2019-2020学年山东省德州市乐陵市九年级(上)期末数学试卷
2019-2020学年山东省德州市德城区九年级上学期期末考试数学试卷及答案解析
第 1 页 共 22 页 2019-2020学年山东省德州市德城区九年级上学期期末考试数学试卷一、选择题:(每小题4分,共48分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .2.方程x 2﹣1=0的解是( )A .x 1=x 2=1B .x 1=1,x 2=﹣1C .x 1=x 2=﹣1D .x 1=1,x 2=03.掷两枚质地相同的硬币,正面都朝上的概率是( )A .1B .12C .14D .04.函数y =﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A .y =﹣2(x ﹣1)2+2B .y =﹣2(x ﹣1)2﹣2C .y =﹣2(x +1)2+2D .y =﹣2(x +1)2﹣2 5.已知反比例函数y =−6x ,下列结论中不正确的是( )A .函数图象经过点(﹣3,2)B .函数图象分别位于第二、四象限C .若x <﹣2,则0<y <3D .y 随x 的增大而增大6.二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x﹣3 ﹣2 ﹣1 0 1 y 3 m 7 n 7则当x =3时,y 的值是( )A .3B .mC .7D .n7.在平面直角坐标系中,把点P (﹣5,4)向右平移9个单位得到点P 1,再将点P 1绕原点顺时针旋转90°得到点P 2,则点P 2的坐标是( )A .(4,﹣4)B .(4,4)C .(﹣4,﹣4)D .(﹣4,4)。
山东省德州市2020版九年级上学期数学期末考试试卷(I)卷
山东省德州市2020版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列说法正确的是()A . 商家卖鞋,最关心的是鞋码的中位数B . 365人中必有两人阳历生日相同C . 要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D . 随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别为S甲2=5,S乙2=12,说明乙的成绩较为稳定2. (2分)(2017·深圳) 一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出双,列出方程()A .B .C .D .3. (2分) (2020九上·建湖期末) 给出下列各组线段,其中成比例线段的是()A .B .C .D .4. (2分)(2020·虹口模拟) 在Rt△ABC中,∠C=90°,如果BC=2,tanB=2,那么AC=()A . 1B . 4C .D . 25. (2分)如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边上的中点,若⊙O的半径为2,则DE 的长等于()A .B .C . 1D .6. (2分)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A . 2∠CB . 4∠BC . 4∠AD . ∠B+∠C7. (2分) (2016九上·温州期末) 若抛物线y=ax2经过A(1,﹣3),则下列各点中,在此抛物线上的是()A . (﹣3,1)B . (1,3)C . (﹣1,3)D . (﹣1,﹣3)8. (2分)如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=()A . 2-B . -1C . 6-D . -3二、填空题 (共10题;共12分)9. (2分)若tanα•tan35°=1,且α为锐角,则α=________;若sin2α+sin237°=1,则锐角α=________10. (2分)(2014·南京) 2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是________cm,极差是________cm.11. (1分)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为________12. (1分)(2017·江苏模拟) 用一根长为32cm的铁丝围成一个矩形,则围成的矩形面积的最大值是________cm2 .13. (1分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中________的可能性较小.14. (1分)关于的一元二次方程有实数根,则m的取值范围是________.15. (1分) (2018九上·兴化期中) 给一个圆锥形零件的侧面涂漆,零件的尺寸要求如图所示,则需要涂漆的面积为________ (结果保留π).16. (1分)如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE 截△ABC所得的三角形与△AB C相似,则DE=________ .17. (1分) (2020八上·新乡期末) 已知,是的平分线,点为上一点,过作直线,垂足为点,且直线交于点,如图所示.若 ,则________.18. (1分) (2016·贺州) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________(结果保留根号)三、解答题 (共10题;共98分)19. (10分)计算。
山东省乐陵市九年级2019- 2020学年第一学期期末质量检测数学试题
九年级2019—2020学年第一学期期末质量检测数 学 试 题(满分150 分,时间120分钟)一、选择题(每小题3分,满分48分)1. 关于x 的一元二次方程240x x k ++=有两个相等的实根,则k 的值为( )A .4k =-B .4k =C .4k ≥-D .k ≥42. 在反比例函数1k y x-=的图象的每一支上,y 随x 的增大而增大,则k 的值可以为( ) A .1- B .3 C .1 D .23. 如图是由5个完全相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .4. 如图,ABC ∆中,50ABC ∠=︒,60ACB ∠=︒,点O 是ABC ∆的外心。
则BOC ∠= ( )A .110︒B .117.5︒C .140︒D .125︒5. 下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤90︒的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有( )A .3个B .4个C .5个D .6个6. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到'PB 的位置,测得 'PB C α∠= ('B C 为水平线),测角仪'B D 的高度为1米,则旗杆PA 的高度为( )A .11sin α- B .11sin α+ C .11cos α- D .11cos α+ 7. 如图,A B 、是函数1y x =的图像上关于原点对称的任意两点,//BC x 轴,//AC y 轴,ABC ∆的面积记为S ,则( )A .2S =B .4S =C .24S <<D . 4S >8. 若函数 k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A .B .C .D .9. 如图,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则sin ABC ∠的值为( )A .1B .35C .5D .3410. 学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D . 4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m11. 如图,点A 的坐标为()0, 1,点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角 ABC ∆,使90BAC ∠=︒,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .12. 在下列函数图象上任取不同两点()111P x y ,,()222P x y ,,一定能使21210y y x x -<-成立的是( )A .()310y x x =-≤B .()2211y x x x =-+-≥C .)0y x =>D .()2410y x x x =--> 13. 如图,点A 的坐标是(4),0,ABO ∆是等边角形,点B 在第一象限,若反比例函数 k y x=的图象经过点B ,则k 的值是( )A .1B .3C .D .14. 如图,以原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是»AB 上一点(不与A ,B 重合),连接OP ,设POB α∠=,则点P 的坐标是( )A . (sin sin )αα,B . (cos cos )αα,C .(cos sin )αα,D . (sin cos ) αα,15. 如图,在ABC ∆中,A B 、两个顶点在x 轴的上方,点C 的坐标是()-1,0.以点C 为位似中心,在x 轴的下方作ABC ∆的位似图形''A B C ∆,使得''A B C ∆的边长是ABC ∆的边长的2倍.设点B 的横坐标是3-,则点'B 的横坐标是( )A .2B .3C .4D .516. 如图,正方形ABCD 中,BE FC =,2CF FD =,AE 、AF 交于点G ,连接AF ,给出下列结论:①AE BF ⊥;②AE BF =;③43BG GE =;④ABG CEGF S S ∆=四边形.其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)17.方程22x x =的解为 .18. 汽车刹车后行驶的距离s (单位:m ) 关于行驶的时间t (单位:s )的函数解析式是2126s t t =-.汽车刹车后到停下来前进了 m .19. 如图,BD 是O e 的直径,30CBD ∠=︒,则A ∠的度数为 .20. 如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,72ABD ∠=︒,则CAD ∠的度数为 .21. 婷婷和她妈妈玩猜拳游戏。
2019—2020学年度德州市第一学期初三期末考试初中数学
2019—2020学年度德州市第一学期初三期末考试初中数学九年级数学试题一、选择题(每题A 、B 、C 、D 四个选项中只有一个是最符合要求的,每题3分,共24分)1.关于x 的方程0)12(22=+--k x k x 有两个不相等的实数根,那么k 的最大整数值是( )A .一2B .一lC .0D .1 2.小明从图示的二次函数c bx ax y ++=2的图象中,观看得出以下五条信息①a<0 ②c=0③函数的最小值为一3 ④当x <0时,y>0。
⑤当0<21x x <<2时,21y y >你认为其中正确的个数是( )A .2B .3C .4D .5 3.把抛物线c bx ax y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,那么有( )A .b=3 c=7B .b=9- c=15-C .b=3 c=3D .b=9- c=21 4.一袋子中有4颗球,分不标记号码1,2,3,4,每颗球被取出的机会相同,假设第一次从袋中取出一颗球后放回,第二次从袋中再取出一球,那么第二次取出球的号码比第一次大的几率为( )A .21B .43C .83D .127 5.如图,一张矩形报纸ABCD 的长AB=acm ,宽BC=bcm ,E 、F 分不是AB 、CD 的中点,将这张报纸沿着直线EF 折叠后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,那么a :b 等于( )A .1:2B .1:2C .3:1D .1:36.如图,△ABC 与△DEF 是位似图形,相似比为2:3,AB=4,那么DE 的长等于( )A .6B .5C .9D .38 7.每年的正月十五,德州市都要举办放礼花的活动,今年估量一种新型的礼炮,这种礼炮的升空高度h(m)与飞行的时刻t(s)的关系式是:120252++-=t t h 假设这种礼炮在点火升空到最高点引爆,那么从点火升空到引爆需要的时刻是( ) A .3s B .4s C .5sD .6s 8.如图,小阳发觉电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30°角,且现在测得1米杆的影长为2米,那么电线杆的高度为( )A .9米B .28米C .(7+3)米D .(14+23)米二、填空(每题3分,共24分)9.如下图的抛物线是二次函数1322-+-=a x ax y 的图象,那么a 的值是 。
2019-2020年德州市乐陵市九年级上册期末模拟数学试卷(有答案)-优质版
