第二章 多项式插值

合集下载

多项式插值的原理及其应用

多项式插值的原理及其应用

多项式插值的原理及其应用在数学领域中,插值是指基于一系列已知的数据点,通过构造一个合适的函数,来推断出在数据点之间的其他未知数值。

在实际应用中,许多问题都可以通过插值来得到解决,比如图像处理、信号处理、金融模型以及物理模拟等。

其中,最常用的插值方法就是多项式插值。

一、多项式插值的原理多项式插值的原理基于拉格朗日插值法,其基本的思想是利用已知的 n 个数据点,构造一个 n 次多项式,使这个多项式经过这 n 个数据点,从而可以通过这个多项式来推算出其他的数据点。

假设我们已知的 n 个数据点为(x1, y1), (x2, y2), …, (xn, yn),那么一个 n 次多项式的一般表达式可以表示为:f(x) = a0 + a1x + a2x^2 + … + anxn其中,a0, a1, …, an 是多项式的系数。

根据拉格朗日插值公式,我们可以用这 n 个数据点来构造出 n次多项式:f(x) = Σ yi * L(x, i)其中,L(x, i) 是一个基函数,用来表达 f(x) 在 x = xi 处的取值,它可以表示为:L(x, i) = Π (x - xj) / (xi - xj) (j ≠ i)那么,对于多项式插值,我们需要做两个步骤:1. 找到合适的基函数,构造出 n 次多项式。

2. 利用已知的 n 个数据点,求解出多项式的系数。

二、多项式插值的应用1. 图像处理在数字图像处理中,多项式插值可以被用来进行图像重构,比如将缺失或损坏的像素点进行恢复。

另外,多项式插值还可以被用来进行图像缩放和图像旋转。

2. 信号处理在信号处理中,多项式插值可以被用来进行信号重构,比如信号平滑和信号插值。

除此之外,多项式插值还可以被用来进行谱估计以及信号滤波。

3. 金融模型在金融模型中,多项式插值可以被用来进行资产定价,比如期权和债券的定价。

另外,多项式插值还可以被用来进行股票市场预测和金融风险评估。

4. 物理模拟在物理模拟中,多项式插值可以被用来进行轨迹估计,比如弹道计算和航空航天工程。

多项式的插值多项式与Lagrange插值知识点

多项式的插值多项式与Lagrange插值知识点

多项式的插值多项式与Lagrange插值知识点多项式的插值多项式是数值分析中的重要概念,用于逼近给定数据点集合的函数。

通过插值,我们可以通过已知的数据点,构造出一个多项式函数,从而对未知数据点进行预测和估计。

Lagrange插值是一种常用的插值方法,具有简单易懂的形式和计算方法。

1. 插值多项式的定义插值多项式是指通过已知数据点集合,构造一个多项式函数,该函数在已知数据点上与原函数完全相等。

插值多项式在数值计算、信号处理、图像处理等领域都有广泛的应用。

2. Lagrange插值的原理Lagrange插值是一种基于多项式插值的方法,它通过构造一个满足一定条件的插值多项式来逼近原函数。

Lagrange插值的思想是,通过构造一系列的基函数,使得插值多项式在每个数据点上的取值等于对应数据点的函数值,并且在其他数据点上的取值为0。

3. Lagrange插值的公式Lagrange插值的公式非常简洁明了。

设已知的数据点集合为{(x0, y0), (x1, y1), ...,(xn, yn)},其中xi和yi分别代表数据点的横坐标和纵坐标。

插值多项式的公式可以表示为:P(x) = ∑(i=0 t o n) [yi * Li(x)]其中,Li(x)为Lagrange基函数,其公式为:Li(x) = ∏(j=0 to n, j!=i) [(x - xj) / (xi - xj)]4. Lagrange插值的优点Lagrange插值具有以下几个优点:(1) 简单易懂:Lagrange插值的公式非常简洁明了,易于理解和计算。

