D .30 cm 28.(2019.十堰)下列命题中,正确命题的序号是( D )①一组对边平行且相等的四边形是平行四边形 ②一组邻边相等的平行四边形是正方形 ③对角线相等的四边形是矩形 ④对角互补的四边形内接于圆A .①②B .②③C .③④D .①④ 9.(2019.十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( C ) A . 102x -<< B .102x << C .112x << D .312x << 10.(2019.十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( C )(第10题)C DE FABA D BC E F (第7题) (第6题)AA ′CBB ′二、认真填一填(本题有6个小题,每小题3分,共18分)11.(2019.十堰)分解因式:a 2-4b 2= (a +2b )(a -2b ) . 12.(2019.十堰)函数3y x =-的自变量x 的取值范围是 x ≥2且x ≠3 . 13.(2019湖北十堰,13,3分)如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P =90°,则∠3= 55° .14.(2019.十堰)在平面直角坐标系中,若点P 的坐标(m ,n ),则点P 关于原点O 对称的点P ’的坐标为 (-m ,-n ) .15.(2019.十堰) 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款 37770 元.16.(2019.十堰)如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n =14214n -⋅+ .l 1l 2 l 3 3 12P(第13题)初一 初二初三(图1) 人数统计 (图2) 初一 初二 初三(第15题)三、全面答一答(本题有9个小题,满分72分)本大题解答应写出文字说明,证明过程或推理步骤,如果觉得有的题目有点困难,那么把自己能写的解答写出一部分也可以. 17.(2019.十堰)(本小题满分7分)计算:30(2)|5|2)2sin 30-+--+︒解:原式=-8 + 5-1+ 2×12 =-3.18.(2019.十堰)(本小题满分7分)先化间,再求值:211(1)(2)11x x x -÷+-+-,其中x =解:原式=111x x +-⋅+(x +1)(x -1)+(x -2) =x (x -1)+(x -2) =x 2-2当x = 6 时,原式=( 6 )2-2=4.19.(2019.十堰)(本小题满分7分)如图,△ABC 中,AB =AC ,BD ⊥AC ,CE ⊥AB . 求证:BD =CE .证明:∵BD ⊥AC ,CE ⊥AB ∴∠ADB =∠AEC =90°在△ABD 和△AEC 中,∠ADB =∠AEC =90°,∠A =∠A ,AB =AC ∴△ABD ≌△AEC ∴BD =CE .20.(2019.十堰)(本小题满分8分)某乡镇中学数学活动小组,为测量数学楼后面的山高AB ,用了如下的方法.如图所示,在教学楼底C 处测得山顶A 的仰角为60°,在教学楼顶D 处,测得山顶A 的仰角为45°.已知教学楼高CD =12米,求山高AB .(参考数据 3 =1.73, 2ABC D E(第19题)(第16题)N 1N 2N 3N 4N 5=1.41,精确到0.1米,化简后再代入参考数据运算)解:过D 作DE ⊥AB 于E ,而AB ⊥BC ,DC ⊥BC ,故四边形DEBC 为矩形, 则CD =BE ,∠ADE =45°,∠ACB =60°.设AB =h 米,在Rt △A BC 中,BC =h ·cot 60°=h ·tan 30°=3h 在Rt △AED 中,AE =DE ·tan 45°=BC ·tan 45°=3h 又AB -AE =BE =CD =12 ∴h=12 ∴h18=+=18+6×1.73=18+10.38≈28.4(米)答:山高AB 是28.4米.21.(2019.十堰)(本小题满分8分)暑假快到了,老家在十堰的大学生张明与王艳打算留在上海,为世博会做义工.学校争取到6个义工名额,分别安排在中国馆园区3个名额,世博轴园区2个名额,演义中心园区1个名额. 学校把分别标号为1、2、3、4、5、6的六个质地大小均相同的小球,放在不透明的袋子里,并规定标号1、2、3的到中国馆,标号4、5到世博轴,标号6的到演艺中心,让张明、王艳各摸1个. (1)求张明到中国馆做义工的概率;(2)求张明、王艳各自在世博轴、演艺中心做义工的概率(两人不同在一个园区内).解:(1)如表所示,张明、王艳各摸一球可能出现的结果有6×5=30个,它们出现的可能性相等,张明到中国馆的结果有15个,∴P (张明到中国馆做义务)=151=.A(2)张明、王艳各自在世博轴、演艺中心的结果共4个,其概率P=3015=. 22.(2019.十堰)(本小题满分8分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4).(1)求反比例函数的解析式;(2)连结OA ,OB ,当△AOB 的面积为152 时,求直线AB 的解析式.解:(1)设反比例函数解析式为y= kx ,∵点A (1,4)在反比例函数的图象上 ∴4=1k ,∴k =4,∴反比例函数的解析式为y =4x. (2)设直线AB 的解析式为y =ax +b (a >0,b >0),则当x =1时,a +b =4即b =4-a .联立4y x y ax b⎧=⎪⎨⎪=+⎩,得ax 2 +bx -4=0,即ax 2+(4-a方法1:(x -1)(ax +4)= 0,解得x 1=1或x =-4a, 设直线AB 交y 轴于点C ,则C (0,b ),即C (0,4-a ) 由S △AOB =S △AOC +S △BOC =11415(4)1(4)222a a a -⨯+-⨯=,整理得 a 2+15a -16=0,∴a =1或a =-16(舍去) ∴b =4-1=3 ∴ 直线AB 的解析式为y =x +3 方法2:由S △AOB = 12 |OC |·|x 2-x 1|=152而|x 2-x 14()a =4||a a +=4a a+(a >0), |OC |=b =4-a ,可得1415(4)()22a a a +-=,解得a =1或a =-16(舍去). 23.(2019.十堰)(本小题满分8分)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.解:(1)由题可得1270238y x y x =-+⎧⎨=-⎩,当y 1=y 2时,即-x +70=2x -38 ∴3x =108,∴x =36当x =36时,y 1=y 2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件.(2)令y 1=0,得x =70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量.(3)设政府对该药品每件价格补贴a 元,则有346703462()38x x a +=-+⎧⎨+=+-⎩,解得309x a =⎧⎨=⎩ 元/件)所以政府部门对该药品每件应补贴9元.24.(2019.十堰)(本小题满分9分)如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C . (1)求证:O 2C ⊥O 1O 2;(2)证明:AB ·BC =2O 2B ·BO 1;(3)如果AB ·BC =12,O 2C =4,求AO 1的长.解:(1)∵AO 1是⊙O 2的切线,∴O 1A ⊥AO 2 ∴∠O 2AB +∠BAO 1=90° 又O 2A =O 2C ,O 1A =O 1B ,∴∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1 ∴∠O 2CB +∠O 2BC =∠O 2AB +∠BAO 1=90°,∴O 2C ⊥O 2B ,即O 2C ⊥O 1O 2 (2)延长O 2O 1交⊙O 1于点D ,连结AD . ∵BD 是⊙O 1直径,∴∠BAD =90° 又由(1)可知∠BO 2C =90°∴∠BAD =∠BO 2C ,又∠ABD =∠O 2BC ∴△O 2BC ∽△ABD ∴2O B BCAB BD=∴AB ·BC =O 2B ·BD 又BD =2BO 1 ∴AB ·BC =2O 2B ·BO 1(3)由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB ,又∠AO 2B =∠DO 2A ∴△AO 2B ∽△DO 2A ∴2222AO O BDO O A= ∴AO 22=O 2B ·O 2D ∵O 2C =O 2A∴O 2C 2=O 2B ·O 2D ① 又由(2)AB ·BC =O 2B ·BD ②由①-②得,O 2C 2-AB ·BC = O 2B 2 即42-12=O 1B 2 ∴O 2B =2,又O 2B ·BD =AB ·BC =12 ∴BD =6,∴2AO 1=BD =6 ∴AO 1=325.(2019.十堰)(本小题满分10分)已知关于x 的方程mx 2-(3m -1)x +2m -2=0(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数y= mx 2-(3m -1)x +2m -2的图象与x 轴两交点间的距离为2时,求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y =x +b 与(2)中的函数图象只有两个交点时,求b 的取值范围. 【答案】解:(1)分两种情况讨论:①当m =0 时,方程为x -2=0,∴x =2 方程有实数根 ②当m ≠0时,则一元二次方程的根的判别式△=[-(3m -1)]2-4m (2m -2)=m 2+2m +1=(m +1)2≥0 不论m 为何实数,△≥0成立,∴方程恒有实数根综合①②,可知m 取任何实数,方程mx 2-(3m -1)x +2m -2=0恒有实数根.(2)设x 1,x 2为抛物线y= mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 则有x 1+x 2=31m m -,x 1·x 2=22m m- 由| x 1-x 21||m m +, 由| x 1-x 2|=2得1||m m +=2,∴1m m +=2或1m m+=-2 ∴m =1或m =13-∴所求抛物线的解析式为:y 1=x 2-2x 或y 2=13-x 2+2x -83即y 1= x (x -2)或y 2=13-(x -2)(x -4)其图象如右图所示.(3)在(2)的条件下,直线y =x +b 与抛物线y 1,y 2组成的图象只有两个交点,结合图象,求b 的取值范围.212y x x y x b ⎧=-⎨=+⎩,当y 1=y 时,得x 2-3x -b =0,△=9+4b =0,解得b =-94; 同理2218233y x x y x b ⎧=-+-⎪⎨⎪=+⎩,可得△=9-4(8+3b )=0,得b =-2312. 观察函数图象可知当b <-94 或b >-2312时,直线y =x +b 与(2)中的图象只有两个交点.由2122218233y x x y x x ⎧=-⎪⎨=-+-⎪⎩当y 1=y 2时,有x =2或x =1 当x =1时,y =-1所以过两抛物线交点(1,-1),(2,0)的直线y =x -2,综上所述可知:当b <-94 或b >-2312 或b =-2时,直线y =x +b 与(2)中的图象只有两个交点.。