山东省德州市乐陵市九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列方程一定是一元二次方程的是()A. 2+ ﹣1=0B. 22﹣y﹣3=0C. a2﹣+2=0D. 32﹣2﹣1=02.⊙O1的半径为1, ⊙O2的半径为8,两圆的圆心距为7,则两圆的位置关系为( )A. 相交B. 内切C. 相切D. 外切3.△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A. 2, 5B. 1,5 C. 4,5 D. 4,104.如图所示的5个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EB1、B1FC1、C1GB的路线爬行,乙虫沿ACB的路爬行,则下列结论正确的是()A. 甲先到B点B. 乙先到B 点C. 甲、乙同时到B 点D. 无法确定5.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A. 30°B. 45°C. 60°D. 90°6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A. 3πB. 6πC. 5πD. 4π7.在△ABC中,AB=3,AC= .当∠B最大时,BC的长是()A. B.C.D. 28.圆锥的底面半径为2,母线长为4,则它的侧面积为()A. 8πB. 16πC. 4πD. 4π9.一枚炮弹射出秒后的高度为y米,且y与之间的关系为y=a2+b+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A. 第 3.3sB. 第4.3s C. 第5.2s D. 第4.6s10.下列各式无意义的是()A. ﹣B.C.D.二、填空题(共8题;共24分)11.如图,该图形至少绕圆心旋转________度后能与自身重合.12.已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.13.如果二次函数y=2+b+c配方后为y=(﹣2)2+1,那么c的值为________14.方程(+1)2﹣2(﹣1)2=6﹣5的一般形式是________15.若是二次函数,则m=________.16.若⊙O的半径为6cm,则⊙O中最长的弦为________厘米.17.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .18.请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是________.三、解答题(共6题;共36分)19.公园里有一人设了个游戏摊位,游客只需掷一枚正方体骰子,如果出现3点,就可获得价值10元的奖品,每抛掷1次骰子只需付1元的费用.小明在摊位前观察了很久,记下了游客的中奖情况:游客 12 3456 7抛掷次数3225616512中奖次数 1 0 0 1 0 2 0看了小明的记录,你有什么看法?20.一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.21.如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.22.在函数y=(a为常数),的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),试确定函数值y1, y2, y3的大小关系.23.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.24.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为m,绿化带的面积为ym2,求y与之间的函数关系式,并写出自变量的取值范围.四、综合题(共10分)25.如图,已知抛物线y=﹣2+2+3与轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交轴于点N,当△BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.山东省德州市乐陵市九年级(上)期末模拟数学试卷参考答案与试题解析一、选择题1.【答案】D【考点】一元二次方程的定义【解析】【解答】解:A、2+ ﹣1=0是分式方程; B、22﹣y﹣3=0是二元二次方程;C、a2﹣+2=0中若a=0时是一元一次方程;D、32﹣2﹣1=0是一元二次方程;故选:D.【分析】根据一元二次方程的定义判断即可.2.【答案】B【考点】圆与圆的位置关系【解析】【分析】设两圆的圆心距O1O2为d,根据d=R-r时,两圆内切,即可求得答案.【解答】设两圆的圆心距O1O2为d,⊙O1的半径为r,⊙O2的半径为R,则r=1,R=8,d=7,∵7=8-1,∴d=R-r,∴这两圆的位置关系是内切.故选B.【点评】此题考查了圆与圆的位置关系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).3.【答案】A【考点】三角形的内切圆与内心【解析】【解答】解:∵62+82=102,∴△ABC为直角三角形,∴△ABC的内切圆的半径==2,△ABC的外接圆的半径==5.故选A.【分析】先利用勾股定理的逆定理得到△ABC为直角三角形,然后利用直角边为a、b,斜边为c的三角形的内切圆半径为计算△ABC的内切圆的半径,利用斜边为外接圆的直径计算△ABC的外接圆的半径.4.【答案】C【考点】弧长的计算【解析】【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1B1+B1C1+C1B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】π(AA1+A1B1+B1C1+C1B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题主要考查了弧长的计算公式.5.【答案】A【考点】直线与圆的位置关系,切线的性质【解析】【解答】根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.【分析】根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.本题考查了直线与圆的位置关系、切线的性质.此题属于操作题,在点P的运动过程中,∠OAP取最大值时,AP正好是⊙O的切线.6.【答案】B【考点】扇形面积的计算,旋转的性质【解析】【解答】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积.即可求解.7.【答案】C【考点】切线的性质【解析】【解答】解:以A为圆心,依据AC为半径作⊙A,当BC为⊙A的切线时,即BC⊥AC时,∠B最大,此时BC= = = .故答案为:C.【分析】“∠B最大”也就是以AC为半径的⊙A上找一点,使∠B最大,则ACBC 时,即BC与⊙A相切时,∠B最大,由勾股定理可求出BC长度.8.【答案】A【考点】圆锥的计算【解析】【解答】解:底面半径为2,底面周长=64,侧面积=×4π×4=8π,故选A.【分析】圆锥的侧面积=底面周长×母线长÷2.9.【答案】D【考点】二次函数的应用【解析】【解答】解:∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为=4.5.∵4.6s最接近4.5s,∴当4.6s时,炮弹的高度最高.故选:D.【分析】由炮弹在第3.2秒与第5.8秒时的高度相等可知这两点关于对称轴对称,故此可求得求得抛物线的对称轴.10.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:∵32=9,∴﹣有意义;∵﹣32=﹣9,∴无意义;∵(﹣3)2=9,∴有意义;∵|﹣3|=3,∴有意义;故选:B.【分析】根据乘方的定义和绝对值的定义进行计算,再由二次根式的定义即可得出结果.二、填空题11.【答案】40【考点】旋转对称图形【解析】【解答】解:该图可以平分成9部分,则至少绕圆心旋转=40°后能与自身重合.故答案为:40.【分析】该图可以平分成9部分,因而每部分被分成的圆心角是40°,因而旋转40度的整数倍,就可以与自身重合.12.【答案】-4【考点】根与系数的关系【解析】【解答】解:∵一元二次方程2﹣3﹣2=0的两个实数根为1,2,∴1+2=3,1•2=﹣2,∴(1﹣1)(2﹣1)=1•2﹣(1+2)+1=﹣2﹣3+1=﹣4.故答案为:﹣4.【分析】由根与系数的关系可得1+2=3、1•2=﹣2,将其代入(1﹣1)(2﹣1)=1•2﹣(1+2)+1中,即可求出结论.13.【答案】5【考点】二次函数的性质【解析】【解答】解:∵y=(﹣2)2+1=2﹣4+4+1=2﹣4+5,∴c的值为5.故答案是:5.【分析】把配方后的函数解析式转化为一般形式,然后根据对应项系数相等解答.14.【答案】2﹣4=0【考点】一元二次方程的定义,一元二次方程的应用【解析】【解答】解:方程整理得:2+2+1﹣22+4﹣2=6﹣5,即2﹣4=0,故答案为:2﹣4=0【分析】方程整理为一元二次方程的一般形式即可.15.【答案】﹣2【考点】二次函数的定义【解析】【解答】解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.【分析】先根据二次函数的定义列出关于m的不等式组,求出m的值即可.16.【答案】12【考点】圆的认识【解析】【解答】解:∵⊙O的半径为6cm,∴⊙O的直径为12cm,即圆中最长的弦长为12cm.故答案为12.【分析】根据直径为圆的最长弦求解.17.【答案】6【考点】切线的性质,相切两圆的性质【解析】【解答】设边长为a,连接NO2=2,AO2=5;作O2E垂直AB于E则Rt△AEO2,AO2="5" O2E=a-2,AE=,则52=()2+(a-2)2解上式即可得,a=6.【分析】在图中构造直角三角形,利用勾股定理中的相等关系作为等量关系列方程求解即可.18.【答案】y=2+1【考点】二次函数的性质【解析】【解答】解:答案不唯一,如:y=2+1,故答案为:y=2+1.【分析】二次函数的解析式是y=a2+b+c(a、b、c为常数,a≠0),根据开口向上得出a为正数,根据与y轴的交点坐标为(0,1)得出c=1,写出一个符合的二次函数即可.三、解答题19.【答案】解:对于一个普通的正方体骰子,3点出现的概率应为,小明记录的抛掷次数为159次,中奖的次数应为27次左右,而实际中奖次数只有4次,于是可以怀疑摆摊人所用的骰子质量分布不均匀,要进一步证实这种怀疑,可以通过更多的试验完成.【考点】利用频率估计概率【解析】【分析】先根据正方体骰子的特点计算出3出现的概率,再与小明实际记录的中奖次数相比较即可得出结论.20.【答案】解:(1)设绿球的个数为.由题意,得解得=1,经检验=1是所列方程的根,所以绿球有1个;(2)根据题意,画树状图:由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿),(绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1).∴P(两次都摸到红球)==;或根据题意,画表格:第1次第2次红1红2黄绿红1 (红2,(黄,红1)(绿,红1)红1)红2 (红1,红2)(黄,红2)(绿,红2)黄(红1,黄)(红2,黄)(绿,黄)绿(红1,绿)(红2,绿)(黄,绿)由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,∴P(两次都摸到红球)==。
山东省德州市乐陵市2019-2020学年九年级上学期期末数学试题(word无答案)
山东省德州市乐陵市2019-2020学年九年级上学期期末数学试题(word 无答案)一、单选题(★) 1 . 关于 x 的一元二次方程 x 2+4 x+ k =0有两个相等的实数根,则 k 的值为( ) A .k =4 B .k =﹣4 C .k≥﹣4 D .k≥4(★) 2 . 在反比例函数 的图象的每个象限内, y 随 x 的增大而增大,则k 值可以是()A .-1B .1C .2D .3(★) 3 . 如图是由5个完全相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .(★★) 4 . 如图, 中, , ,点 是 的外心.则 ()A .B .C .D .(★★) 5 . 下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A .3 个B .4 个C .5 个D .6 个(★★) 6 . 如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D 的高度为1m,则旗杆PA的高度为( )A.m B.m C. m D. m二、填空题(★★) 7 . 如图,是函数的图像上关于原点对称的任意两点,轴,轴,的面积记为,则()A.B.C.D.三、单选题(★★) 8 . 若函数与的图象如图所示,则函数的大致图象为()A.B.C.D.(★) 9 . 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan∠ABC 的值为()A .B .C .D .1(★★) 10 . 学校门口的栏杆如图所示,栏杆从水平位置绕 点旋转到位置,已知 ,,垂足分别为 , ,,,,则栏杆 端应下降的垂直距离为( )A .B .C .D .(★★) 11 . 如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是()A .B .C .D .(★★) 12 . 在下列函数图象上任取不同两点 , ,一定能使成立的是()A.B.C.D.(★★) 13 . 如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A.B.C.D.(★★) 14 . 如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)(★★) 15 . 如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2B.3C.4D.5(★★) 16 . 如图,正方形 ABCD中, BE= FC, CF=2 FD, AE、 BF交于点 G,连接 AF,给出下列结论:① AE⊥ BF;② AE= BF;③ BG= GE;④ S 四边形CEGF= S △ABG,其中正确的个数为()A.1个B.2个C.3个D.4个四、填空题(★) 17 . 方程的根是 ___________ .(★) 18 . 汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车刹车后到停下来前进了______.(★★) 19 . 如图, BD是⊙ O的直径,∠ CBD=30°,则∠ A的度数为_____.(★) 20 . 如图,在四边形中,,,则的度数为______.(★★) 21 . 婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.(★★) 22 . 某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为_____m.(★★★★) 23 . 如图,边长为的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心点所经过的路径长为______.(★) 24 . 如图是抛物线y 1=ax 2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y 2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y 2<y 1,其中正确的是________.五、解答题(★★★★) 25 . 已知关于的一元二次方程有两个实数根,.(1)求的取值范围:(2)当时,求的值.(★★) 26 . 为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.(1)在这次问卷调查中,共抽查了_________名同学;(2)补全条形统计图;(3)估计该校名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.(★★) 27 . 如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.(1)求反比例函数的表达式;(2)若四边形的面积是,求点的坐标.(★★★★) 28 . 某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)(★★★★) 29 . 如图,是的直径,过的中点.,垂足为.(1)求证:直线是的切线;(2)若,的直径为,求的长及的值.(★★★★) 30 . (1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.(★★★★★) 31 . 如图1,抛物线与轴交于点和点,与轴交于点,且满足,若对称轴在轴的右侧.(1)求抛物线的解析式.(2)如图,若点为线段上的一动点(不与重合),分别以、为斜边,在直线的同侧作等腰直角三角形和,试确定面积最大时点的坐标.(3)若,是抛物线上的两点,当,时,均有,求的取值范围.。