(2) 泛用性强:Lagrange插值适用于任意数量的数据点,能够满足不同场景的需求。

(3) 高精度:在数据点较为密集的情况下,Lagrange插值能够提供较高的插值精度。

5. Lagrange插值的局限性尽管Lagrange插值具有许多优点,但也存在一些局限性:(1) 数据点过于离散:当数据点过于离散时,Lagrange插值可能会导致插值多项式的震荡现象,从而影响插值结果的准确性。

第二章插值与拟合

第二章插值与拟合

1 不为零。
xn
n xn xn
实 用 测 量 数 据 处 理 方 法
中 南 大 学
三、线性插值
假定已知区间[xk, xk+1] 的端点处的函数值 yk=f(xk), yk+1=f(xk+1),要求线性插值多项式 L1(x),使它满足 L1(xk)=yk
L1(xk+1)=yk+1
则L1(x)的表达式可按下式给出:
实 用 测 量 数 据 处 理 方 法
中 南 大 学
l k 1 ( x k 1 ) 1, l k 1 ( x j ) 0( j k , k 1) l k ( x k ) 1, l k ( x j ) 0( j k 1, k 1) (28) l k 1 ( x k 1 ) 1, l k 1 ( x j ) 0( j k 1, k ) 满足(28 )式的插值基函数很容 易求出的,例如求 l k 1 ( x),因为它有两个零点 k 和x k 1,故可表达为: x l k 1 ( x) A( x x k )(x x k 1 ) 其中A为待定系数可由 k 1 ( x k 1 ) 1定出: l 1 A ( x k 1 x k )(x k 1 x k 1 ) ( x x k )(x x k 1 ) 于是l k 1 ( x)= ,同理可得 ( x k 1 x k )(x k 1 x k 1 ) ( x x k-1 )(x x k 1 ) ( x x k 1 )(x x k ) l k ( x)= ,l k 1 ( x)= ( x k x k-1 )(x k x k 1 ) ( x k+1 x k 1 )(x k 1 x k )
解:2、抛物插值

计算方法(2)-插值法

计算方法(2)-插值法



2
2
yk1 2

f (xk

h
2
),
y
k

1 2

f (xk

h) 2
21
3.牛顿向后插值公式
Nn (xn

th)

yn

tyn

t(t 1) 2!
2
yn



t(t

1)


(t n!

n

1)

n
yn
(t 0)
插值余项
Rn
(xn

th)

t(t
1) (t (n 1)!
Nn (x0

th)

y0

ty0

t(t 1) 2!
2
y0Leabharlann 插值余项t(t

1)


(t n!

n

1)
n
y0
Rn (x0

th)

t(t
1) (t (n 1)!
n)
h n1
f
(n1) ( ),
(x0 , xn )
20
二.向后差分与牛顿向后插值公式
杂.

根据f(x)函数表或复杂的解析表达式构
造某个简单函数P(x)作为f(x)的近似.
2
2.问题的提法
1)已知条件 设函数y f (x)在区间[a,b]上
连 续, 且 在n 1个不 同点a x0 , x1, , xn b 上 分 别 取 值y0 , y1, , yn

第二章插值法多项式插值的存在性

第二章插值法多项式插值的存在性

第二章 插值法⏹ 多项式插值的存在性 ⏹ Lagrange 插值 ⏹ Newton 插值 ⏹ Hermit 插值 ⏹ 分段低次插值 ⏹ 三次样条插值在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的。

虽然其函数关系)(x f y =在某个区间[]b a ,是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间a ,b]上一些离散点上的函数值、导数值等,因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述。

还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。

插值法就是寻求近似函数的方法之一.在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用。

本章主要介绍多项式插值、分段多项式插值和样条插值. 2.1 插值多项式的存在唯一性 2.1.1 插值问题设函数)(x f y =在区间],[b a 上有定义,且已知函数在区间],[b a 上n+1个互异点n x x x ,,,10 处的函数值)(i i x f y = i=0,1,…,n ,若存在一个简单函数)(x p y =,使其经过)(x f y =上的这n+1个已知点),(,),,(),,(1100n n y x y x y x (图5-1),即n i y x p i i ,,1,0 ,)( == (2.1.1)那么,函数)(x p 称为插值函数,点n x x x ,,,10 称为插值节点,],[b a 称为插值区间,求)(x p 的方法称为插值法,)(x f 称为被插函数。

若)(x p 是次数不超过n 的多项式,记为)(x p n ,即n n n x a x a a x p +++= 10)(则称)(x p n 为n 次插值多项式,相应的插值法称为多项式插值;若)(x p 为分段多项式,称为分段插值,多项式插值和分段插值称为代数插值。