湖北省十堰市第二中学2019届九年级上学期检测数学试题

湖北省十堰市第二中学2019届九年级上学期检测数学试题

初中数学试题(全卷满分120分)一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的,共30分.1.计算:(﹣)2﹣1=( )A .﹣B .﹣C .﹣D .02.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .第2题图3.若一个正比例函数图象经过A (3,﹣ 6),B (m ,﹣4)两点,则m 的值为( ) A .2B .8C .﹣2D .﹣84.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线A 上,若∠1=25°,则∠2的大小为( ) A .55° B .75° C .65° D .85°第4题图 第6题图 第7题图 第8题图5.化简:﹣,结果正确的是( )A .1B . C. D .x2+y26.如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB=∠AC ′B ′=90°,AC=BC=3,则B ′C 的长为( ) A .3B .6C .3D .7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b (k ≠0)在第一象限交于点M .若直线l2与x 轴的交点为A (﹣2,0),则k 的取值范围是( ) A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2号科组名8.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .B .C .D .9.如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D.5第9题图10.已知抛物线y=x2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为 ( ) A .(1,﹣5) B .(3,﹣13) C .(2,﹣8) D .(4,﹣20)二、填空题:本题共4小题,每小题3分,共12分。

2019年湖北省十堰市茅箭区中考数学模拟试卷(5月份)

2019年湖北省十堰市茅箭区中考数学模拟试卷(5月份)

2019年湖北省十堰市茅箭区中考数学模拟试卷(5月份)(考试时间:120分钟满分:120分)一、选择题(每小题,共30分)1.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃2.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°3.下列计算正确的是()A.a3•a3=2a3B.a2+a2=a4C.a6÷a2=a3D.(﹣2a2)3=﹣8a64.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.5.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5 6 7 8人数 2 6 5 2则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7 B.7,7 C.7,6 D.6,67.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5=D.﹣=58.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.9.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴的正半轴上运动,当线段AP与线段BP之差达到最大时点P的坐标是()A.(,0)B.(3,0)C.(4,0)D.(,0)10.如图,在扇形铁皮AOB中,OA=30,∠AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第一次落在l上时,停止旋转.则点O所经过的路线长为()A.30πB.32πC.36πD.30π+10﹣10二、填空题(每小题3分,共18分)11.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示应为.12.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2019=.13.若函数y=(m+1)x|m|是正比例函数,则该函数的图象经过第象限.14.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.15.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.16.如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连接DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是(填写序号)三、解答题(共72分)17.(5分)计算:3﹣1+|﹣1|﹣2sin45°+(2﹣π)0.18.(6分)先化简,后求值:,其中a=3.19.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)20.(9分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.21.(7分)已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.22.(8分)某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价﹣成本)×销量)(1)求y1与y2的函数表达式;(2)求每天的销售利润w与x的函数关系表达式;(3)销售这种文化衫的第多少天,每天销售利润最大,最大利润是多少?23.(8分)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.24.(10分)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.25.(12分)如图,二次函数y=ax2+bx+2的图象与y轴交于C点,交x轴于点A(﹣2,0),B(6,0),P是该函数在第一象限内图象上的动点,过点P作PQ⊥BC于点Q,连接PC,AC.(1)求该二次函数的表达式;(2)求线段PQ的最大值;(3)是否存在点P,使得以点P,C,Q为顶点的三角形与△ACO相似?若存在,请求出点P的坐标;若不存在,请说明理由.。

湖北省十堰市2019-2020学年中考数学五模考试卷含解析

湖北省十堰市2019-2020学年中考数学五模考试卷含解析

湖北省十堰市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.252.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018 3.如图所示的工件,其俯视图是()A.B.C.D.4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.55.在△ABC中,∠C=90°,1cos2A=,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°6.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A .5sin αB .5sin αC .5cosαD .5cos α7.已知常数k <0,b >0,则函数y=kx+b ,ky x=的图象大致是下图中的( ) A . B .C .D .8.一元二次方程x 2+x ﹣2=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根9.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 11.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米12.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关二、填空题:(本大题共6个小题,每小题4分,共24分.)13.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.14.不等式组2672xx-≥⎧⎨+>-⎩的解集是____________;15.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x+]=5,则x的取值范围是_____.16.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)100 90 80 70 60 人数 1 4 2 1 2则这10名学生的数学成绩的中位数是_____分.17.若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为__________.18.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB 为对称轴构造△ABD 的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC 的形状是 三角形;∠ADB 的度数为 .在原问题中,当∠DBC <∠ABC (如图1)时,请计算∠ADB 的度数;在原问题中,过点A 作直线AE ⊥BD ,交直线BD 于E ,其他条件不变若BC=7,AD=1.请直接写出线段BE 的长为 . 20.(6分)计算: (1)21(62)12(8)3---(2)221cos60cos 45tan 603+-o oo 21.(6分)如图,已知抛物线经过原点o 和x 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与x 轴交于点D .直线y=﹣2x ﹣1经过抛物线上一点B (﹣2,m )且与y 轴交于点C ,与抛物线的对称轴交于点F .(1)求m 的值及该抛物线对应的解析式;(2)P (x ,y )是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P 的坐标;(3)点Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M 的运动时间为t 秒,是否能使以Q 、A 、E 、M 四点为顶点的四边形是菱形.若能,请直接写出点M 的运动时间t 的值;若不能,请说明理由. 22.(8分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|23.(8分)我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?24.(10分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y =x 2﹣2x 的“孪生抛物线”的表达式;(2)若抛物线y =x 2﹣2x+c 的顶点为D ,与y 轴交于点C ,其“孪生抛物线”与y 轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y =x 2﹣2x ﹣3与y 轴交于点C ,与x 轴正半轴的交点为A ,那么是否在其“孪生抛物线”上存在点P ,在y 轴上存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.25.(10分)关于x 的一元二次方程230x m x m -++=有两个实数根,则m 的取值范围是( ) A .m≤1B .m <1C .﹣3≤m≤1D .﹣3<m <126.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E 表示)和3位女生(分别用F,G ,H 表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.27.(12分)如图,抛物线y=ax 2+2x+c 与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形为直角三角形?若存在,试求出点Q 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B时,用5∴5Rt△DBE中,1=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.2.A【解析】【分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.3.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.4.C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.5.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A=,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.6.D【解析】【分析】利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.7.D【解析】【分析】当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.8.A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.9.C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.10.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV -S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴ , ∵点E 是AD 的中点, ∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE V −S EBF 扇形 =1×2−123-24π故选B. 【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式 11.D 【解析】 【分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可. 【详解】 甲的速度=4206=70米/分,故A 正确,不符合题意; 设乙的速度为x 米/分.则有,660+24x-70×24=420, 解得x=60,故B 正确,本选项不符合题意, 70×30=2100,故选项C 正确,不符合题意, 24×60=1440米,乙距离景点1440米,故D 错误, 故选D . 【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题. 12.A 【解析】【分析】根据一次函数性质:y kx b =+中,当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小.由-2<0得,当x 12时,y 1>y 2.【详解】因为,点A(1,a)和点B(4,b)在直线y =-2x +m 上,-2<0, 所以,y 随x 的增大而减小. 因为,1<4, 所以,a>b. 故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数y kx b =+中y 与x 的大小关系,关键看k 的符号.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1.【解析】【分析】先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.【详解】对称轴为1x =∵a =﹣1<0,∴当x >1时,y 随x 的增大而减小,∴当x =2时,二次函数y =﹣(x ﹣1)2+2的最大值为1,故答案为:1.【点睛】本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.14.﹣9<x≤﹣1【解析】【分析】分别求出两个不等式的解集,再求其公共解集.【详解】2672x x -≥⎧⎨+>-⎩①②, 解不等式①,得:x≤-1,解不等式②,得:x >-9,所以不等式组的解集为:-9<x≤-1,故答案为:-9<x≤-1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.11≤x <1【解析】【分析】根据对于实数x 我们规定[x]不大于x 最大整数,可得答案.【详解】由[43x +]=5,得:453463x x +⎧≥⎪⎪⎨+⎪<⎪⎩ , 解得11≤x <1,故答案是:11≤x <1.【点睛】考查了解一元一次不等式组,利用[x]不大于x 最大整数得出不等式组是解题关键.16.1【解析】【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100, 则中位数为:90802+=1. 故答案为:1.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.1.【解析】【分析】根据方程的系数结合根的判别式即可得出△=m 2﹣4m=0,将其代入2m 2﹣8m+1中即可得出结论.【详解】∵关于x 的方程x 2﹣mx+m=0有两个相等实数根,∴△=(﹣m )2﹣4m=m 2﹣4m=0,∴2m 2﹣8m+1=2(m 2﹣4m )+1=1.故答案为1.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键. 18.SSS .【解析】【分析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①△D′BC 是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解析】【分析】(1)①如图1中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,由△ABD ≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B ≌△AD′C ,得∠AD′B =∠AD′C ,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE ,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴3∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=73;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3∴3故答案为:373【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.(1)8242;(2)1.【解析】【分析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=6212⎛-- ⎝⎭8=-8=-(2)原式221123=+-⋅⎝⎭ 11=-0=.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.21.(1)214y x x =-;(2)(1)( ,1);(3)存在,14t =,24t =36t =,4132t = 【解析】试题分析:(1)将x=-2代入y=-2x-1即可求得点B 的坐标,根据抛物线过点A 、O 、B 即可求出抛物线的方程.(2)根据题意,可知△ADP 和△ADC 的高相等,即点P 纵坐标的绝对值为1,所以点P 的纵坐标为1± ,分别代入214y x x =-中求解,即可得到所有符合题意的点P 的坐标. (3)由抛物线的解析式为214y x x =- ,得顶点E (2,﹣1),对称轴为x=2; 点F 是直线y=﹣2x ﹣1与对称轴x=2的交点,求出F (2,﹣1),DF=1.又由A (4,0),根据勾股定理得AE = .然后分4种情况求解.点睛:(1)首先求出点B 的坐标和m 的值,然后利用待定系数法求出抛物线的解析式;(2)△ADP 与△ADC 有共同的底边AD ,因为面积相等,所以AD 边上的高相等,即为1;从而得到点P 的纵坐标为1,再利用抛物线的解析式求出点P 的纵坐标;(3)如解答图所示,在点M 的运动过程中,依次出现四个菱形,注意不要漏解.针对每一个菱形,分别进行计算,求出线段MF 的长度,从而得到运动时间t 的值.22.1【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×+1+=1﹣+1+=1.【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.23.1.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二进制中的数101011等于十进制中的1.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.24.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,∴点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.25.C【解析】【分析】利用二次根式有意义的条件和判别式的意义得到2 30 (3)40mm m+≥⎧⎪⎨+-≥⎪⎩V=,然后解不等式组即可.【详解】根据题意得230(3)40mm m+≥⎧⎪⎨+-≥⎪⎩V=,解得-3≤m≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.26.(1)7、30%;(2)补图见解析;(3)105人;(3)12【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.。