山东省德州市乐陵市2019-2020学年九年级上学期期末数学试题
山山山山山山山山山2019-2020山山山山山山山山山山山山山山一、选择题1.关于x 的一元二次方程x 2+4x +k =0有两个相等的实数根,则k 的值为( ) A. k =4B. k =﹣4C. k ≥﹣4D. k ≥42.在反比例函数1k y x-=的图象的每个象限内,y 随x 的增大而增大,则k 值可以是( ) A. -1B. 1C. 2D. 33.如图是由5个完全相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.4.如图,ABC ∆中,50ABC ∠=︒,60ACB ∠=︒,点O 是ABC ∆的外心.则BOC ∠=( )A. 110︒B. 117.5︒C. 140︒D. 125︒5.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有( ) A. 3 个B. 4 个C. 5 个D. 6 个6.如图,小明利用测角仪和旗杆拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1m ,则旗杆PA 的高度为( )A.11sin α-mB.11sin α+mC.11cos α- mD.11cos α+ m7.如图,A B 、是函数1y x=的图像上关于原点对称的任意两点,//BC x 轴,//AC y 轴,ABC ∆的面积记为S ,则( )A 2S =B. 4S =C. 24S <<D. 4S >8.若函数k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A.B. C. D.9.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A. 35B. 34C.D. 1.10.学校门口栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4m AO =, 1.6m AB =,1m CO =,则栏杆C 端应下降的垂直距离CD 为( )A. 0.2mB. 0.3mC. 0.4mD. 0.5m11.,2016青海省西宁市)如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角,ABC ,使,BAC =90°,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A. B.C.D.12.在下列函数图象上任取不同两点()111P x y ,,()222P x y ,,一定能使21210y y x x -<-成立的是( )A. ()310y x x =-≤B. ()2211y x x x =-+-≥C. )0y x =>D. ()2410y x x x =-->13.如图,点A 的坐标是()40,,ABO ∆是等边角形,点B 在第一象限,若反比例函数 ky x=的图象经过点B ,则k 的值是( )的A. 1B. 3C.D.14.如图,以原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是»AB 上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)15.如图,在ABC ∆中,,A B 两个顶点在x 轴的上方,点C 的坐标是()1, 0-.以点C 为位似中心,在x 轴的下方作ABC ∆的位似,图形A B C ∆'',使得A B C ∆''的边长是ABC ∆的边长的2倍.设点B 的横坐标是-3,则点B '的横坐标是( )A. 2B. 3C. 4D. 516.如图,正方形ABCD 中,BE =FC ,CF =2FD ,AE 、BF 交于点G ,连接AF ,给出下列结论:①AE ⊥BF ; ②AE =BF ; ③BG =43GE ; ④S 四边形CEGF =S △ABG ,其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题17.方程22x x =的根是___________,18.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2126s t t =-.汽车刹车后到停下来前进了m ______.19.如图,BD 是⊙O 的直径,∠CBD ,30°,则∠A 的度数为_____,20.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,72ABD ∠=︒,则CAD ∠的度数为______.21.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.22.某园进行改造,现需要修建一些如图所示圆形(不完整)门,根据实际需要该门的最高点C 距离地面的高度为2.5m ,宽度AB 为1m ,则该圆形门的半径应为_____m .23.如图,边长为1的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心O 点所经过的路径长为______.24.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论: ①2a+b=0;②abc>0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1 , 其中正确的是________.三、解答题25.已知关于x 的一元二次方程2210x x m -+-=有两个实数根1x ,2x . (1)求m 的取值范围:(2)当2212126x x x x +=时,求m 的值.26.为了了解全校3000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.(1)在这次问卷调查中,共抽查了_________名同学;(2)补全条形统计图;(3)估计该校3000名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率. 27.如图,在平面直角坐标系xOy 中,反比例函数(0)ky k x=≠的图象过等边三角形BOC 的顶点B ,2OC =,点A 在反比例函数图象上,连接,AC AO .(1)求反比例函数(0)ky k x=≠的表达式;(2)若四边形ACBO 的面积是A 的坐标.28.某型号飞机的机翼形状如图所示,已知CF DG BE 、、所在直线互相平行且都与CE 所在直线垂直,//AB CE .6CD m =,5BE m =,31BDG ∠=︒,58ACF ∠=︒.求AB 的长度(参考数580.84sin ︒≈,580. 53cos ︒≈,58 1.6tan ︒≈,310. 52sin ︒≈,310.86cos ︒≈,310. 60tan ︒≈)29.如图,AB 是O e 直径,O e 过BC 的中点D .DE AC ⊥,垂足为E .(1)求证:直线DE 是O e 的切线;(2)若6BC =,O e 的直径为5,求DE 的长及cosC 的值.30.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在ABC ∆中,点O 在线段BC 上,30BAO ∠=︒,75OAC ∠=︒,AO =:2:1BO CO =,求AB 的长.经过数学小组成员讨论发现,过点 B 作//BD AC ,交AO 的延长线于点D ,通过构造ABD ∆就可以解决问题(如图2)请回答:____ADB ∠=︒,______AB =.(2)请参考以上解决思路,解决问题:如图3在四边形ABCD 中对角线AC 与BD 相交于点O ,AC AD ⊥,AO =75ABC ACB ∠=∠=︒,:2:1BO OD =.求DC 的长.31.如图1,抛物线2142y x mx m =++与x 轴交于点()10A x ,和点()20B x ,,与y 轴交于点C ,且12,x x 满足221220x x +=,若对称轴在y 轴的右侧.(1)求抛物线的解析式.(2)如图2,若点P 为线段AB 上的一动点(不与A B 、重合),分别以AP 、BP 为斜边,在直线AB 的同侧作等腰直角三角形APM ∆和BPN ∆,试确定MPN ∆面积最大时P 点的坐标. (3)若()11,P x y ,()22,Q x y 是抛物线上的两点,当12a x a ≤≤+,292x ≥时,均有12y y ≤,求a 的取值范围.。
山东德州2019-2020期末考试九年级数学
山东德州2019-2020年度第一学期期末九年级数学试题(试卷满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题选对得4分,共48分. 1.如图是一个由4个相同的正方体组成的立体图形,它的主下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .通常温度降到0℃以下,纯净的水结冰C .明天一定是晴天D .经过有交通信号灯的路口,遇到红灯6.若点A (-1,y1),B (1,y2),C (3,y3)在反比例函数y=-3x 的图象上,则y1,y2,y3的大小关系是( ) A .y1<y2<y3 B .y2<y3<y1 C .y3<y2<y1 D .y2<y1<y3 7.在△ABC 和△DEF 中,AB=AC ,DE=DF ,根据下列条件,能判断△ABC 和△DEF 相似的是( ) A .AB AC DE DF = B .AB BC DE EF = C .∠A=∠E D .∠B=∠D 8.在Rt △ABC 中,∠C=90°,AB=5,BC=3,则tanA 的值是( ) A .34 B .43 C . 35 D . 45 9.二次函数y=x 2-2x+1的图象与x 轴的交点情况是( ) A .一个交点B .两个交点C .没有交点D .无法确定10.小敏在跳远比赛中跳出了满意的一跳,函数h=3.5t-4.9t 2(t 的单位:s ;h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A .0.71s B .0.70s C.0.63s D .0.36s11、如 图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS=60m ,ST=120m ,QR=80m ,则河的宽度PQ 为( )A .40mB .60mC .120mD .180m12如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠本大题共6小题,共24分,只要求填写最后结果,每小题4分.13.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为 .14.如图,点P 在反比例函数y=kx的图象上,且PD ⊥x 轴16.如图,在△ABC 中,若DE ∥BC ,DB =3,DE=4,则BC 的长是 . 17.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10m 到达点D 处,又测得点A 的仰角为60°,那么建筑物AB 的高度是 _____ m . 18.如图,在△OAB 中,C 是AB 的中点,反比例函数k y x(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为________三、解答题:本大题共7小题,共78分.19.(本题满分10分) 端 午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为 C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽 子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.20.(本题满分10分) 某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元,问第一次降价后至少要售出该种商品多少件? 21.(本题满分10分) 某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x ,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)设计费能达到24000元吗?为什么?(3)当x 是多少米时,设计费最多?最多是多少元? 22.(本题满分12分)如图,已知三角形ABC 的边AB 是⊙0的切线,切点为B .AC 经过圆心0并与圆相交于点D 、C ,过C 作直线CE 丄AB ,交AB 的延长线于点E . (1)求证:CB 平分∠ACE ; (2)若BE=3,CE=4,求⊙O 的半径. 23. (本题满分12分) 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. (1)求这一函数的解析式; (2)当气体体积为1m 3时,气压是多少?(3)当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m 3)24.(本题满分12分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB=OD ,支架CD 与水平线AE 垂直,∠BAC=∠CDE=30°,DE=80cm ,AC=165cm .(1)求支架CD 的长; (2)求真空热水管AB 的长.(结果保留根号) 25. (本题满分12分) 如图,已知Rt △ABC ,∠C=90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线; (2)若AE :EB=1:2,BC=6,求AE 的长.。
2019-2020学年山东省德州市九年级上册期末数学试卷(有答案)【标准版】