数值方法第二章 插值法2

数值方法第二章 插值法2

当选择代数多项式作为插值函数类时,称为代数多项 式插值问题:
代数多项式插值问题:
设函数y=f(x)在[a,b]有定义, 且已知在n+1个点 a≤x0<x1<……<xn≤b上的函数值y0, y1,……,yn.,要求一 个次数不高于n的多项式
Pn ( x) a0 a1 x a2 x 2 an x n
现设 x x j 由 Rn ( x j ) f ( x j ) Pn ( x j ) 0
故知 Rn (x) 可表示为
(j=0,1,…,n),
Rn ( x) k ( x)n1 ( x) k ( x)( x x0 )( x xn )
关键是求 k ( x) ?
(2.2.10)
grange插值多项式
现在考虑一般的插值问题:
满足插值条件 Ln ( xk )
y
பைடு நூலகம்
k
(k 0,1,2,,n) (2.2.1)
的次数不超过n的多项式显然为 : Ln ( x) l0 ( x) y0 l1 ( x) y1 ln ( x) yn
这是因为 (1) Ln ( xk ) lk ( xk ) yk yk (k 0,1,2,,n) (2)次数不超过n
3
1 f ( ) ( x) 2
3
1 2 R1 ( x) ( x x0 )(x x1 ) 8 3 1 2 R1 (115) (115 100)(115 121 ) 8 3 1 (115 100)(115 121 max 2 ) 100 ,121 8
其中,Ak为待定系数,由条件 lk ( xk ) 1 可得
1 Ak ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )

多项式插值的数学原理

多项式插值的数学原理

多项式插值的数学原理在数学中,插值是指通过一些已知的数据点来构造一个函数,该函数可以从给定的输入(常常是一个有限数列)来预测输出的值。

插值的应用十分广泛,例如在图像编辑、信号处理、逼近函数、函数求值等方面都有所应用。

其中,多项式插值是最为常见的一种。

多项式插值的基本思想是,通过已知的数据点作为插值多项式的系数,来唯一确定一个函数。

具体来说,假设有 $n+1$ 个互不相同的数据点 $(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$,我们要找到一个 $n$ 次多项式 $p(x)$,满足 $p(x_i) = y_i$,其中 $i=0, 1, \cdots, n$。

次数为 $n$ 的多项式可以表示成如下形式:$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$因此,我们需要求解 $n+1$ 个未知量 $a_0, a_1, \cdots, a_n$,利用已知数据点的条件,可以列出 $n+1$ 个线性方程:$$\begin{cases} p(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \cdots +a_n x_0^n = y_0 \\ p(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \cdots + a_nx_1^n = y_1 \\ \vdots \\ p(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \cdots + a_n x_n^n = y_n \end{cases}$$将以上 $n+1$ 个方程联立,得到一个 $(n+1) \times (n+1)$ 的线性方程组。

如果这个方程组的系数矩阵满秩,则方程组有唯一解,由此得到的多项式$p(x)$ 就是所求的插值函数。

在实际的计算中,常常利用矩阵消元或 LU 分解等算法来求解这个线性方程组。

多项式插值计算方法

多项式插值计算方法

多项式插值计算方法引言:在数学和计算机科学中,插值是一种常见的数值计算方法,用于通过已知的数据点来估计未知的数据点。

多项式插值是插值方法中的一种,通过构造一个多项式函数来逼近数据点,从而实现插值的目的。

本文将介绍多项式插值的基本概念、计算方法和应用领域。

一、多项式插值的基本概念多项式插值是指通过已知的n个数据点(x1, y1), (x2, y2), ..., (xn, yn),构造一个n次多项式函数P(x)来逼近这些数据点。

通过将P(x)代入已知的数据点,可以满足P(xi) = yi,即多项式函数经过已知数据点。

二、多项式插值的计算方法1. 拉格朗日插值法拉格朗日插值法是一种常用的多项式插值计算方法。

通过构造一个满足已知数据点的n次多项式函数P(x),可以使用拉格朗日插值公式来计算多项式的系数。

具体步骤如下:- 构造插值多项式P(x) = L1(x)y1 + L2(x)y2 + ... + Ln(x)yn,其中Li(x)为拉格朗日基函数。

- 拉格朗日基函数的计算公式为Li(x) = Π(j=1 to n, j ≠ i)(x-xj)/(xi-xj),即除了第i个数据点外,其他数据点的插值基函数的乘积。