十堰市九年级下学期数学5月月考试卷

十堰市九年级下学期数学5月月考试卷

十堰市九年级下学期数学5月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)所有大于﹣4.5且不小于2的整数的个数为()A . 5B . 6C . 7D . 82. (2分) (2019八下·兰西期末) 下列函数中,自变量的取值范围是的是()A .B .C .D .3. (2分)(2020·通辽) 下列事件中是不可能事件的是()A . 守株待兔B . 瓮中捉鳖C . 水中捞月D . 百步穿杨4. (2分) (2019七上·顺德期末) 下列图形不是轴对称图形的是()A .B .C .D .5. (2分)(2018·新乡模拟) 用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A .B .C .D .6. (2分) (2019七下·郑州期中) 长方形的周长为 18,其中一边长为 x (x>0). 面积为 y,则 y 与 x 的关系式为()A . y=(18−x)xB . y=x2C . y=(9−x)2D . y=(9−x)x7. (2分)甲、乙、丙三人参加数学、物理、英语三项竞赛,每人限报一项,每项限报一人,则甲报英语、乙报数学、丙报物理的概率是()A .B .C .D .8. (2分)(2019·温州模拟) 如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y= (k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C,D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A . 增大B . 减小C . 先减小后增大D . 先增大后减小9. (2分)已知圆锥侧面展开图的扇形半径为2cm,面积是cm2 ,则扇形的弧长和圆心角的度数分别为A .B .C .D .10. (2分)(2017·深圳模拟) 观察如图所示前三个图形及数的规律,则第四个□的数是()A .B . 3C .D .二、填空题 (共6题;共6分)11. (1分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为________12. (1分)(2020·宁波模拟) 当前,新冠状性肺炎疫情已波及全世界200多个国家和地区,截止2020年5月12日14:00,全球确诊人数累计已达4175216人。

湖北省十堰市2019年中考数学真题试题(含解析)

湖北省十堰市2019年中考数学真题试题(含解析)

湖北省十堰市2019年中考数学真题试题一、选择题:1.气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【答案】A.【解析】试题分析:由题意,得﹣2+3=+(3﹣2)=1,故选:A.考点:有理数的加法2.如图的几何体,其左视图是()A.B.C.D.【答案】B.【解析】试题分析:根据从左边看得到的图象是左视图, 从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.考点:简单组合体的三视图3.如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40° B.50° C.60° D.70°【答案】B.【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选:B .考点:平行线的性质4.下列运算正确的是( )A =B . =C 2÷=D .3=【答案】C.考点:二次根式的混合运算5.某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,8【答案】B.【解析】试题分析:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B .考点:中位数和众数6.下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【答案】C.考点:命题与定理7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.90606x x=-B.90606x x=+C.90606x x=-D.90606x x=+【答案】A.【解析】试题分析:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,90606x x=-.故选A.考点:分式方程8.如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【答案】D.【解析】考点:最短路径问题9.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【答案】D.【解析】试题分析:由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得.∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a 7=10、a 10=12,则a 4=10+2=12、a 6=4+12=16、a 2=12+6=18、a 3=6+16=22、a 1=18+22=40,符合题意; 综上,a 1的最小值为40,故选:D .考点:数字的变化类10.如图,直线﹣6分别交x 轴,y 轴于A ,B ,M 是反比例函数y=k x(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,k 的值为( )A .﹣3B .﹣4C .﹣5D .﹣6【答案】A.【解析】试题分析:过点D 作DE ⊥y 轴于点E ,过点C 作CF ⊥x 轴于点F ,令x=0代入x ﹣6,∴y=﹣6,∴B (0,﹣6),∴OB=6,令y=0代入x ﹣6,∴,0),∴,∴勾股定理可知:sin ∠OAB=2OB AB =,cos ∠OAB=12OA AB =,设M (x ,y ),∴CF=﹣y ,ED=x ,∴sin ∠OAB=CF AC ,∴AC=y ,∵cos ∠OAB=cos ∠EDB=ED BD ,∴BD=2x ,∵,∴﹣3 ∴xy=﹣3,∵M 在反比例函数的图象上,∴k=xy=﹣3,故选(A )考点:反比例函数与一次函数的综合.二、填空题11.某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.【答案】2.5×10﹣6.考点:科学记数法12.若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值13.如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= .【答案】20°.【解析】试题分析:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=12BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.考点:菱形的性质、直角三角形斜边上中线的性质.14.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,,则BC的长为.【答案】8.【解析】试题分析:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴=.∵AC=6,∴=.故答案为:8.考点:圆周角定理15.如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.【答案】1<x<52 .【解析】试题分析:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴4263 BA BOAD OC===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴23OM BAMN AD==,∵A(1,k),∴OM=1,∴MN=32,∴ON=52,∴D点的横坐标是52,∴1<x<52时,kx﹣6<ax+4<kx,故答案为:1<x<52.考点:一次函数,一元一次不等式.16.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43 NF;③38MNMG=;④S四边形CGNF=12S四边形ANGD.其中正确的结论的序号是.【答案】①③.【解析】试题分析:①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得BN NF的值,即可解题;③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD ,即可解题.①∵四边形ABCD 为正方形,∴AB=BC=CD ,∵BE=EF=FC ,CG=2GD ,∴BF=CG ,∵在△ABF 和△BCG 中,90AB BC ABF BCG BF CG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△BCG ,∴∠BAF=∠CBG ,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;①正确;②∵在△BNF 和△BCG 中,90CBG NBF BCG BNF ∠=∠⎧⎨∠=∠=︒⎩, ∴△BNF ∽△BCG ,∴32BN BC NF CG ==,∴BN=23NF ;②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,=∵S △ABF =12AFBN=12ABBF ,∴,NF=23∴AN=AF ﹣NF=13,∵E 是BF 中点, ∴EH 是△BFN 的中位线,∴BN ∥EH ,∴,AN MN AH EH =,解得:∴BM=BN ﹣MN=11,MG=BG ﹣BM=1138BM MG =,③正确; ④连接AG ,FG ,根据③中结论,则NG=BG ﹣S 四边形CGNF =S △CFG +S △GNF =12CGCF+12NFNG=1+14271313=, S 四边形ANGD =S △ANG +S △ADG =12ANGN+12ADDG=2739313226+=,∴S 四边形CGNF ≠12S 四边形ANGD ,④错误; 故答案为 ①③.考点:全等三角形的判定和性质,相似三角形的判定和性质.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:|﹣1)2019. 【答案】1.【解析】试题分析:原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果. 试题解析:原式=2﹣2+1=1.考点:实数的运算18.化简:(21a ++221a a +-)÷1a a - 【答案】31a a + . 【解析】试题分析:根据分式的加法和除法可以解答本题 试题解析:(21a ++221a a +-)÷1a a - =2(1)21(1)(1)a a a a a a-++-⋅+-=222(1)a aa a-+++=33(1)1a aa a a=++.考点:分式的混合运算19.如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【答案】渔船继续向正东方向行驶,没有触礁的危险.理由见解析.【解析】试题分析:过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.试题解析:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=12AD=6海里,由勾股定理得:=8,即渔船继续向正东方向行驶,没有触礁的危险.考点:勾股定理的应用,解直角三角形.20.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【答案】(1)抽样调查;(2)全校共征集作品180件; (3)恰好抽中一男一女的概率为25.【解析】试题分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.试题解析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件,平均每个班244=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:82 205.考点:条形统计图, 扇形统计图,概率公式.21.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【答案】(1)实数k的取值范围为:k≤54;(2)实数k的值为﹣2.【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1x2=16+x1x2中,解之即可得出k的值.试题解析:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤54,∴实数k的取值范围为k≤54.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.22.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【答案】(1)y与x中间的函数关系书和自变量x的取值范围为:1≤x≤12,且x为整数;(2)超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【解析】考点:二次函数的应用23.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.【答案】(1)证明见解析;(2)AEAF=1.【解析】试题分析:(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE ∽△BDA,根据相似三角形对应边比例相等的性质即可解题.试题解析:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,CD CB OD OB OC OC=⎧⎪=⎨⎪=⎩,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,ADF BDCDAB CBD∠=∠⎧⎨∠=∠⎩,∴△ADF∽△BDC,∴AD AFBD BC=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,90ADE BDAE DAB∠=∠=︒⎧⎨∠=∠⎩,∴△ADE∽△BDA,∴AE ADAB BD=,∴AE AFAB BC=,即AEAF=ABBC,∵AB=BC,∴AEAF=1.考点:相似三角形的判定和性质,全等三角形的判定和性质.24.已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.【答案】(1). ①AC=OE, ②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD²;(2).(1)中的结论②不成立,理由见解析;(3)线段CA、CO、CD满足的等量关系式OC﹣CD.【解析】试题分析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣CD.(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣CD,故答案为:OC﹣CD.考点:几何变换的综合题25.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=10 3S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m 的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E (﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG 上存在点P ,使∠OBP=∠FPG. 【解析】试题解析:(1)当m=﹣3时,B (﹣3,0),把A (1,0),B (﹣3,0)代入到抛物线y=x 2+bx+c 中得:10930b c b c ++=⎧⎨-+=⎩,解得23b c =⎧⎨=-⎩,∴抛物线的解析式为:y=x 2+2x ﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1; (2)如图1,设E (m ,m 2+2m ﹣3), 由题意得:AD=1+1=2,OC=3, S △ACE =103S △ACD =103×12ADOC=53×2×3=10, 设直线AE 的解析式为:y=kx+b ,把A (1,0)和E (m ,m 2+2m ﹣3)代入得,2023k b mk b m m +=⎧⎨+=+-⎩ ,解得:33k m b m =+⎧⎨=--⎩, ∴直线AE 的解析式为:y=(m+3)x ﹣m ﹣3,∴F (0,﹣m ﹣3), ∵C (0,﹣3),∴FC=﹣m ﹣3+3=﹣m ,∴S △ACE =12FC (1﹣m )=10, ﹣m (1﹣m )=20,m 2﹣m ﹣20=0, (m+4)(m ﹣5)=0, m 1=﹣4,m 2=5(舍), ∴E (﹣4,5);(3)如图2,当B 在原点的左侧时,连接BF ,以BF 为直径作圆E ,当⊙E 与y 轴相切时,设切点为P , ∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG , 连接EP ,则EP ⊥OG ,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=FG OP PG OB=,∴122m=-,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.。