2019-2020学年山东省德州市九年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆2.(4分)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.3.(4分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.4.(4分)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O 顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π5.(4分)如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5 B.7 C.9 D.116.(4分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=487.(4分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限8.(4分)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O 交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°9.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.510.(4分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.411.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个12.(4分)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,m≠n,则(m﹣1)2+(n﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0二、填空题(每小题4分,共24分)13.(4分)一元二次方程x2+2x+a=0有实根,则a的取值范围是.14.(4分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.15.(4分)用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为度.16.(4分)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.17.(4分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.18.(4分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.三.解答题(写出必要的解题步骤及证明过程,共78分)19.(8分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=0.20.(10分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).(4)在x轴上有一点P,PA+PB的值最小,请直接写出点P的坐标21.(10分)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y 与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范为;药物燃烧后,y关于x的函数关系式为.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?22.(12分)已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)求△AOB的面积.23.(12分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作图,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.24.(12分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?25.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.2019-2020学年山东省德州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形是轴对称图形不是中心对称图形;平行四边形不是轴对称图形是中心对称图形;正五边形是轴对称图形不是中心对称图形;圆是轴对称图形又是中心对称图形,故选:D.2.(4分)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选:B.3.(4分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故选:C.4.(4分)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O 顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π【解答】解:的长==1.5π.故选:D.5.(4分)如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5 B.7 C.9 D.11【解答】解:过点O作OM⊥AB,垂足为M∵OM⊥AB,AB=12∴AM=BM=6在Rt△OAM中,OM=所以8≤OM≤10故选:C.6.(4分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【解答】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选:D.7.(4分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选:C.8.(4分)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O 交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【解答】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选:A.9.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.5【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.10.(4分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AO C的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.11.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:∵由抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴b>0,∴ab<0,所以①正确;∵点(0,1)和(﹣1,0)都在抛物线y=ax2+bx+c上,∴c=1,a﹣b+c=0,∴b=a+c=a+1,而a<0,∴0<b<1,所以②错误,④正确;∵a+b+c=a+a+1+1=2a+2,而a<0,∴2a+2<2,即a+b+c<2,∵抛物线与x轴的一个交点坐标为(﹣1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,∴x=1时,y>0,即a+b+c>0,∴0<a+b+c<2,所以③正确;∵x>﹣1时,抛物线有部分在x轴上方,有部分在x轴下方,∴y>0或y=0或y<0,所以⑤错误.故选:B.12.(4分)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,m≠n,则(m﹣1)2+(n﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2﹣3=4(2﹣)2﹣3=6,故选:A.二、填空题(每小题4分,共24分)13.(4分)一元二次方程x2+2x+a=0有实根,则a的取值范围是a≤1.【解答】解:∵一元二次方程x2+2x+a=0有实根,∴△=22﹣4a≥0,解得:a≤1.故答案为:a≤1.14.(4分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8 mm.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.15.(4分)用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为22度.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.16.(4分)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.17.(4分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.18.(4分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为2.【解答】解:∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=,设AD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=6,整理为t2+t﹣6=0,解得t1=﹣3(舍去),t2=2,∴正方形ADEF的边长为2.故答案为:2.三.解答题(写出必要的解题步骤及证明过程,共78分)19.(8分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=0.【解答】解:(1)∵3x(x+3)=2(x+3),∴(x+3)(3x﹣2)=0,∴x+3=0或3x﹣2=0,∴x1=﹣3,x2=;(2)∵2x2﹣4x﹣3=0,∴a=2,b=﹣4,c=﹣3,∴b2﹣4ac=40>0,∴x==.20.(10分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).(4)在x轴上有一点P,PA+PB的值最小,请直接写出点P的坐标【解答】解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC==,∴点C旋转到C2点的路径长==π;(4)点B关于x轴的对称点B′的坐标为(1,﹣1),设直线AB′解析式为y=kx+b,则,解得:,则直线AB′解析式为y=5x﹣6,当y=0时,5x﹣6=0,解得:x=1.2,则点P坐标为(1.2,0),故答案为:(1.2,0 ).21.(10分)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y 与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为y=x,自变量x的取值范为0≤x≤8;药物燃烧后,y关于x的函数关系式为y=(x>8).(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过30分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【解答】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=k2>0)代入(8,6)为6=∴k2=48∴药物燃烧时y关于x的函数关系式为y=x(0≤x≤8)药物燃烧后y关于x的函数关系式为y=(x>8)(2)结合实际,令y=中y≤1.6得x≥30即从消毒开始,至少需要30分钟后学生才能进入教室.(3)把y=3代入y=x,得:x=4把y=3代入y=,得:x=16∵16﹣4=12 所以这次消毒是有效的.22.(12分)已知A (﹣4,2)、B (n ,﹣4)是一次函数y=kx +b 的图象与反比例函数y=的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围; (3)求△AOB 的面积.【解答】解:(1)由于点A 在反比例函数y=的图象上,所以2=,所以m=﹣8,即反比例函数解析式为y=; ∵点B 在反比例函数图象上,所以n ×(﹣4)=﹣8,∴n=2.因为点A 、B 在一次函数y=kx +b 的图象上, ∴∴k=﹣1,b=﹣2,∴一次函数解析式为:y=﹣x ﹣2.(2)由图象知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值. (3)设一次函数图象与y 轴交于点C ,点A 、B 的横坐标分别用x A ,x B 表示. 则C (0,﹣2),所以OC=2,∵S △AOB =S △OBC +S △AOC =OC ×|x B |+OC ×|x A |=×2×2+×2×4=6.答:△AOB的面积是6.23.(12分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作图,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.【解答】解:(1)AC与⊙O相切.理由如下:∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∵OB=OC,∴∠OCB=∠OBC=30°,∴∠ACO=∠ACB﹣∠OCB=90°,∴OC⊥AC,∴AC是⊙O的切线;(2)四边形BOCD为菱形.理由如下:连结OD,∵CD∥AB,∴∠AOC=∠OCD,∵∠AOC=∠OBC+∠OCB=60°,∴∠OCD=60°,而OC=OD,∴△OCD为等边三角形,∴CD=OB=OC,∴四边形OBDC为平行四边形,而OB=OC,∴四边形BOCD为菱形;(3)在Rt△AOC中,AC=6,∠A=30°,∴OC=AC=2,∴弧BC的长==π,设圆锥的底面圆半径为r,∴2πr=π,∴r=.24.(12分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(﹣x+150)(x﹣20)=﹣x2+170x﹣3000=﹣(x﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.25.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,=,∴即:点P(,)时,S四边形APCD最大(3)方法1、如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).方法2,如图1,∴E(﹣1,0),A(0,5),∵抛物线的解析式为y=﹣(x﹣2)2+9,∴抛物线的对称轴为直线x=2,∴点N的横坐标为2,即:N'(2,0)①当以点A,E,M,N组成的平行四边形为四边形AENM时,∵E(﹣1,0),点N的横坐标为2,(N'(2,0)∴点E到点N向右平移2﹣(﹣1)=3个单位,∵四边形AENM是平行四边形,∴点A向右也平移3个单位,∵A(0,5),∴M点的横坐标为3,即:M'(3,5),∵点M在抛物线上,∴点M的纵坐标为﹣(3﹣2)2+9=8,∴M(3,8),即:点A再向上平移(8﹣5=3)个单位,∴点N'再向上平移3个单位,得到点N(2,3),即:当M点的坐标为(3,8)时,N点坐标为(2,3).②当以点A,E,M,N组成的平行四边形为四边形AEMN时,同①的方法得出,当M点的坐标为(1,8)时,N点坐标为(2,13).。
2019-2020学年山东德州九年级上数学期末试卷