- 将已知数据点代入插值多项式,可以得到相应的系数,进而得到插值多项式P(x)。

2. 牛顿插值法牛顿插值法是另一种常用的多项式插值计算方法。

通过构造一个满足已知数据点的n次多项式函数P(x),可以使用牛顿插值公式来计算多项式的系数。

具体步骤如下:- 构造插值多项式P(x) = c0 + c1(x-x0) + c2(x-x0)(x-x1) + ... + cn(x-x0)(x-x1)...(x-xn-1),其中ci为差商。

- 差商的计算公式为ci = f[x0, x1, ..., xi]/(xi-x0)(xi-x1)...(xi-xi-1),即已知数据点的函数值的差商。

- 使用差商递推公式可以计算出所有的差商,进而得到插值多项式P(x)。

求的二次插值多项式

求的二次插值多项式

第二章 插值法1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表用线性插值及二次插值计算的近似值。

解:由表格知,01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144x x x x x f x f x f x f x f x ======-=-=-=-=-若采用线性插值法计算ln 0.54即(0.54)f , 则0.50.540.6<<2112122111122()10(0.6)()10(0.5)()()()()()x x l x x x x x x l x x x x L x f x l x f x l x -==----==---=+6.93147(0.6) 5.10826(x x =--- 1(0.54)0.62021860.620219L ∴=-≈-若采用二次插值法计算ln 0.54时,1200102021101201220212001122()()()50(0.5)(0.6)()()()()()100(0.4)(0.6)()()()()()50(0.4)(0.5)()()()()()()()()()x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------==----=++500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5x x x x x x =-⨯--+---⨯--2(0.54)0.615319840.615320L ∴=-≈- 3.给全cos ,090x x ≤≤ 的函数表,步长1(1/60),h '== 若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。

(完整版)数值分析插值法

(完整版)数值分析插值法

第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。

(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2. 由实验给出数据表x 0.0 0.1 0.2 0.3 0.5 0.8 1.0y 1.0 0.41 0.50 0.61 0.91 2.02 2.46试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。

多项式插值与拟合

多项式插值与拟合

多项式插值与拟合多项式插值与拟合技术是数学领域中一种常用的数据处理方法。

它可以有效地根据给定的数据点集,通过构造一个多项式函数,来近似描述数据的整体趋势。

本文将介绍多项式插值与拟合的基本原理、方法和应用。

一、多项式插值的原理和方法多项式插值是一种通过已知数据点集来构造与之完全吻合的多项式函数的方法。

它基于一个重要的数学定理:给定n+1个不同的数据点,存在一个n次多项式可以通过这些数据点。

在多项式插值中,最常用的插值方法是拉格朗日插值和牛顿插值。

拉格朗日插值使用一个n次多项式来逼近给定的数据点,使得多项式通过所有数据点;而牛顿插值则利用了差商的概念,使用一个n次多项式来逼近数据点,从而构造插值多项式。

二、多项式拟合的原理和方法多项式拟合是一种通过已知数据点集来找到一个次数较低的多项式函数,以最佳拟合数据的方法。

与多项式插值不同,多项式拟合不要求多项式经过所有数据点,而是通过最小化误差函数来找到最优解。

最常见的多项式拟合方法是最小二乘拟合,也称为线性最小二乘拟合。

该方法通过最小化数据点到拟合曲线的垂直距离之和,来得到最优的拟合曲线。

经过最小二乘拟合后,可以得到一个最佳的多项式函数,以最小化误差。

三、多项式插值与拟合的应用多项式插值与拟合广泛应用于各个领域的数据处理和分析中。

以下列举几个典型的应用场景:1. 数据重建:当给定一组具有缺失数据点的数据集时,通过多项式插值可以估计出缺失数据点的数值,从而恢复完整的数据集。

2. 数据平滑:多项式拟合可以通过将原始数据点拟合为平滑的曲线或者曲面,从而更好地展示数据的整体趋势,去除数据的噪声干扰。

3. 数据预测:基于已知的数据点,可以使用多项式拟合方法预测未来或未知的数据点的数值,为决策和规划提供依据。

4. 图像处理:多项式插值和拟合在图像处理中也有广泛应用,例如图像修复、数字图像放大等。

总结:多项式插值与拟合是一种有效的数据处理方法,可以用于数据重建、数据平滑、数据预测和图像处理等领域。

数值分析第二章PPT

数值分析第二章PPT
提示已知道
§4 差分与等距节点插值
上节讨论任意分布节点的插值公式,应用时常碰到等距 节点的情形,此时插值公式可简化,为此先介绍差分. 一、差分及其性质
差分的基本性质:
差分表:
k fk ∆
∆2
0 f0
∆f0
1 f1
∆2f0
∆f1
2 f2
∆2f1
∆f2
3 f3
∆2f2
∆f3