2019年湖北省十堰市2九年级上期末数学试卷(有答案)

2019年湖北省十堰市2九年级上期末数学试卷(有答案)

十堰市上学期期末调研考试九年级数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交.一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.剪纸是非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.2.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷3.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个黑球B .摸出的是3个白球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 4.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,,∠AOB =60°,则∠BDC 的度数是( ) A .60°B .45°C .35°D .30°5.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B的坐标为(2,1),则点B 的对应点B 1的坐标为( ) A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)6.若关于的一元二次方程01)1(222=-+-+k x k x 有实数根,则的取值范围是( )A .≥1B .>1C .<1D .≤17.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,求直角三角形能容纳的圆形(内切圆)直径” 则该圆的直径为( ) A .3步B .5步C .6步D .8步8.某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小捷从中任选一道试题作答,他选中创新能力试题的概率是( ) A .310 B .15 C .25 D .12 9.反比例函数y =-x3的图象上有P 1(1,-2),P 2(2,-3)两点,则1与2的大小关系是( )A .1>2B .1=2C .1<2D .不确定10.二次函数y =a 2+b +c (a ≠0)和正比例函数y =32的图象如图所示,则方程a 2+(b -32)+c =0(a ≠0)的两根之和( ) A .小于0B .等于0C .大于0D .不能确定二、填空题(每题3分,共18分.请直接将答案填写在答题卡中,不写过程) 11.设α,β是一元二次方程2+2-1=0的两个根,则αβ的值是 . 12.若二次函数y =2+m 的对称轴是=3,则关于的方程2+m =7的解为 . 13.如图,在平面直角坐标系中,⊙M 与轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 的坐标为 .14.如图,将线段AB 绕点O 顺时针旋转90°得到线段B A '',那么A (-2,5)的对应点A '的坐标是 .15.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是 . 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =x6在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为 .三、解答题:(本题有9个小题,共72分) 17.(本题8分)解方程:(1)22254)()(x x -=-; (2)3322=+x x .18.(本题5分)如图,在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,求阴影部分的面积.19.(本题7分)某新闻网讯:2016年2月21日,某市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车. (1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.20.(本题7分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD 顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B ;…设游戏者从圈A 起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A 的概率P 1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A 的概率P 2,并指出她与嘉嘉落回到圈A 的可能性一样吗?21.(本题7分)如图,一次函数y =+m 的图象与反比例函数y =xk的图象交于A ,B 两点,且与轴交于点C ,点A 的坐标为(2,1). (1)求m 及的值;(2)求点C 的坐标,并结合图象写出不等式组0<+m ≤xk 的解集.22.(本题8分)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于(1)求证:EB =EC ;(2)当△ABC 满足什么条件时,四边形ODEC 是正方形?证明你的结论.23.(本题8分)科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标表示科技馆从8:30开门后经过的时间(分钟),纵坐标y 表示到达科技馆的总人数.图中曲线对应的函数解析式为y =()⎩⎨⎧≤+-≤≤9030,90300,22x n x b x ax <,10:00之后的游客较少可忽略不计. (1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人, 后的人在馆外休息区等待.从10:30开始到12:00馆内陆续有 人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆 外等待的游客可全部进入.请问馆外游客最多等待多少分钟?24.(本题10分)(1)如图1,在Rt △ABC 中,∠ABC =90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C ,连接C 1B 1,则C 1B 1与BC 的位置关系为 ; (2)如图2,当△ABC是锐角三角形,∠ABC =α(α≠60°)时,将△ABC 按照(1)中的方式旋转α,连接C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B 1B ,若C 1B 1=52BC ,△C 1BB 1的面积为4,则△B 1BC 的面积为 .25.(本题12分)如图,抛物线y=a2+b过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥轴,交轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P 的坐标;(4)若点M在直线BH上运动,点N在轴上运动,当CM=MN,且∠CMN=90°时,求此时△CMN的面积.十堰市上学期期末调研考试九年级数学试题参考答案及评分说明一、选择题1.C2.D3.B4.D5. D6.D7.C8. B9.A 10. C 二、填空题11.-1 12.-1,7 13.(8,10) 14.(5,2) 15.2116.3 三、解答题 17.(1)3,121==x x ………………………………………………4分(2)4333±-=x ………………………………………………4分 18.解:∵在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是的中点,∴∠COD =45°,∴OC =22)22()22(+=4,………………………………………2分 ∴S 阴影=S 扇形BOC ﹣S △ODC =×π×42﹣×(2)2=2π﹣4.………………………………………………………………5分 19.解:(1)设每个站点造价万元,自行车单价为y 万元.根据题意可得:⎩⎨⎧=+=+5.340220512011272040y x y x ……………………………………………………2分 解得:⎩⎨⎧==1.01y x ………………………………………………………………3分答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a .根据题意可得:720(1+a )2=2205…………………………………………5分 2441即:a 1=43=75%,a 2=1233-(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.……………………………………………………………………………7分20.解:(1)掷一次骰子,有4种等可能结果,只有掷到4时,才会回到A 圈.P 1=41………………………………………………………………2分 (2)列表如下,,2),(3,1),(4,4)时,才可落回A 圈,共4种,∴411642==P .………………………………………………………………6分 ∴可能性一样.…………………………………………………………………7分 21.解:(1)由题意可得:点A (2,1)在函数y =+m 的图象上,∴2+m =1即m =﹣1,…………………………………………………………1分 ∵A (2,1)在反比例函数y =xk的图象上,∴ 12=k , ∴=2;…………………………………………………………………………3分 (2)∵一次函数解析式为y =﹣1,令y =0,得=1,∴点C 的坐标是(1,0),…………………………………………………4分 由图象可知不等式组0<+m ≤xk的解集为1<≤2.………………………7分 22.(1)证明:连接CD ,∵AC 是直径,∠ACB =90°, ∴BC 是⊙O 的切线,∠ADC =90°.∵DE 是⊙O 的切线,∴DE =CE (切线长定理).………………………2分 ∴∠DCE =∠CDE ,又∵∠DCE +∠EBD =∠CDE +∠EDB =90°, ∴∠EBD =∠EDB .∴DE =BE ,∴CE =BE .…………………………………………………………………4分 (2)解:当△ABC 是等腰直角三角形时,四边形ODEC 是正方形. 证明如下:△ABC 是等腰直角三角形.则∠B =45°, ∴∠DCE =∠CDE =45°,则∠DEB =90°,又∵OC =OD ,∠ACB =90°,∴∠OCD =∠ODC =45°, ∴∠ODE=90°,∴四边形ODEC 是矩形,………………………………………………7分 ∵EC =ED ,∴四边形ODEC 是正方形. …………………………………………8分 23.解(1)由图象可知,300=a ×302,解得a =,n =700,b ×(30﹣90)2+700=300,解得b =﹣91, ∴y =⎪⎪⎩⎪⎪⎨⎧≤≤+--≤≤)9030(700)90(91)300(3122x x x x ()()9030300≤≤≤x x <……………………………………3分(2)由题意﹣(﹣90)2+700=684,解得=78, ………………………………………………………5分 ∴4624684-=15,∴15+30+(90﹣78)=57分钟 所以,馆外游客最多等待57分钟. ………………………………8分 24.解:(1)平行. …………………………………………………………2分 (2)C 1B 1∥BC ;证明:过C 1作C 1E ∥B 1C ,交BC 于E ,则∠C 1EB =∠B 1CB , 由旋转的性质知,BC 1=BC =B 1C ,∠C 1BC =∠B 1CB ,∴∠C 1BC =∠C 1EB , ∴C 1B =C 1E , ∴C 1E =B 1C ,∴四边形C 1ECB 1是平行四边形,∴C 1B 1∥BC ; ………………………………………………………8分 (3)答案为:10.…………………………………………………………10分25. 解:(1)把点A (4,0),B (1,3)代入抛物线y =a 2+b 中,得⎩⎨⎧+=+=b a b a 34160 解得:⎩⎨⎧=-=41b a ,∴抛物线表达式为:y =﹣2+4;………………………………………………2分 (2)点C 的坐标为(3,3), ………………………………………………3分 又∵点B 的坐标为(1,3), ∴BC =2,∴S △ABC =×2×3=3;……………………………………………………………5分 (3)过P 点作PD ⊥BH 交BH 于点D ,设点P (m ,﹣m 2+4m ),根据题意,得:BH =AH =3,HD =m 2﹣4m ,PD =m ﹣1,∴S △ABP =S △ABH +S 四边形HAPD ﹣S △BPD , 6=21×3×3+21(3+m ﹣1)(m 2﹣4m )﹣21(m ﹣1)(3+m 2﹣4m ), ∴3m 2﹣15m =0, m 1=0(舍去),m 2=5,∴点P 坐标为(5,﹣5).………………………………………………………………8分 (4)当CM =MN ,且∠CMN =90°时,分情况讨论:①当点M 在轴上方时,如图2,CM =MN ,∠CMN =90°, 则△CBM ≌△MHN ,∴BC =MH =2,BM =HN =3﹣2=1, ∴M (1,2),N (2,0),由勾股定理得:MC =2212+=5,∴S △CMN =21×5×5=25;……………………10分 ②当点M 在轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴EM =CD =5,MD =ME =2,由勾股定理得:CM =2252 =29,∴S △CMN =21×29×29=229; 综上所述:△CMN 的面积为:25或229.…………12分说明:以上各题若有其他解法,请参照评分说明给分.。