2019-2020学年山东德州九年级上数学期末试卷一、选择题1. 下列图形,可以看作中心对称图形的是()A. B. C. D.2. 下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=2x+1B.y=−3x+2C.y=2x2+1D.y=−1x3. 下列抛物线通过先向上平移2个单位,再向右平移3个单位,可得到抛物线y=3x2的是( )A.y=3(x+3)2+2B.y=3(x+3)2−2C.y=3(x−2)2+3D.y=3(x+2)2−34. 如图,在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,可列出方程为( )A.x2+50x−100=0B.x2+100x−400=0C.x2−50x−100=0D.x2−100x−400=05. 如图,用圆心角为120∘,半径为9cm的扇形纸片恰好围成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是( ) A.6√3cm B.6√2cm C.6√5cm D.6cm6. 下列四个三角形中,与图中的三角形相似的是( )A. B. C. D.7. 若关于x的一元二次方程(k−1)x2+x+1=0有两个实数根,则k的取值范围是( )A.k<54且k≠1 B.k≤54C.k≤54且k≠1 D.k>548. 一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是( )A.袋子中白球占小球总数的十分之三B.袋子一定有三个白球C.再摸1000次,摸出白球的次数会接近330次D.再摸三次球,一定有一次是白球9. 如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为( )A.√3B.1C.2√3D.2√3310. 如图,已知双曲线y=k x(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(−6, 4),则△AOC的面积为( )A.9B.12C.6D.411. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,下列结论:①b2−4ac<0;②abc>0;③a−b+c>0;④m>−2,其中,正确的个数有()A.3个B.1个C.4个D.2个12. 如图,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥EF,下列结论:①∠BAE=30∘;②CE2=AB⋅CF;③CF=12FD;④△ABE∼△AEF.其中正确的有( )A.3个B.1个C.4个D.2个二、填空题在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1, 1),过点A作AA1 // x轴交抛物线于点A1,过点A1作A1A2 // OA交抛物线于点A2,过点A2作A2A3 // x轴交抛物线于点A3,过点A3作A3A4 // OA交抛物线于点A4……,依次进行下去,则点A2020的坐标为________.三、解答题解方程:(1)3x(x+3)=2(x+3);(2)2x2−4x−3=0如图,△ABC三个顶点的坐标分别为A(2, 4),B(1, 1),C(4, 3).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90∘后的△A2B2C2;(3)求出(2)中线段AC旋转到A2C2所扫过的面积(结果保留根号和π).为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?尺规作图:已知⊙O,点P在圆外,过点P引圆的两条切线.(不写作法,保留作图痕迹)已知反比例函数y=1−2mx(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD的顶点D,点A,B的坐标分别为(0, 5),(−3, 0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为________;若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P有________个.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,延长BC到点F,连接AF,使∠ABC=2∠CAF.(1)求证:AF是⊙O的切线;(2)若AC=4,CE:EB=1:3,求CE的长.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?如图,在平面直角坐标系中,直线y=12x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=−32且经过A,C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC,BC.求四边形PABC面积的最大值,并求出此时点P的坐标;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析2019-2020学年山东德州九年级上数学期末试卷一、选择题1.【答案】此题暂无答案【考点】中心较称图腾【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】二次明数织性质一次水体的性质二次射数空象与话数流关系反比例根数的性气【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】二水来数兴象触几何变换【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】由实较燥题元效出一元二次方程【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】圆锥的展较图脱侧面积圆于凸计算弧因斯计算勾体定展【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】相似三使形的判碳【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】根体判展式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】利用频都升计概率【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】正多验河和圆勾体定展含因梯否角样直角三角形等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】三角表的病积待定明数护确游比例函数解析式反比表函数弹数k蜡几何主义【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】相验极角家的锰质与判定正方来的性稳【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】一次射可的图象二次常数图见合点的岸标特征规律型:点的坐较【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法解因末二什方似-配方法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇形体积硫计算作图三腔转变换作图-射对称变面两点表的烧离【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州概水常式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图常复占作图切表的木质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行四表形型性质反比例表数病合题待定明数护确游比例函数解析式反比例根数的性气等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆明角研理切线的明定养性质角平都北的定义【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】根据常际问按列一后函湿关系式函数自变于的取旋范围二次表数擦应用根据于际问械列否次函这关系式二次常数换最值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定三角表的病积二次使如综合题待定水体硫故二次函数解析式【解析】此题暂无解析【解答】此题暂无解答。
2019-2020学年山东省德州市九年级上册期末数学试卷
2019-2020学年山东省德州市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共16小题,共48.0分)1.若关于x的方程(a−3)x2−2x+1=0有实数根,则a满足()A. a≤4B. a≤4且a≠3C. a<4且a≠3D. a≠32.若函数y=m+2的图象在其象限内y的值随x值的增大而增大,则m的取值范围是x()A. m>−2B. m<−2C. m>2D. m<23.如图是一个由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.4.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A. 16°B. 32°C. 58°D. 64°5.如图所示,△ABC内接于⊙O,C为弧AB的中点,D为⊙O上一点,∠ACB=100°,则∠ADC的度数等于()A. 40°B. 39°C. 38°D. 36°6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE=33°,AB=a,BD=b,则旗杆CD的长是()A. bsin33°+aB. bcos33°+aC. btan33°+aD. btan57°+a7.如图,点A在反比例函数y=k的图象上,AM⊥y轴于点M,xP是x轴上一动点,当△APM的面积是4时,k的值是( )A. 8B. −8C. 4D. −48.已知二次函数y=(x−m)2+n的图象如图所示,则一次函数y=mx+n与反比例函数y=mn的图象可能是()xA.B.C.D.9.如图,△ABC的三个顶点都在正方形网格的格点上,则tan A的值为()A.B.C.D.10.如图,测得BD=120m,DC=60m,EC=50m,则小河宽AB的长是()A. 180mB. 150mC. 144mD. 100m11.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交正方形的外角∠DCG的平分线于点F,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A. B.C. D.12.点A(x1,y1)、B(x2,y2)都在某函数图象上,且当x1<x2<0时,y1>y2,则此函数一定不是()A. y=−2x B. y=−2x+1 C. y=x2−1 D. y=1x13.如图,在平面直角坐标系中,等边三角形OAB的顶点A的坐标为(5,0),顶点B在第一象限.函数y=kx(x>0)的图象分别交边OB、AB于点C、D.若OC=2AD,则k的值为()A. √32B. √3C. 2√3D. 4√314.以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为()A. (cosα,1)B. (1,sinα)C. (sinα,cosα)D. (cosα,sinα)15.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为13,若点C的坐标为(4,1),则点C’的坐标为()A. (12,3)B. (−12,3)或(12,−3)C. (−12,−3)D. (12,3)或(−12,−3)16.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②S△BHE=S△CHD;③∠AHB=∠EHD.其中正确的个数是()A. 1B. 2C. 3D. 0第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)17.方程x(x−3)=x−3的根是______.18.汽车刹车后行驶的距离S(单位:m)与行驶的时间t(单位:s)之间的函数关系式是S=12t−4t2,当一辆行驶的汽车刹车后,在它的前方10m远的地方有一只小狗,那么这只小狗________出现危险(填“会”或者“不会”).19.如图,AB是⊙O的直径,点C、D在⊙O上,连接AC、BC、AD、CD,若∠BAC=50°,则∠ADC的度数等于______.20.如图,在四边形ABCD中,∠A=20°,∠B=40°,∠C=30°,则∠ADC的度数是______.21.小明和小华玩“石头、剪刀、布”的游戏,若随机出手一次,则小华获胜的概率是______.22.如图所示,截面为圆形油槽内,放入一些油,若圆的直径为150cm,油的最大深度DC为30cm,那么油面宽度AB是______cm.23.如图,边长为6的正方形ABCD的顶点A、B在一个半径为6的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动,当滚动一周回到原位置时,点C运动的路径长为______.24.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=−1,与x轴的一个交点是A(−3,0)其图象的一部分,如图所示,对于下列说法:①2a=b;②abc>,y2)是图象上两点,则y1<y2;0,③若点B(−2,y1),C(−52④图象与x轴的另一个交点的坐标为(1,0).其中正确的是______(把正确说法的序号都填上)三、解答题(本大题共7小题,共78.0分)25.已知关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两个实数根分别为x1,x2,当k=2时,求x12+x22的值.26.为了了解全校3000名学生对学校设置的足球、篮球、乒乓球、羽毛球、排球共五项球类活动的喜爱情况,在全校范围内随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种)进行了问卷调查,将统计数据绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)m=______,n=______.并补全图中的条形统计图.(2)请你估计该校约有多少名学生喜爱打乒乓球.从A、B、C、D这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中B、C的概率.27.如图,矩形ABOE的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,(x>0)的图象经过OA的中点C,交AB于点D.OB=2√3,反比例函数y=kx(1)求反比例函数的解析式;(2)连接CD,求四边形CDBO的面积;(3)AE与反比例函数交于点F,连接OF,△AOF是等腰三角形吗?为什么?28.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.29.如图,已知△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC于E.(1)求证:直线DE是⊙O的切线;(2)若CD=2√3,∠ACB=30°,分别求AB,OE的大小.30.如图,正方形ABCD中,点E、F分别在CB、DC的延长线上,且∠EAF=45°,DH⊥AF于H,交AE于点G,连接EF、CG.