4 f4 ┆
┆┆
• 解 x0 = − 1, x1 = 1,
f(0.5)≈H3(0.5) = 3.5625.
例2 给定 f(0) = 1, f(1) = 2, f '(0) = 2, 构造二次插值函数。
• 解 公式法

设 f '(1) = m1,有三次Hermite插值公式得,
令 m1 = 0,得到二次Hermite插值函数 H2(x) = −x2 + 2x + 1.
利用
sin 50内0 插L1(通51p8常) 优0于.77外614推。这选里择
而 要计算的 x 所在的区间的
端点,插值效果较好。
sin 50 = 0.7660444…
外推 /* extrapolation */ 的实际误差 0.01001
利用
sin 50 0.76008,
内插 /* interpolation */ 的实际误差 0.00596
二、拉格朗日插值多项式
需要指出…
练习 给定数据表
xi
ห้องสมุดไป่ตู้
01 2
3
yi
0 1 5 14
求三次拉格朗日插值多项式L3(x).
三、插值余项与误差估计

计算方法-第2章-1、插值法(拉格朗日插值)

计算方法-第2章-1、插值法(拉格朗日插值)

2019/1/15
26
证明:假设在区间[a,b]上f(x)的插值多项式为 Ln ( x) 令
Rn ( x) f ( x) Ln ( x)
显然在插值节点为 xi (i 0,1,, n)上 Rn ( xi ) f ( xi ) Ln ( xi ) 0 , i 0,1,, n 因此Rn ( x)在[a, b]上至少有n 1个零点
(k 0,1,2,, n)

n1 ( x) Ln ( x) yk ' ( x x ) k 0 k n 1 ( xk )
n
2019/1/15
18
总 结
于是, y f ( x)在节点xi (i 0 ,1, , n)上, 以l j ( x) (i 0 ,1, , n) 为插值基函数的插值多 项式(记为Ln ( x))为
本章只讨论多项式插值与分段插值
2019/1/15 7
§ 2.2
拉格朗日插值
• 此插值问题可表述为如下: • 问题 求作次数 n 多项式 Ln ( x) ,使满足条件
Ln x yi , (i 0,1,, n)
• 这就是所谓的拉格朗日(Lagrange)插值。
2019/1/15
8
§ 2.2.1
线性插值的局限性
2019/1/15
12
三、抛物插值
问题 求作二次式 L2 ( x) ,使满足条件
L2 ( x j ) y j
( j k 1, k , k 1)
二次插值的几何解释是用通过三个点
的抛物线来近似考察曲线,故称为拋物插值。类似于线性 插值,构造基函数,要求满足下式:
L2(x) yk 1lk 1 ( x) yklk ( x) yk 1lk 1 ( x)

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

第2章 插值法(新演示)

第2章 插值法(新演示)

第二章 插值法在科学研究与工程技术中,常常遇到这样的问题:由实验或测量得到一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。

反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。

此外,一些函数虽有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。

解决这种问题的方法有两类:一类是给出函数()f x 的一些样点,选定一个便于计算的函数()x ϕ形式,如多项式、分式线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似,这就是插值法;另一类方法在选定近似函数的形式后,不要求近似函数过已知样点,只要求在某种意义下在这些样点上的总偏差最小。

这类方法称为曲线(数据)拟合法。

设已知区间[,]a b 上的实值函数f 在1n +个相异点[,i x a b ∈处的函数值(),0,1,,i i f f x i n == ,要求构造一个简单函数()x ϕ作为函数()f x 的近似表达式()()f x x ϕ≈使得()(),0,1,,i i i x f x f i n ϕ=== (2-1)这类问题称为插值问题。