湖北省十堰市2019年中考数学真题试题(含解析)

湖北省十堰市2019年中考数学真题试题(含解析)

湖北省十堰市2019年中考数学真题试题一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。

1.(3.00分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)22.(3.00分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°3.(3.00分)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.4.(3.00分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2 D.6y2÷2y=3y5.(3.00分)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,246.(3.00分)菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形7.(3.00分)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=8.(3.00分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.9.(3.00分)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.610.(3.00分)如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3 B.1:2C.2:7 D.3:10二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.12.(3.00分)函数的自变量x的取值范围是.13.(3.00分)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为.14.(3.00分)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.15.(3.00分)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.16.(3.00分)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC 上的动点,则DA+DE的最小值为.三、解答题(本题有9个小题,共72分)17.(5.00分)计算:|﹣|﹣2﹣1+18.(6.00分)化简:﹣÷19.(7.00分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).20.(9.00分)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.21.(7.00分)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.22.(8.00分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?23.(8.00分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若tanC=2,求的值.24.(10.00分)已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.25.(12.00分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。

十堰市九年级(下)月考数学试卷(5月份)含答案

十堰市九年级(下)月考数学试卷(5月份)含答案

月考试卷一、选择题(本大题共10小题,共30.0分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A. 30°B. 35°C. 40°D. 50°3.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是().A. B. C. D.4.下列运算中,结果是a6的是()A. a2•a3B. a12÷a2C. (a3)3D. (-a)65.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数和中位数分别是()和和和和6.下列命题中的真命题是()A. 三个角相等的四边形是矩形B. 对角线互相垂直且相等的四边形是正方形C. 顺次连接矩形四边中点得到的四边形是菱形D. 正五边形既是轴对称图形又是中心对称图形7.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A. -=10B. =10+C. =+10D. -=108.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A. 10B. 8C. 5D. 39.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是()A. 50B. 51C. 53D. 5510.如图,矩形OABC的顶点A(0,4),反比例函数y=的图象与边AC交于点E,与边BC交于点F,直线EF分别与y轴和x轴相交于点D和C.若点C关于直线EF的对称点恰好在x轴上,则矩形OABC的面积为()A. 24B. 28C. 32D. 36二、填空题(本大题共6小题,共18.0分)11.因式分解:xy2-4x=______.12.一个多边形的每个外角都等于72°,则这个多边形的边数为______.13.我市“创文工作”稳步推进为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中的信息,则扇形统计图中“C”所对扇形的圆心角的度数为______.14.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,则满足[]=5的x的最大正整数的值为______.15.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)______.16.如图,矩形ABCD中,AB=6,BC=8,P是边AD上一动点,将△ABP沿BP折叠后得△BPM,当线段DM的长最短时,AP=______.三、计算题(本大题共1小题,共7.0分)17.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).四、解答题(本大题共8小题,共65.0分)18.计算:(π-3)0+|2-3|-()-1+19.化简:(x-)÷.20.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为______.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.21.已知关于x的方程x2-(2m-1)x+m2+1=0有两个不相等实数根x1,x2(1)求实数m的取值范围;(2)若x12+x22=x1x2+3时,求实数m的值.22.如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.23.某水果超市经销一种进价为18元/kg的水果,根据以前的销售经验,该种水果的最佳销售期为20天,销售人员整理出这种水果的销售单价y(元/kg)与第x天(1≤x≤20)的函数图象如图所示,而第x天(1≤x≤20)的销售量m(kg)是x的一次函数,满足下表:的之间的函数关系式(2)求在销售的第几天时,当天的利润最大,最大利润是多少?(3)请求出试销的20天中当天的销售利润不低于1680元的天数.24.如图,E是正方形ABCD边BC所在直线上一点,连接AE,将线段AE绕点E顺时针旋转90°得线段EF,连接CF.(1)如图1,当点E在线段BC上时,∠DCF=______(2)如图2,当点E在线段BC延长线上时,请补全图形,并求出∠DCF的度数.(3)若正方形边长为4,CE=2,直线EF交CD于M,求DM的长.25.已知抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B两点,与y轴交于点C,且过点P(5,12).(1)求抛物线的解析式.(2)如图,点Q为线段CP上一动点,过点Q作QF⊥x轴于点F,交抛物线于点D,连接CD,PD,若S△QDC:S△QDP=2:3,求直线PD的解析式.(3)过点B的直线交抛物线于M,是否存在点M使∠ABM=∠PCO,若存在,求出点M的坐标.若不存在,说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则-80表示支出80元.故选C.2.【答案】C【解析】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选:C.首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.本题考查了平行线的性质和三角形的外角性质,关键是求出∠3的度数,此题难度不大.3.【答案】D【解析】【分析】此题考查了简单几何体的三视图,左视图是从物体左边看的视图,观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是:故选D.4.【答案】D【解析】解:A、a2•a3=a5,故错误;B、a12÷a2=a10,故错误;C、(a3)3=a9,故错误;D、(-a)6=a6,正确;故选:D.根据同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,即可解答.本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,解决本题的关键是熟记相关法则.5.【答案】D【解析】解:跳高成绩为1.65m的人数最多,故跳高成绩的众数为1.65;共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;故选D.根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候注意数据的奇偶性.6.【答案】C【解析】解:A、根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B、根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C、顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D、正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.7.【答案】B【解析】解:设小朱速度是x米/分,爸爸的速度为(x+100)米/分,根据题意得,=10+故选:B.设小朱速度是x米/分,根据小朱行的时间=小朱先出发的时间+爸爸行的时间列出方程.本题主要考查了由实际问题抽象出分式方程,解题的关键是正确的找出等量关系列出分式方程.8.【答案】A【解析】【分析】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【解答】解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选:A.9.【答案】B【解析】解:∵5-1=4,12-5=7,22-12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故选:B.计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.10.【答案】C【解析】解:∵矩形OABC的顶点A(0,4),反比例函数y=的图象与边AC交于点E,∴E的纵坐标为4,代入y=得4=,则x=3,∴E(3,4),设点C关于直线EF对称点N落在x轴上,则NF=CF,EN=CE,作EM⊥x轴于点M,则∠MEN=∠BNF=α,设点C的坐标为(a,4),则点F(a,),则EN=EC=a-3,EM=4,FN=4-,FB=,cos∠MEN===cosα,sin∠BNF===sinα,则()2+()2=1,解得:a=8(不合题意值已舍去);故矩形OABC的面积=4a=32,故选:C.作EM⊥x轴于点M,则∠MEN=∠BNF=α,cos∠MEN===cosα,sin∠BNF===sinα,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.11.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.12.【答案】5【解析】解:多边形的边数是:360÷72=5.故答案为:5.利用多边形的外角和360°,除以外角的度数,即可求得边数.