(1)探究线段BE、DF、EF之间的数量关系;(2)求证:CG⊥AE;(3)若AB=3,CF=2,求EF、CG的长.31.如图,抛物线y=ax2+bx+c与x轴交与A(1,0),B(4,0)两点,与y轴交于点C(0,4)(1)求抛物线的解析式.S△ABC,求P点的坐标.(2)点P为抛物线上一动点,满足S△PBC=43(3)点D为抛物线对称轴上一点,若△BCD是锐角三角形,求点D的纵坐标n的取值范围.答案和解析1.【答案】A;【解析】解:当a−3=0,即a=3时,方程变形为−2x+1=0,解得x=12当a−3≠0且△=(−2)2−4(a−3)≥0时,方程有实数根,解得a≤4且a≠3,所以a的取值范围为a≤4.故选A.分类讨论:当a−3=0,即a=3时,方程变形为−2x+1=0,一元一次方程有解;当a−3≠0且△=(−2)2−4(a−3)≥0时,方程有实数根,再解两个不等式得到a≤4且a≠3,然后综合两种情况即可得到a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根,也考查了分类讨论思想.2.【答案】B【解析】解:∵函数y=m+2的图象在其象限内y的值随x值的增大而增大,x∴m+2<0,解得m<−2.故选:B.根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.本题考查了反比例函数的性质,当k<0,y随x的增大而增大.3.【答案】A【解析】【分析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.4.【答案】B【解析】【分析】根据圆周角定理得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.本题考查的是三角形的外接圆和外心,掌握圆周角定理是解题的关键.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A=90°−∠ABD=32°,则∠BCD=∠A=32°,故选:B.5.【答案】A【解析】【试题解析】【分析】本题考查的是三角形的外接圆与外心,圆周角定理,圆心角、弧、弦的关系,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.根据圆心角、弧、弦的关系得到AC=BC,根据等腰三角形的性质和三角形内角和定理求出∠B,根据圆周角定理解答.【解答】解:∵C为弧AB的中点,∴CA⏜=CB⏜,∴AC=BC,∵∠ACB=100°,×(180°−100°)=40°,∴∠B=∠CAB=12由圆周角定理得,∠ADC=∠B=40°,故选A.6.【答案】C【分析】本题考查了解直角三角形的应用−仰角俯角问题,本题主要利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.在直角三角形CAE中,利用BD的长和已知的角的度数,利用正切函数可求得CE的长,再由CD=CE+ED即可求解.【解答】解:由题意可知AE=BD,AB=DE,即AE=b,DE=a,在直角△AEC中,∠CAE=33°,∴tan∠CAE=CEAE∴CE=AEtan33°=btan33°.则CD=CE+ED=btan33°+a.故选C.7.【答案】B【解析】【分析】本题考查的是反比例函数系数k的几何意义,反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12×|k|,且保持不变.设点A的坐标为:(x,kx),根据三角形的面积公式计算即可.【解答】解:设点A的坐标为:(x,kx),由题意得,12×|x|×|kx|=4,解得,|k|=8,∵反比例函数y=kx的图象在第四象限,故选B.8.【答案】D【解析】【分析】本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值范围是解题的关键,根据二次函数图象判断出m<0,n>0,然后求出mn< 0,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,m<0,n>0,∴mn<0,∴一次函数y=mx+n经过第一、二、四象限,的图象位于第二、四象限;反比例函数y=mnx故选:D.9.【答案】B【解析】【试题解析】【分析】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的正切等于它的对边与邻边的比值.解题方法:在正方形网格中构造一个∠A为锐角的直角三角形,然后利用正切的定义求解.【解析】解答:如图,在Rt△ADB中,tanA=BDAD =56,故选B.10.【答案】D【解析】【分析】本题主要考查的是相似三角形的性质与判定,依据相似三角形的性质列出比例式是解题的关键.先可证明△ADB∽△EDC,然后依据相似三角形的性质求解即可.【解答】解:∵AB⊥BC,EC⊥BC,∴∠B=∠C=90°,又∵∠ADB=∠EDC,∴△ADB∽△EDC,∴ABBD =ECCD,即AB120=5060,解得:AB=100m.故选D.11.【答案】C【解析】解:过F作FG⊥BC于G,∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=12∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF,∴ABEG =BEFG,∵BE=x,∴EG=BC−BE+CG=4−x+FG,∴44−x+FG =xFG,解得:FG=x,∴y=12×CE×FG=12×(4−x)⋅x,即:y=2x−12x2,故选:C.过F作FG⊥BC于G,求出FG=CG,求出△BAE∽△GEF,得出ABEG =BEFG,求出FG=x,代入y=12×CE×FG求出解析式,根据解析式确定图象即可.本题考查了动点问题的函数图象、正方形性质、角平分线定义、三角形面积的计算、相似三角形的性质和判定的应用等知识,能用x的代数式把CE和FG的值表示出来是解决问题的关键.12.【答案】A【解析】解:∵点A(x1,y1)、B(x2,y2)都在某函数图象上,且当x1<x2<0时,y1>y2,∴当x<0时,y随x的增大而减小.A、当x<0时,y随x的增大而增大,故本选项符合题意;B、y随x的增大而减小,故本选项不符合题意;C、当x<0时,y随x的增大而减小,故本选项不符合题意;D、当x<0时,y随x的增大而减小,故本选项不符合题意;故选:A.由当x1<x2<0时,y1>y2,可知当x<0时,y随x的增大而减小,根据反比例函数、一次函数与二次函数的增减性即可求解.本题考查了反比例函数、一次函数与二次函数的性质,熟练掌握各函数图象的增减性是解题的关键.13.【答案】D【解析】解:如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠CEO=∠DFA=90°,又∵∠COE=∠DAF=60°,∴△COE∽△DAF,又∵OC=2AD,∴DF=12CE,AF=12OE,设OE=a,则CE=√3a,∴AF=12a,DF=√32a,∴C(a,√3a),D(5−12a,√32a),∵函数y=kx(x>0)的图象分别过点C、D,∴a⋅√3a=(5−12a)⋅√32a,解得a=2,∴C(2,2√3),∴k=2×2√3=4√3,故选:D.过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设OE=a,则CE=√3a,AF=12a,DF=√32a,进而得出C(a,√3a),D(5−12a,√32a),函数y=kx(x>0)的图象分别过点C、D,即可得到a的值,进而得到k的值.本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质、等边三角形的性质的综合运用,解决问题的关键是作辅助线构造相似三角形.14.【答案】D【解析】【分析】作PA⊥x轴于点A.那么OA是α的邻边,是点P的横坐标,为cosα;PA是α的对边,是点P的纵坐标,为sinα.解决本题的关键是得到点P的横纵坐标与相应的函数和半径之间的关系.【解答】解:作PA⊥x轴于点A,则∠POA=α,sinα=PA,PO∴PA=OP⋅sinα,∵cosα=AO,PO∴OA=OP⋅cosα.∵OP=1,∴PA=sinα,OA=cosα.∴P点的坐标为(cosα,sinα)故选:D.15.【答案】D【解析】【分析】根据位似变换的性质计算即可.本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.【解答】解:∵△ABC与△A′B′C′相似比为1,若点C的坐标为(4,1),3∴点C′的坐标为(4×3,1×3)或(4×(−3),1×(−3)),∴点C′的坐标为(12,3)或(−12,−3),故选:D.16.【答案】C【解析】【分析】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角;首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确;根据AD//BC,求出S△BDE=S△CDE,推出S△BDE−S△DEH= S△CDE−S△DEH,即S△BHE=S△CHD,故②正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故③正确.【解答】解:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∵在△ADH和△CDH中,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE,∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°−90°=90°,∴AG⊥BE,故①正确;∵AD//BC,∴S△BDE=S△CDE,∴S△BDE−S△DEH=S△CDE−S△DEH,即S△BHE=S△CHD,故②正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故③正确,故选C.17.【答案】1或3【解析】解:x(x−3)=x−3,x(x−3)−(x−3)=0,(x−3)(x−1)=0,x−3=0,x−1=0,x1=3,x2=1,故答案为:1或3.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键.18.【答案】不会【解析】【分析】本题考查了二次函数的应用,掌握二次函数的性质是解决此题的关键.利用配方法求二次函数最值的方法解答即可.【解答】)2+9,解:∵s=12t−4t2=−4(t−32∴汽车刹车后到停下来前进了9m,∵9m<10m,∴这只小狗不会出现危险.故答案为不会.19.【答案】40°【解析】【分析】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故答案为:40°20.【答案】90°【解析】解:延长AD交BC于E,∵∠A=20°,∠B=40°,∴∠AEC=∠A+∠B=20°+40°=60°,∵∠C=30°,∴∠ADC=∠C+∠AEC=30°+60°=90°,故答案为:90°.延长AD交BC于E,根据三角形外角性质求出∠AEC,再根据三角形外角性质求出∠ADC 即可.本题考查了三角形的外角与内角,能熟练地运用三角形的外角性质进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.21.【答案】13【解析】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:39=13,故答案为:13.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】120【解析】解:则OC⊥AB于点D,OC=OB=12×150=75cm,OD=OC−CD=75−30=45cm.在直角△OBD中,BD=√OB2−OD2=√752−452=60(cm),则AB=2BD=120cm.故答案是:120.在直角△OBD中利用勾股定理即可求得BD,然后根据垂径定理即可求得AB的长.此题考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.23.【答案】(3+2√2)π【解析】【分析】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.作辅助线,首先求出∠D′AB的大小,进而求出旋转的角度,利用弧长公式问题即可解决.【解答】解:如图,分别连接OA、OB、OD′、AC、AC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可证:∠OAD′=60°,∴∠D′AB=120°;∵∠D′AB′=90°,∴∠BAB′=120°−90°=30°,由旋转变换的性质可知∠C′AC=∠B′AB=30°;∵四边形ABCD为正方形,且边长为6,∴∠ABC=90°,AC=√62+62=6√2,∴当点D第一次落在圆上时,点C运动的路线长为:30⋅π×6√2=√2π.180以D或B为圆心滚动时,每次C点运动π,以A为圆心滚动两次,以B为圆心滚动一次,以D为圆心滚动两次,所以总路径=√2π×2+π×3=(3+2√2)π.故答案为(3+2√2)π.24.【答案】①②④=−1,【解析】解:∵抛物线的对称轴为直线x=−b2a∴b=2a,所以①正确;∵抛物线开口向下,∴a<0,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以②正确;∵x<−1时,y随x的增大而增大,∴y1>y2,所以③错误;∵抛物线对称轴是直线x=−1,抛物线与x轴的一个交点是A(−3,0),∴抛物线与x轴的一个交点坐标为(1,0),所以④正确.故答案为①②④.=−1,则可对①进行判断;利用抛物线开口方向得根据抛物线的对称轴方程得到−b2a到a<0,利用对称轴位置得到b<0,利用抛物线与y轴的交点在x轴上方得c>0,则可对②进行判断;根据二次函数的性质对③进行判断;利用抛物线的对称性对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.25.【答案】解:(1)∵方程有两个不相等的实数根,∴△>0,即(2k+1)2−4k2=4k+1>0,解得k>−1;4(2)当k=2时,方程为x2+5x+4=0,∵x1+x2=−5,x1x2=4,∴x12+x22=(x1+x2)2−2x1x2=25−8=17.【解析】本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.(1)由方程根的判别式可得到关于k的不等式,则可求得k的取值范围;(2)由根与系数的关系,可求x1+x2=−5,x1x2=4,代入求值即可.26.【答案】解:(1)100;5 ;条形统计图如图=600名学生喜爱打乒乓球;(2)若全校共有3000名学生,该校约有3000×20100(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴同时选中B、C的概率为1.6【解析】=5%,解:(1)由题意m=30÷30%=100,排球占5100∴n=5,足球=100−30−20−10−5=35人,条形图见答案,故答案为100,5.