称f 为被插值函数;()x ϕ为插值函数;0,,n x x 为插值节点;(2-1)为插值条件。

若插值函数类{()}x ϕ是代数多项式,则相应的插值问题为代数插值。

若{()}x ϕ是三角多项式,则相应的插值问题称为三角插值。

若{()}x ϕ是有理分式,则相应的插值问题称为有理插值。

§1 Lagrange 插值1.1 Lagrange 插值多项式设函数f 在1n +个相异点01,,,n x x x 上的值(),0,1,,i i f f x i n == 是已知的,在次数不超过n 的多项式集合n P 中,求()n L x 使得(),0,1,,n i i L x f n n == (2-2)定理1 存在惟一的多项式n n L P ∈满足插值条件(2-2)。

计算方法 第二章 插值函数

计算方法 第二章 插值函数

第二章 插值法教学目的与要求:了解插值问题的提法,掌握插值多项式的定义。

了解多项式插值、插值多项式的截断误差、余项和Lagrange 插值多项式的定义,理解插值多项式的唯一性、插值基函数的定义,掌握插值余项定理的证明、线性插值、抛物插值以及一般Lagrange 插值多项式的推导。

重点与难点:基函数思想及Lagrange 插值多项式■ 教学内容:§ 1 插值问题与插值多项式一、插值问题 插值的基本思想 二、插值函数的定义§ 2 Lagrange 插值一、多项式插值1.多项式插值的定义:用多项式函数来近似代替的插值方法,称之为多项式插值式 )(x f 2.插值多项式的唯一性 二、插值多项式的误差估计1.定义:若在上用],[b a )(x n ϕ近似,则)(x f )()()(x x f x R n n ϕ−=称为插值多项式的截断误差,又称为插值多项式的余项。

关于插值余项的估计有下面的定理。

2.误差估计定理 定理2.1 设在区间上连续,在内存在,是区间上的互异节点,)()(x fn ],[b a )()1(x f n +),(b a n x x x ,,,10L ],[b a )(x n ϕ是满足插值条件的插值多项式,则对任意的],[b a x ∈,插值余项)()!1()()()()(1)1(x n f x x f x R n n n n +++=−=ωξϕ,其中的],[b a ∈ξ且依赖于x ,。

∏=+−=ni i n x x x 01)()(ω三、Lagrange 插值多项式1.线性插值 2.插值基函数3.Lagrange 插值多项式小结:1. 插值的基本思想;2. 插值多项式的存在性;3. Lagrange 插值多项式:注意它的规律;4. Lagrange 插值的余项和误差估计问题。

作业:习题2 第1、2题。

§ 3 Newton 插值教学目的与要求:了解Newton 插值的多项式的产生基础,理解差商的定义及性质、差分的定义及性质,掌握Newton 插值和等距结点插值多项式的推倒过程。

多项式插值计算方法

多项式插值计算方法

多项式插值计算方法引言:多项式插值是数值分析中常用的一种方法,用于通过已知数据点构造一个多项式函数,以逼近或插值这些数据点。

本文将介绍多项式插值的基本概念、插值多项式的计算方法以及应用场景。

一、多项式插值的基本概念在实际问题中,我们经常需要通过有限个数据点来近似或还原一个函数。

多项式插值是一种常见的数值方法,通过构造一个多项式函数来逼近或插值已知的数据点。

多项式插值的基本思想是:假设我们有n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中xi为已知的节点,yi为对应的函数值。

我们希望找到一个次数不超过n的多项式P(x),使得P(xi)=yi。

这个多项式P(x)就是我们要求解的插值多项式。

二、拉格朗日插值多项式的计算方法拉格朗日插值多项式是多项式插值的一种常用方法。

它的基本思想是构造n次多项式,使得多项式在每个节点上都满足插值条件。

具体计算步骤如下:1. 根据已知的n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),构造n 次拉格朗日基函数:Li(x) = Π[j=0, j≠i]^(n) (x-xj) / (xi-xj),其中i=0,1,...,n。

2. 构造拉格朗日插值多项式:P(x) = Σ[i=0]^(n) yi * Li(x),其中i=0,1,...,n。

三、牛顿插值多项式的计算方法牛顿插值多项式是另一种常用的多项式插值方法。

它的基本思想是通过差商来递推计算插值多项式的系数。

具体计算步骤如下:1. 根据已知的n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),计算差商表:f[x0] = y0,f[x1] = (y1-y0) / (x1-x0),f[x2] = (f[x2]-f[x1]) / (x2-x1),...f[xn] = (f[xn]-f[xn-1]) / (xn-xn-1)。