本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.13.【答案】36°【解析】解:∵被调查的总人数为56÷70%=80(人),∴C选项人数为80-(56+12+4)=8(人),则扇形统计图中“C”所对扇形的圆心角的度数为360°×=36°,故答案为:36°.先由A选项人数及其所占百分比求出总人数,总人数减去A、B、D选项人数求出C的人数,继而用360°乘以C选项人数所占比例即可得.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.14.【答案】55【解析】解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<56,故x的最大正整数的值为:55.故答案为:55根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.此题主要考查了不等式组的解法,得出x的取值范围是解题关键.15.【答案】24-4π【解析】解:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴=.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故答案为:24-4π.连接AD,因为△ABC是等腰直角三角形,故∠ABD=45°,再由AB是圆的直径得出∠ADB=90°,故△ABD也是等腰直角三角形,所以=,S阴影=S△ABC-S△ABD-S弓形AD由此可得出结论.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出三角形及扇形是解答此题的关键.16.【答案】3【解析】解:如图,连接BD,∵AB=6,BC=8,∴BD=10,∵将△ABP沿BP折叠后得△BPM,∴AB=BM=6,AP=PM,∠A=∠PMB=90°,在△BMD中,MD≥BD-BM,∴当点M在BD上时,DM的长最短,∴DM=BD-BM=4,∵PD2=DM2+PM2,∴(8-AP)2=16+AP2,∴AP=3故答案为:3如图,连接BD,由勾股定理可求BD=10,由折叠的性质可得AB=BM=6,AP=PM,∠A=∠PMB=90°,当点M在BD上时,DM的长最短,由勾股定理可求AP的长.本题考查了翻折变换,矩形的性质,确定点M的位置是本题的关键.17.【答案】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.【解析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.命题立意:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.18.【答案】解:原式=1+3-2-3+2=1.【解析】本题涉及零指数幂、负指数幂、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19.【答案】解:原式=÷=•=x-2.【解析】先通分算括号里面的减法,再算除法,由此顺序约分计算即可.此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.【答案】【解析】解:(1)搅匀后从中任意摸出1个球,恰好是红球的概率为=,故答案为:.(2)画树状图为:共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为.(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21.【答案】解:(1)∵关于x的方程x2-(2m-1)x+m2+1=0有两个不相等实数根x1,x2,∴△=(2m-1)2-4(m2+1)=-4m-3>0,∴m<-.(2)∵x1+x2=2m-1,x1•x2=m2+1,∴x12+x22=x1x2+3,(x1+x2)2=3x1x2+3,(2m-1)2=3(m2+1)+3,m2-4m-5=0,解得:m=5或m=-1,∵m<-,∴m=-1.故实数m的值是-1.【解析】(1)由方程有两个不相等实数根结合根的判别式即可得出关于m的一元一次不等式,解不等式即可得出m的取值范围;(2)根据根与系数的关系找出x1+x2=2m-1、x1•x2=m2+1,结合x12+x22=x1x2+3即可得出关于m的一元二次方程,解方程即可得出m的值,结合(1)的结论即可得出m的值.本题考查了根与系数的关系以及根的判别式,根据方程解的情况结合根的判别式找出关于m的不等式是解题的关键.22.【答案】解:(1)连接OD,∵DE∥BO,∴∠1=∠4,∠2=∠3,∵OD=OE,∴∠3=∠4,∴∠1=∠2,在△DOB与△COB中,,∴△DOB≌△COB,∴∠OCB=∠ODB,∵BD切⊙O于点D,∴∠ODB=90°,∴∠OCB=90°,∴AC⊥BC,∴直线BC是⊙O的切线;(2)∵∠DEO=∠2,∴tan∠DEO=tan∠2=,设;OC=r,BC=r,由(1)证得△DOB≌△COB,∴BD=BC=r,由切割线定理得:AD2=AE•AC=2(2+2r),∴AD=2,∵DE∥BO,∴,∴,∴r=1,∴AO=3.【解析】(1)连接OD,由DE∥BO,得到∠1=∠4,∠2=∠3,通过△DOB≌△COB,得到∠OCB=∠ODB,问题得证;(2)根据三角函数tan∠DEO=tan∠2=,设;OC=r,BC=r,得到BD=BC=r,由切割线定理得到AD=2,再根据平行线分线段成比例得到比例式即可求得结果.本题考查了切线的判定和性质,全等三角形的判定与性质.切割线定理,平行线分线段成比例,掌握定理是解题的关键.23.【答案】解:(1)当1≤x≤7时,y=60;当8≤x≤20时,设y=kx+b,将(8,50)、(18,40)代入得,解得,∴y=-x+58;综上,y=;设m=ax+c,将(1,20)、(2,24)代入得,解得,则m=4x+16(0≤x≤20,且x为整数);(2)设当天的总利润为w,当1≤x≤7时,w=(60-18)(4x+16)=168x+672,则x=7时,w取得最大值,最大值为1848元;当8≤x≤20时,w=(-x+58-18)(4x+16)=-4x2+144x+640=-4(x-18)2+1936,∴当x=18时,w取得最大值,最大利润为1936元;综上,在销售的第18天时,当天的利润最大,最大利润是1936元;(3)当1≤x≤7时,168x+672≥1680,解得x≥6,∴此时满足条件的天数为第6、7这2天;当8≤x≤20时,-4(x-18)2+1936≥1680,解得x≤10或x≥24,则8≤x≤10,∴此时满足条件的天数为第8、9、10这3天;综上,试销的20天中当天的销售利润不低于1680元的有5天.【解析】(1)利用待定系数法求解可得;(2)设当天的总利润为w,分1≤x≤7和8≤x≤20两种情况,根据“总利润=每千克利润×日销售量”列出函数解析式,再依据一次函数和二次函数的性质分别求解可得;(3)在两种情况下,分别求出w≥1680时对应的x的范围,从而得出答案.本题主要考查二次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出函数解析式及二次函数的性质的运用.24.【答案】45°【解析】解:(1)在AB上取一点G,使AG=CE,连接EG,如图1所示:由旋转的性质得:AE=EF,∠AEF=90°,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°.∴AB-AG=BC-CE,∠EAB+∠AEB=90°,∴BG=BE.∴∠BGE=∠BEG=45°,∴∠AGE=135°.∵∠AEF=90°∴∠AEB+∠CEF=90°.∴∠GAE=∠CEF,在△AGE和△ECF中,,∴△AGE≌△ECF(SAS),∴∠AGE=∠ECF=135°,∴∠DCF=135°-90°=45°,故答案为:45°.(2)如图2所示:作FH⊥BC于H,则∠EHF=90°,由旋转的性质得:∠AEF=90°,AE=EF,∴∠AEB+∠FEH=90°,∵四边形ABCD是正方形,∴∠B=∠BCD=90°,AB=BC,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEH,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS),∴BE=FH,AB=EH,∵CH=EH+CE,BH=BC+CE,∴CH=BE=FH,∴△CFH是等腰直角三角形,∴∠FCH=45°,∵∠DCH=90°,∴∠DCF=90°-∠FCH=45°;(3)分两种情况:①点E在线段BC上时,如图3所示:作FH⊥BC于H,则∠EHF=90°,FH∥CD,由旋转的性质得:∠AEF=90°,AE=EF,∴∠AEB+∠FEH=90°,∵四边形ABCD是正方形,∴∠B=∠BCD=90°,CD=AB=BC=4,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEH,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS),∴BE=FH,AB=EH=4,∵CE=2,∴FH=BE=2,CH=EH-CE=2,∴CE=CH,∵FH∥CD,∴CM是△EFH的中位线,∴CM=FH=1,∴DM=CD-CM=3;②点E在线段BC延长线上时,设AE交CD于N,如图4所示:∵四边形ABCD是正方形,∴AD=CD=4,AD∥BC,∴△ADN∽△ECN,∴===2,∴DN=2CN,∴DN=CD=,∵∠AEF=90°,∴∠AEM=90°,∴∠M+∠CNE=∠DAN+∠AND=90°,∵∠AND=∠CNE,∴∠M=∠DAN,∵∠MCE=∠BCD=∠D=90°,∴△MCE∽△ADN,∴=,即=,解得:CM=,∴DM=CD+CM=4+=;综上所述,DM的长为3或.(1)在AB上取一点G,使AG=CE,连接EG,由旋转的性质得:AE=EF,∠AEF=90°,证明△AGE≌△ECF(SAS),得出∠AGE=∠ECF=135°,即可得出答案;(2)作FH⊥BC于H,则∠EHF=90°,由旋转的性质得:∠AEF=90°,AE=EF,证明△ABE≌△EHF(AAS),得出BE=FH,AB=EH,证出△CFH是等腰直角三角形,得出∠FCH=45°,即可得出答案;(3)分两种情况:①点E在线段BC上时,作FH⊥BC于H,则∠EHF=90°,FH∥CD,证明△ABE≌△EHF(AAS),得出BE=FH,AB=EH=4,证出CM是△EFH的中位线,由三角形中位线定理得出CM=FH=1,即可得出DM=CD-CM=3;②点E在线段BC延长线上时,设AE交CD于N,证明△ADN∽△ECN,得出==2,得出DN=2CN,DN=CD=,再证明△MCE∽△ADN,得出=,解得:CM=,即可得出答案.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx-3过点A(-1,0)、P(5,12)两点,∴,解得:,∴抛物线的解析式为y=x2-2x-3;(2)如图1,过点P作PN⊥y轴,QM⊥y轴,∵S△QDC:S△QDP=2:3,∴,∴,∵PN⊥y轴,QM⊥y轴,∴QM∥PN,∴△CQM∽△CPN,∴,∵PN=5,∴QM=2,∵QF⊥x轴于点F,交抛物线于点D,∴D点的橫坐标为2,把x=2代入y=x2-2x-3=4-4-3=-3,∴D(2,-3),设直线PD的解析式为y=kx+b,∴,解得:,∴直线PD的解析式为y=5x-13;(3)如图2,过点P作PN⊥y轴,∵P(5,12),C(0,-3),∴CN=OC+ON=12+3=15,PN=5,∴,∵∠ABM=∠PCO,∴,如图2,若点M在x轴上方,∵OB=3,∴在y轴上取E(0,1),tan∠OBE=,设直线BE的解析式为y=mx+n,∴,解得:m=-,∴直线BE的解析式为y=-,∴,解得:x1=3,,∴M(-),如图3,当点M在x轴下方,同理取点D(0,-1),求得直线BD的解析式为y=x-1,∴,解得:,∴M(-),综合以上可得M点的坐标为(-或.【解析】(1)根据抛物线y=ax2+bx-3过点A、P两点,利用待定系数法求出抛物线的解析式即可;(2)由条件可得CQ:QP=2:3,过点P作PN⊥y轴,QM⊥y轴,则可得QM∥PN,得出,由点P的坐标得出QM=2,把x=2代入抛物线解析式可得y=-3,则D(2,-3),根据待定系数法求出直线PD的解析式即可;(3)分两种情况,当点M在x轴上方或x轴下方,过点P作PN⊥y轴,则可得tan,若点M在x轴上方,在y轴上取E(0,1),求出直线BE的解析式为y=-,联立直线y=-和抛物线方程y=x2-2x-3,可求出点M的橫坐标,代入直线方程可求得点M的纵坐标;当点M在x轴下方,同理取点D(0,-1),求出直线BD的解析式,联立直线BD的解析式和抛物线解析式可求得点M的坐标.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式和一次函数解析式、相似三角形的判定与性质、锐角三角函数的定义、三角形的面积等知识,注意分类思想和方程思想的运用是解题的关键.。