(2)见答案.(3)见答案.【分析】(1)篮球30人占30%,可得总人数,由此可以计算出n,求出足球人数=100−30−20−10−5=35人,即可解决问题;(2)用样本估计总体的思想即可解决问题.(3)画出树状图即可解决问题.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.27.【答案】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2√3,∴AB=√33OB=2,作CG⊥OB于G,∵∠ABO=90°,∴CG//AB,∵OC=AC,∴OG=BG=12OB=√3,CG=12AB=1,∴C(√3,1),∵反比例函数y=kx(x>0)的图象经过OA的中点C,∴k=√3,∴反比例函数的关系式为y=√3x;(2)如图1,过点C作CG⊥OB,∵C(√3,1),∴G(√3,0),∴OG=√3,CG=1,将x=2√3代入y=√3x中,得y=12,∴BD=12,BG=√3,∴S四边形CDBO =S△OCG+S梯形BDCG=12OG⋅CG+12(CG+BD)⋅BG=12×√3×1+12×(1+12)×√3=5√34;(3)△AOF不是等腰三角形,由题意知,E(0,2),由(1)知反比例函数的解析式为y=√3x,∴F(√32,2),OF=√192,∵A(2√3,2),∴AF=3√32,∵OA=4,∴OF≠AF≠OA,∴△AOF不是等腰三角形.【解析】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.(1)解直角三角形求得AB,作CG⊥OB于G,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)求得D的坐标,进而求得BD的长,然后根据S四边形CDBO=S△OCG+S梯形BDCG即可求得;(3)求出OF,AF,OA,得出OF≠AF≠OA,即得到结论.28.【答案】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58°≈0.85x,BD=AB⋅cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【解析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.29.【答案】解:(1)连接OD,则OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C.∴OD//AC,∴∠ODE=∠DEC=90°,∴DE是⊙O的切线;(2)连接AD,∵AB为直径∴∠ADB=90°,∵AB=AC∠ACB=30°∴BD=DC∠B=∠ACB=30°,∵CD=2√3,∴BD=2√3,在Rt△ABD中,cos∠B=BDAB,∴AB=BDcos∠B =√3√32=4,∴OD=OB=12AB=2,在Rt△CDE中,sin∠C=DEDC,∴DE=DCsin∠C=2√3×12=√3,在Rt△ODE中,OE2=OD2+DE2=22+(√3)2=7,∴OE=√7.【解析】(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可.(2)根据三角函数的定义,即可求得AB,再在Rt△CDE中,根据直角三角形的性质,可求得DE,再由勾股定理求出OE即可.本题考查了切线的判定和性质、勾股定理、圆周角定理以及解直角三角形,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.30.【答案】解:(1)过点A作AK⊥AE交DC于点K,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠BAE=∠DAK,∴△ABE≌△ADK(ASA),∴BE=DK,AE=AK,∵∠EAF=45°,∴∠KAF=45°,∴∠EAF=∠KAF,又∵AF=AF,∴△AEF≌△AKF(SAS),∴EF=KF=DF−DK=DF−BE,∴线段BE、DF、EF之间的数量关系为:EF=DF−BE;(2)证明:过点D作DP⊥DG交EA的延长线于点P,则∠CDG=∠ADP,∵∠EAF=45°,DH⊥AF,∴△DPG是等腰直角三角形,∴DG=DP,又∵CD=AD,∴△CDG≌△ADP(SAS),∴∠CGD=∠P=45°,∴∠CGA=90°,∴CG⊥AE;(3)∵AD=DC=AB=3,CF=2,∴DF=5,设BE=x,则CE=3+X,EF=DF−BE=5−x,在Rt△CEF中,CE2+CF2=EF2,∴(3+x)2+22=(5−x)2, 解得x =34,∴EF =5−x =5−34=174,∴AF =√AD 2+DF 2=√32+52=√34. ∵S △ADF =12AF ·DH =12AD ·DF ,∴DH =AD·DF AF=√34=√34,∵△CDG≌△ADP ,∴CG =AP =PG −AG =√2(DG −HG)=√2DH =√17=15√1717.【解析】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定,勾股定理的应用,准确作出辅助线是解答本题的关键.(1)过点A 作AK ⊥AE 交DC 于点K ,证明△ABE≌△ADK(ASA),△AEF≌△AKF(SAS),根据全等三角形的性质得出EF =KF =DF −DK =DF −BE ,即可得出结论; (2)过点D 作DP ⊥DG 交EA 的延长线于点P ,证明△DPG 是等腰直角三角形,△CDG≌△ADP(SAS),根据等腰直角三角形和全等三角形的性质得出∠CGA =90°,进而证明CG ⊥AE ;(3)设BE =x ,则CE =3+X ,EF =DF −BE =5−x ,在Rt △CEF 中利用勾股定理解出x 的值,即可得到EF 和AF 的长,再利用S △ADF =12AF ·DH =12AD ·DF 解出DH 的长,最后根据△CDG≌△ADP ,CG =AP =PG −AG =√2(DG −HG)=√2DH 即可求出CG 的长.31.【答案】解:(1)∵抛物线y =ax 2+bx +c 与x 轴交与A(1,0),B(4,0)两点,与y 轴交于点C(0,4), ∴{a +b +c =016a +4b +c =0c =4. 解得:{a =1b =−5c =4.∴抛物线的解析式为y =x 2−5x +4;(2)∵点A(1,0),B(4,0),C(0,4),∴OA =1,OB =4,OC =4,直线BC :y =−x +4∴S △ABC =12AB ⋅OC =6. ∵S △PBC =43S △ABC ,∴S △PBC =8.在Rt △OBC 中,OB =4,OC =4, ∴BC =√OB 2+OC 2=4√2,∴△PBC 的高ℎ=2√2,直线BC 的解析式为:y =−x +4. ∵OB =OC ,∴P 点位置即直线BC 分别向左右移动4个单位得到的直线与抛物线的交点. ①当P 在直线y =−x +8上时,联立{y =x 2−5x +4y =−x +8, 可得{x 1=2+2√2y 1=6−2√2,{x 2=2−2√2y 2=6+2√2.此时点P 的坐标是(2−2√2,6+2√2),(2+2√2,6−2√2); ②当P 在直线y =−x 上时,联立{y =x 2−5x +4y =−x , 可得{x 1=x 2=2y 1=y 2=−2.此时点P 的坐标是(2,−2).综上P 点的坐标为(2−2√2,6+2√2),(2+2√2,6−2√2);(2,−2);(3)设D(52,n),已知点B(4,0),C(0,4), ∴k CD =4−n−52=2n−85,k BD =n −32=−2n 3当BD ⊥CD 时,即k CD ⋅k BD =−1, ∴2n−85⋅(−23n)=−1,解得n =4±√312. ∴当n >4+√312或n <4−√312时,△BCD 是锐角三角形.【解析】(1)利用待定系数法确定函数解析式; (2)由三角形的面积公式进行解答;(3)设D(52,n),已知点B(4,0),C(0,4),当BD ⊥CD 时,即k CD ⋅k BD =−1,即2n−85⋅(−23n)=−1,由此求得n =4±√312.易得n 的取值范围.本题考查了二次函数的综合题:熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;会利用两点间的距离公式计算线段的长;理解坐标与图形的性质;会运用分类讨论的思想和数形结合的思想解决数学问题.第31页,共31页。
德州市2020初三数学九年级上册期末试题和答案
德州市2020初三数学九年级上册期末试题和答案一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 5.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)6.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°7.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =10.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15C .15,15.5D .16,1511.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°12.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π13.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +14.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 15.cos60︒的值等于( ) A .12B .22C .32D .33二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.已知∠A =60°,则tan A =_____.19.二次函数23(1)2y x =-+图象的顶点坐标为________.20.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.21.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.22.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 23.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.24.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.28.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 29.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.30.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题31.(1)解方程:2670x x +-= (2)计算:()4sin 45831tan 30︒-+--︒32.如图,在ABC ∆中,AD 是高.矩形EFGH 的顶点E 、H 分别在边AB 、AC 上,FG 在边BC 上,6BC =,4=AD ,23EF EH =.求矩形EFGH 的面积.33.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?34.我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=22AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.35.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 39. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.4.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.6.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.7.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.8.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.10.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,+÷=15.5岁,∴中位数为(1516)2故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.11.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.12.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803π=.故选C.13.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F22⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.15.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.18.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A =tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.19.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 20.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC 周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN 的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.21.、 、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.22.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.23.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.24.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.25.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(31x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.28.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.29.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.30.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年山东省德州市乐陵市九年级(上)期末数学试卷一、选择题(每小题3分,满分48分)1.(3分)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4B.k=4C.k≥﹣4D.k≥42.(3分)在反比例函数y=的图象的每个象限内,y随x的增大而增大,则k值可以是()A.﹣1B.1C.2D.33.(3分)如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.4.(3分)如图,△ABC中,∠ABC=50°,∠ACB=60°,点O是△ABC的外心.则∠BOC=()A.110°B.117.5°C.140°D.125°5.(3分)下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A.3个B.4个C.5个D.6个6.(3分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆P A的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆P A的高度为()A.B.C.D.7.(3分)如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.S=2B.S=4C.2<S<4D.S>48.(3分)若函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.9.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.10.(3分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m11.(3分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC =90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.12.(3分)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)13.(3分)如图,点A的坐标是(4,0),△ABO是等边三角形,点B在第一象限,若反比例函数y=的图象经过点B,则k的值是()A.1B.3C.2D.414.(3分)如图,以坐标原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(sinα,cosα)D.(cosα,sinα)15.(3分)如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2B.3C.4D.516.(3分)如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)17.(3分)方程2x2=x的根是.18.(3分)汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=12t﹣6t2,汽车刹车后到停下来前进了m.19.(3分)如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.20.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.21.(3分)婷婷和她妈妈玩猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜,那么,婷婷获胜的概率为.22.(3分)某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为m.23.(3分)如图,边长为1的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为.24.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是.三、解答题(满分78分,共7个大题)25.(10分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.26.(10分)为了了解全校3000名同学对学校设置的体操、篮球,足球、跑步、舞蹈等课外活动目的喜爱情况,在全校范围内随机抽取了若千名同学,对他们喜爱的项目(每人选一项进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题(1)在这次问卷调查中,一共抽查了名同学(2)补全条形统计图(3)估计该校3000名同学中喜爱足球活动的人数(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率27.(10分)如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.28.(10分)某型号飞机的机翼形状如图所示,已知CF、DG、BE所在直线互相平行且都与CE所在直线垂直,AB ∥CE,CD=6m,BE=5m,∠BDG=31°,∠ACF=58°,求AB的长度(参考数据sin58°≈0.84,cos58°≈0.53,tan58°≈1.6,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)29.(12分)如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC,垂足为E(1)求证:直线DE是⊙O的切线;(2)若BC=6,⊙O的直径为5,求DE的长及cos C的值.30.(12分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=°,AB=(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD =2:1,求DC的长31.(14分)如图1,抛物线y=x2+mx+4m与x轴交于点A(x1,0)和点B(x2,0),与y轴交于点C,且x1,x2满足x12+x22=20,若对称轴在y轴的右侧.(1)求抛物线的解析式.(2)如图2,若点P为线段AB上的一动点(不与A、B重合),分别以AP、BP为斜边,在直线AB的同侧作等腰直角三角形△APM和△BPN,试确定△MPN面积最大时P点的坐标.(3)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a的取值范围.2019-2020学年山东省德州市乐陵市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分48分)1.【答案】B【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=4,故选:B.2.【答案】A【解答】解:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k﹣1<0,故选:A.3.【答案】B【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:B.4.【答案】C【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠A=70°,∴∠BOC=2∠A=140°,故选:C.5.【答案】A【解答】解:①对称轴是直线,而直径是线段,圆的每一条直径所在直线都是它的对称轴,所以此项错误;②在同一圆中,长度相等的两条弧是等弧,不在同一圆中不一定是等弧,所以此项错误;③在同一圆中,相等的弦所对的弧也相等,不在同一圆中,相等的弦所对的弧不一定相等,所以此项错误;④根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,故此项正确;⑥根据三角形外接圆的定义可知,任何一个三角形都有唯一的外接圆,故此项正确.故选:A.6.【答案】A【解答】解:设P A=PB=PB′=x,在RT△PCB′中,sinα=,∴x﹣1=x sinα,∴x=.故选:A.7.【答案】A【解答】解:设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),则AC=2b,BC =2a,∵A点在y=的图象上,∴△ABC的面积S===8ab=2×1=2,故选:A.8.【答案】B【解答】解:根据反比例函数的图象位于二、四象限知k<0,根据二次函数的图象确知a>0,b<0,故选:B.9.【答案】D【解答】解:在Rt△ABD中,BD=4,AD=3,∴tan∠ABC==,故选:D.10.【答案】C【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,∴△ABO∽△CDO,∵AO=4m,AB=1.6m,CO=1m,解得:CD=5.4,故选:C.11.【答案】A【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∴∠DAO+∠AOD=180°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴CD=x,∴y=x+1(x>0).故选:A.12.【答案】D【解答】解:A、∵k=3>0,∴y随x的增大而增大,即当x1>x2时,必有y1>y4,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时,y随x的增大而增大,当x>2时y随x的增大而减小,此时>8,C、当x>0时,y随x的增大而增大,此时>0,D、∵对称轴为直线x=2,即当x1>x2时,必有y1<y2故D选项符合;故选:D.13.【答案】D【解答】解:过点B作BC垂直OA于C,如图:∴AO=4,∴OC=2,BC=2,把(2,2)代入反比例函数y=,得k=4.故选:D.14.【答案】D【解答】解:作PC⊥OB于C,在Rt△POC中,OC=OP×cosα=cosα,∴点P的坐标为(cosα,sinα),故选:D.15.【答案】B【解答】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,∵BD∥B′E,∴=,即=,则OE=CE﹣OC=3,故选:B.16.【答案】C【解答】在正方形ABCD中,AB=BC,∠ABE=∠C=90,又∵BE=CF,∴AE=BF,∠BAE=∠CBF,∴∠BGE=90°,故①,②正确;∴,∴∠EBG=∠BAG,∴△BGE∽△ABE,故③不正确∴S△ABE=S△BFC,∴S四边形CEGF=S△ABG,故选:C.二、填空题(每小题3分,共24分)17.【答案】见试题解答内容【解答】解:2x2=x,2x2﹣x=5,x=0,2x﹣1=0,故答案为:x2=0,x2=.18.【答案】见试题解答内容【解答】解:∵s=12t﹣6t2=﹣8(t﹣1)2+6,∴当t=1时,s取得最大值6,∴汽车刹车后到停下来前进了6m,故答案为:4.19.【答案】见试题解答内容【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∴∠D=60°(直角三角形的两个锐角互余),故答案是:60°.20.【答案】18°.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.21.【答案】见试题解答内容【解答】解:根据题意画图如下:则婷婷获胜的概率为;故答案为:.22.【答案】见试题解答内容【解答】解:过圆心点O作OE⊥AB于点E,连接OC,∵点C是该门的最高点,∴CO⊥AB,连接OA,∴AE==0.5m,∵OA2=AE2+OE2,解得:R=,故答案为:.23.【答案】见试题解答内容【解答】解:如图,∴∠B′AF=60°∴边长为1的正六边形在足够长的桌面上滚动(没有滑动)一周,故答案为2π.24.【答案】见试题解答内容【解答】解:∵对称轴x=﹣=1,∴2a+b=0,①正确;∴b>0,∴c>0,∵把抛物线y=ax7+bx+c向下平移3个单位,得到y=ax2+bx+c﹣4,∴方程ax2+bx+c=3有两个相等的实数根,③正确;∴与x轴的另一个交点是(﹣2,0),④错误;∴⑤正确.故答案为:①③⑤.三、解答题(满分78分,共7个大题)25.【答案】见试题解答内容【解答】解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m﹣1)≥0,解得:m≤2;∴(x1+x2)6﹣2x1•x2=6x1•x7,解得:m=.∴符合条件的m的值为.26.【答案】见试题解答内容【解答】解:(1)∵喜欢跑步的有5名同学,占10%,∴在这次问卷调查中,一共抽查了学生数:5÷10%=50(名);(2)喜欢足球人数:50﹣5﹣20﹣5﹣3=17(人);(4)画树状图得:∵共有12等可能的结果,恰好选中甲、乙两位同学的有2种情况,∴恰好选中甲、乙两位同学的概率为:=.27.【答案】见试题解答内容【解答】解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴BD==,S△OBD=|k|,∵反比例函数y=(k≠0)的图象在一三象限,∴反比例函数的表达式为y=;∴S△AOC=7﹣=2,∴y A=5,∴点A的坐标为(,2).28.【答案】见试题解答内容【解答】解:如图,在Rt△BDE中,∴DE=tan31°•BE=0.60×5=3m,∵tan∠ACP=,∴AB=BP﹣AP=3+6﹣8=5m,答:AB的长度为1m.29.【答案】见试题解答内容【解答】(1)证明:连接OD.∵D是BC的中点,O是AB的中点,∴∠CED=∠ODE,∴∠CED=∠ODE=90°,∴DE是⊙O的切线;∴∠ADB=90°,∵⊙O过BC的中点D,∴AC=AB=5,CD=BD=3,∴DE==,cos C==.30.【答案】见试题解答内容【解答】解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∴∠ADB=∠OAC=75°.∴△BOD∽△COA,又∵AO=,∴AD=AO+OD=3.∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,故答案为75,7.∴∠DAC=∠BEA=90°.∴△AOD∽△EOB,∵BO:OD=1:3,∴EO=2,∵∠ABC=∠ACB=75°,∴AB=5BE.解得:BE=3,在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).31.【答案】见试题解答内容【解答】解:(1)x1+x2=﹣2m,x6x2=8m,则x12+x22=(x3+x2)2﹣2x8x2=20,解得:m=5(舍去)或﹣1;(2)令y=0,则x=﹣3或4,故点A、B的坐标分别为:(﹣2,0)、(4,0),则AB=5;S△MPN=×PN×PM=a(6﹣a)∴当a=3时,S△MPN最大,此时OP=3,故点P(1,0);由图象看,a≥﹣且a+2≤,解得:﹣≤a≤.。