2019年十堰市中考数学试题

2019年十堰市中考数学试题

2019年十堰市初中毕业生学业水平考试数学试题注意事项:1.本卷共4页,25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.选择题必须用2B铅笔在指定位置填涂;非选择题必须使用0.5毫米黑色墨水签字笔,按照题目在答题卡对应的答题区域内作答,超出答题区域和在试卷、草稿纸上答题无效.要求字体工整,笔迹清晰.4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并上交.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.下列实数中,是无理数的是()A.0 B.-3 C.13D.32.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°3.如图是一个L形状的物体,则它的俯视图是()A.B.C.D.4.下列计算正确的是()A.2a+a=2a2B.(-a)2=-a2 C.(a-1)2=a2-1 D.(ab)2=a2b2 5.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分81 77 ■80 82 80 ■则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2数学试题第 1 页(共 4 页)数学试题 第 2 页 (共 4 页)7.十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A .600060001520x x -=+B .600060001520x x -=+C .600060002015x x -=-D .600060002015x x -=- 8.如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,则AE =( )A .3B .32C .43D .239.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,…,若第n 个数为57,则n =( ) A .50 B .60 C .62 D .7110.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数k y x=的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .-20B .-16C .-12D .-8二、填空题(本题有6个小题,每小题3分,共18分)11.分解因式:22a a +=_________.12.如图,已知菱形ABCD 的对角线AC ,BD 交于点O ,E 为BC 的中点,若OE =3,则菱形的周长为_________.13.我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图: (第13题图)各等级学生人数扇形统计图各等级学生人数条形统计图0不及格及格28%优秀20%良好良好不及格优秀及格等级2850人数506030402010若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有____人.数学试题 第 3 页 (共 4 页)14.对于实数a ,b ,定义运算“◎”如下:a ◎b =()()22+a b a b --.若(m +2) ◎ (m -3)=24,则m =_________.15.如图,AB 为半圆的直径,且AB =6,将半圆绕点A 顺时针旋转60°,点B 旋转到点C的位置,则图中阴影部分的面积为_________.16.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A旋转,当∠ABF 最大时,ADE S ∆=_________.(第15题图) (第16题图)三、解答题(本题有9个小题,共72分)17.(5分)计算:()331+128--+.18.(6分)先化简,再求值:21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中31a =+. 19.(7分)如图,拦水坝的横断面为梯形ABCD ,AD =3m ,坝高AE =DF =6m ,坡角α=45°,β=30°,求BC 的长.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是______;(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.21.(7分)已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x .(1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.22.(8分)如图,△ABC 中,AB=AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且∠CDE =12∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AB=3BD ,CE =2,求⊙O 的半径.数学试题 第 4 页 (共 4 页) 23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg .设第x 天的销售价格为y (元/kg ),销售量为m (kg ).该超市根据以往的销售经验得出以下的销售规律:①当1≤x ≤30时,y =40;当31≤x ≤50时,y 与x 满足一次函数关系,且当x =36时,y =37;x =44时,y =33.②m 与x 的关系为m =5x +50.(1)当31≤x ≤50时,y 与x 的关系式为_________;(2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W (元)随x 的增大而增大,则需要在当天销售价格的基础上涨a 元/kg ,求a 的最小值.24.(10分)如图1,△ABC 中,CA =CB ,∠ACB =α,D 为△ABC 内一点,将△CAD 绕点C按逆时针方向旋转角α得到△CBE ,点A ,D 的对应点分别为点B ,E ,且A ,D ,E 三点在同一直线上.(1)填空:∠CDE =________(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C 作CF ⊥AE 于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)若α=90°,AC =52,且点G 满足∠AGB =90°,BG =6,直接写出点C 到AG 的距离.(图1) (图2) 25.(12分)已知抛物线()22y a x c =-+经过点A (-2,0)和C (0,94),与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点E ,F 分别在线段AB ,BD 上(E 点不与A ,B 重合),且∠DEF =∠A ,则△DEF 能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)若点P 在抛物线上,且PBD CBDS m S ∆∆=,试确定满足条件的点P 的个数.(备用图)。

湖北省十堰市2019-2020学年中考数学五月模拟试卷含解析

湖北省十堰市2019-2020学年中考数学五月模拟试卷含解析

湖北省十堰市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2432.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A .abc >0B .a+b+c >0C .a+c >bD .2a+b=03.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0) B .(2,0) C .(52,0) D .(3,0)4.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( ) A .13B .3C .-13D .-35.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 26.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A.30°B.40°C.50°D.60°7.在平面直角坐标系中,点,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.9.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC10.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米11.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A .B .C .D .12.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C .91D .109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.14.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x≥0)与y 2=23x (x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=______.15.已知a <0,那么2a 2a|可化简为_____.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________. 18.化简))201720182121的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零. 例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于1. (1)分别判断函数y =﹣x+1,y =1x-,y =x 2有没有反向值?如果有,直接写出其反向距离; (2)对于函数y =x 2﹣b 2x , ①若其反向距离为零,求b 的值;②若﹣1≤b≤3,求其反向距离n 的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.20.(6分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部 a 85 b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.21.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.22.(8分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该标牌上端C 处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).23.(8分)如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线y =2x+1交于点A (1,m ). (1)求k 、m 的值;(2)已知点P (n ,0)(n≥1),过点P 作平行于y 轴的直线,交直线y =2x+1于点B ,交函数()0ky x x=>的图象于点C.横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数; ②若()0ky x x=>的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.24.(10分)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足x 2-2x -2=0. 25.(10分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为 度; (3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人? 26.(12分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹) (2)判断直线BC 与O e 的位置关系,并说明理由.27.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m 的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处, ∴MN ⊥CD ,且CE=DE .∴CD=2CE . ∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB .∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=.∴CAB CMN MABN S S S 24?36?318?3∆∆=-==四边形C . 2.B 【解析】 【分析】根据二次函数的图象与性质逐一判断即可. 【详解】解:由图象可知抛物线开口向上, ∴0a >, ∵对称轴为1x =, ∴12ba-=, ∴20b a =-<,∴20a b +=,故D 正确,又∵抛物线与y 轴交于y 轴的负半轴, ∴0c <,∴0abc >,故A 正确; 当x=1时,0y <,即0a b c ++<,故B 错误; 当x=-1时,0y >即0a b c -+>, ∴a c b +>,故C 正确, 故答案为:B . 【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质. 3.C 【解析】 【分析】过点B 作BD ⊥x 轴于点D ,易证△ACO ≌△BCD (AAS ),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与A 的坐标即可得知平移的单位长度,从而求出C 的对应点. 【详解】解:过点B 作BD ⊥x 轴于点D , ∵∠ACO+∠BCD =90°, ∠OAC+∠ACO =90°, ∴∠OAC =∠BCD ,在△ACO 与△BCD 中,OAC BCDAOC BDC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△BCD (AAS ) ∴OC =BD ,OA =CD , ∵A (0,2),C (1,0) ∴OD =3,BD =1, ∴B (3,1),∴设反比例函数的解析式为y =kx, 将B (3,1)代入y =k x, ∴k =3, ∴y =3x, ∴把y =2代入y =3x, ∴x =32, 当顶点A 恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.4.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.5.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 6.C【解析】【分析】依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°−40°=50°,故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.B【解析】【分析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y轴上的点横坐标为0.8.B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.9.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA 是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.10.C【解析】此题考查的是解直角三角形如图:AC=4,AC⊥BC,∵梯子的倾斜角(梯子与地面的夹角)不能>60°.∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.11.A【解析】函数→一次函数的图像及性质12.C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180n n -︒g =144°, 解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.14.3【解析】【分析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC∴())220,,,A a C a 又∵CD 平行于y 轴∴)2,3D a 又∵DE ∥AC ∴()23,3E a a∴(3,DE a AB a ==∴DE AB=3【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.15.﹣3a【解析】根据二次根式的性质和绝对值的定义解答.【详解】∵a<0,∴2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【点睛】本题主要考查了根据二次根式的意义化简.当a≥0a;当a≤0=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.16.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.17.13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.18+1【解析】【分析】利用积的乘方得到原式=[﹣1)+1)]2017•),然后利用平方差公式计算.【详解】原式=[(2﹣1)(2+1)]2017•(2+1)=(2﹣1)2017•(2+1)=2+1.故答案为:2+1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m =m 2﹣3m ,得m =0或m =2,∴n =2﹣0=2,∴m >2或m≤﹣2;当x <m 时,﹣m =﹣m 2﹣3m ,解得,m =0或m =﹣2,∴n =0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m >2或m≤﹣2时,n =2,当﹣2<m≤2时,n =2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.20.(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】【分析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a 855++++==,众数b=85, 高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)222222++++=5S 初中(75-85)(80-85)(85-85)(85-85)(100-85)=70, ∵22S S 初中高中<,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.21.(1)100、35;(2)补图见解析;(3)800人;(4)56【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为105 126.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD 的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE=3tan30203oAE⋅=⨯=11.54,∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.23.(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.【解析】【分析】(1)将A点代入直线解析式可求m,再代入kyx=,可求k.(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x 取1,2,3.再代入可求整点,即求出整点个数.②根据图象可以直接判断2≤n<3.【详解】(1)∵点A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵点A(1,3)在函数kyx=的图象上,∴k =3.(2)①当n =3时,B 、C 两点的坐标为B (3,7)、C (3,1).∵整点在线段AB 上∴1≤x≤3且x 为整数∴x =1,2,3∴当x =1时,y =3,当x =2时,y =5,当x =3时,y =7,∴线段AB 上有(1,3)、(2,5)、(3,7)共3个整点.②由图象可得当2≤n <3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.24.12【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x 2-2x-2=0得x 2=2x+2=2(x+1),整体代入计算可得.详解:原式=()()()()2222112[]111x x x x x x x x x x ----÷+++ =()()()2121•121x x x x x x +-+- =21x x +, ∵x 2-2x-2=0,∴x 2=2x+2=2(x+1),则原式=()11212x x +=+. 点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.25.(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.【解析】【分析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:84560×360°=54°, 则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800×168840560⨯=(人), 则“独立思考”的学生约有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)见解析;(2)BC 与O e 相切,理由见解析.【解析】【分析】(1)作出AD 的垂直平分线,交AB 于点O ,进而利用AO 为半径求出即可;(2)利用半径相等结合角平分线的性质得出OD ∥AC ,进而求出OD ⊥BC ,进而得出答案.【详解】(1)①分别以A D 、为圆心,大于12AD 的长为半径作弧,两弧相交于点E 和F , ②作直线EF ,与AB 相交于点O ,③以O 为圆心,OA 为半径作圆,如图即为所作;(2)BC 与O e 相切,理由如下:连接OD ,,OA OD Q 为O e 半径,OA OD ∴=,AOD ∴V 是等腰三角形,OAD ODA ∠=∠∴,AD Q 平分BAC ∠,CAD OAD ∴∠=∠,CAD ODA ∴∠=∠,AC OD ∴P ,90C ∠=︒Q ,90ODB ∴∠=︒,OD BC ∴⊥,OD Q 为O e 半径,BC ∴与O e 相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.27.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h ;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.。

湖北省十堰市2019年中考数学试卷及答案解析(word版)

湖北省十堰市2019年中考数学试卷及答案解析(word版)

2019年湖北省十堰市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.的倒数是()A.2 B.﹣2 C.D.﹣2.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.1054.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a25.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:96.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140° B.130° C.120° D.110°7.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=08.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.9二、填空题.(本大题共6小题,每小题3分,共18分)11.武当山机场于2019年2月5日正式通航以来,截至5月底,旅客吞吐最近92000人次,92000用科学记数法表示为.12.计算:|﹣4|﹣()﹣2=.13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.14.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.15.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A 处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)16.已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是(只填写序号).三、解答题.(本大题共9小题,共72分)17.化简:.18.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?19.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.20.为了提高科技创新意识,我市某中学在“2019年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(2019•十堰)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足,求实数p的值.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.24.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=,PH=,由此发现,PO PH (填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.2019年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据乘积为的1两个数倒数,可得一个数的倒数.【解答】解:的倒数是2,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:A、圆柱主视图是矩形,俯视图是圆;B、圆锥主视图是三角形,俯视图是圆;C、正方体的主视图与俯视图都是正方形;D、三棱柱的主视图是矩形与俯视图都是三角形;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.105【分析】根据中位数的概念,找出正确选项.【解答】解:将数据按照从小到大的顺序排列为:90,90,95,105,110,则中位数为:95.故选B.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用同底数幂的乘除运算法则以及积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、2a3÷a=2a2,正确.故选:D.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算和幂的乘方运算等知识,正确应用相关运算法则是解题关键.5.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选D【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.6.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140° B.130° C.120° D.110°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠B=∠BCD,∠ECD=90°,进而得出答案.【解答】解:过点C作EC∥AB,由题意可得:AB∥EF∥EC,故∠B=∠BCD,∠ECD=90°,则∠BCD=40°+90°=130°.故选:B.【点评】此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.7.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0【考点】换元法解分式方程.【分析】直接利用已知将原式用y替换得出答案.【解答】解:∵设=y,∴﹣=3,可转化为:y﹣=3,即y﹣﹣3=0.故选:B.【点评】此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.8.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.二、填空题.(本大题共6小题,每小题3分,共18分)11.武当山机场于2019年2月5日正式通航以来,截至5月底,旅客吞吐最近92000人次,92000用科学记数法表示为9.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92000用科学记数法表示为:9.2×104.故答案为:9.2×104.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:|﹣4|﹣()﹣2=﹣2.【考点】实数的运算;负整数指数幂.【分析】直接利用立方根的性质以及绝对值的性质、负整数指数幂的性质分别化简求出答案.【解答】解:|﹣4|﹣()﹣2=|2﹣4|﹣4=2﹣4=﹣2.故答案为:﹣2.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分率为x,那么第一次降价后的售价是原来的(1﹣x),那么第二次降价后的售价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:设平均每次降价的百分率为x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.【解答】解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.15.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A 处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为(30+10)米.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10.∴河的宽度为(30+10)米.【点评】本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.16.已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是②(只填写序号).【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′=x2+x=(x2+x)=(x+)2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1,1,则x1•1==﹣,求出x1即可解决问题.【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′=x2+x=(x2+x)=(x+)2﹣,∵>0,∴函数y′有最小值﹣,∴x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1,1,∵x1•1==﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【点评】本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、解答题.(本大题共9小题,共72分)17.化简:.【考点】分式的加减法.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.18.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.20.为了提高科技创新意识,我市某中学在“2019年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(2019•十堰)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足,求实数p的值.【考点】根的判别式.【分析】(1)化成一般形式,求根的判别式,当△>0时,方程总有两个不相等的实数根;(2)根据根与系的关系求出两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程.【解答】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.【点评】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax2+bx+c=0(a≠0)的两实数根分别为x1,x2,则有,.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?【考点】一次函数的应用.【分析】(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【解答】解:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,∵a=﹣<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点评】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.23.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【考点】翻折变换(折叠问题).【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF 为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.24.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B ;(2)如图2,∠BDC 的平分线分别交AC ,BC 于点E ,F ;①求tan ∠CFE 的值;②若AC=3,BC=4,求CE 的长.【考点】切线的性质.【分析】(1)利用等角的余角相等即可证明.(2)①只要证明∠CEF=∠CFE 即可.②由△DCA ∽△DBC ,得===,设DC=3k ,DB=4k ,由CD 2=DA •DB ,得9k 2=(4k ﹣5)•4k ,由此求出DC ,DB ,再由△DCE ∽△DBF ,得=,设EC=CF=x ,列出方程即可解决问题. 【解答】(1)证明:如图1中,连接OC .∵OA=OC ,∴∠1=∠2,∵CD 是⊙O 切线,∴OC ⊥CD ,∴∠DCO=90°,∴∠3+∠2=90°,∵AB 是直径,∴∠1+∠B=90°,∴∠3=∠B .(2)解:①∵∠CEF=∠ECD+∠CDE ,∠CFE=∠B+∠FDB ,∵∠CDE=∠FDB ,∠ECD=∠B ,∴∠CEF=∠CFE ,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan ∠CFE=tan45°=1.②在RT △ABC 中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.【点评】本题考查切线的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,学会用方程的思想思考问题,属于中考常考题型.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=5,PH=5,由此发现,PO=PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①求出PO、PH即可解决问题.②结论:PO=PH.设点P坐标(m,﹣m2+1),利用两点之间距离公式求出PH、PO即可解决问题.(3)首先判断PH与BC,PO与AC是对应边,设点P(m,﹣m2+1),由=列出方程即可解决问题.【解答】(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是记住两点之间的距离公式,学会转化的思想,用方程去解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档