2. 构造牛顿插值多项式:P(x) = f[x0] + Σ[i=1]^(n) f[x0, x1, ..., xi] * Π[j=0]^(i-1) (x-xj),其中i=1,2,...,n。

多项式插值名词解释

多项式插值名词解释

多项式插值名词解释
多项式插值是一种数学方法,利用已知的若干点的函数值,找到一个多项式来近似函数在这些点之间的行为。

在给定n+1个点(称为插值点)的情况下,这种方法用于找到一个多项式(称为插值多项式),使得它正好穿过这些点。

在插值多项式通过所有给定点之后,它在其他点的函数值可以用这个多项式的值近似。

常用的多项式插值方法有直接法、拉格朗日插值法和牛顿插值法。

这种方法可以用于曲线拟合、回归等应用领域。

此外,多项式插值还可以用于求解函数的最小值点,通过找到插值多项式的极小点来逼近函数的最小值点。

这种方法称为多项式插值的搜索方法。

以上内容仅供参考,建议查阅关于多项式插值的资料获取更多专业信息。

插值法

插值法

第一节 Lagrange插值
一、问题提出
设 x0 , x1 xn 为给定的节点,yi f ( xi ),i 0,1,n
为相应的函数值,求一个次数不超过 n 的多项式 Pn (x), 使其满足
Pn ( xi ) yi,
i 0,1,n .
这类问题称为插值问题。 f ( x) 称为被插值函数,Pn ( x) 称 为插值函数, x0 , x1 xn 称为插值节点
差商
二阶差商
三阶差商 四阶差商
x0 f ( x0 ) x1 f ( x1 )
x2 f ( x2 )
f [ x0 , x1 ]
f [ x1 , x2 ]
f [ x0 , x1 , x2 ]
f [ x0 , x1 , x2 , x3 ]
1 2 3 4
0 1 2 3 4
x3
f ( x3 ) f [ x2 , x3 ] f [ x1 , x2 , x3 ]
评价
优点: Lagrange基函数容易构造,结构紧凑,便于理 论研究. 缺点: 当增加或减少插值结点时,基函数需要重新 构造,不便于实际的计算使用
第二节 Newton插值
一、差商定义及性质
1.差商定义 f ( x ) f ( x ) i j f [ xi , x j ] , i j 为 f ( x) 在 xi , x j 称 两点处的一阶差商.xi x j
( n1) ( ) f ( n1) ( )
f ( x) Pn ( x) (n 1)! 0 ( x)
由此得
. f ( n1) ( ) Rn ( x) f ( x) Pn ( x) n1 ( x) (n 1)! 定理得证.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x − x1 l0 ( x) = x0 − x1
x − x0 l1 ( x) = x1 − x0
x − x0 x − x1 y0 + y1 x0 − x1 x1 − x0
可以看出
L1 ( x) =
的线性组合得到,其系数分别为 y0,y1 称 l0 ( x), l1 ( x)为节点 x0 , x1 的线性插值基函数
26
ξ ∈ (ξ 0 , ξ 1 ) 使得 ϕ ′′(ξ ) = 0
Lagrange插值的截断误差 定理: 设Ln(x)是过点x0 ,x1 ,x2 ,…xn的 n 次插值多 项式, f ( x ) ∈ C n [a, b] ,f(n+1)(x)在[a,b]上存在,其中 [a,b]是包含点x0 ,x1 ,x2 ,…,xn的任一区间,则对 任意给定的x∈[a,b],总存在一点ξ∈(a,b)(依赖 于x)使
xn yn
求一个n次插值函数 Ln ( x) 满足
Ln ( x) = yi (i = 1, 2,L , n)
21
n次插值多项式(3)
构造各个插值节点上的基函数 li ( x) (i = 0,1,L , n) 满足如下条件
xi l0 ( x) l1 ( x) x0 x1 x2
L L L L
xn
1 0
Rn ( x ) = f ( x ) − Ln ( x ) =
f
( n +1 )
(ξ )
( n + 1 )!
ω n +1 ( x )
其中 ωn +1 ( x) = ( x − x0 )( x − x1 )...( x − xn ) ,f(n+1)(ξ) 是f(x) 的n+1阶微商在 ξ 的值。
证明: 记 Rn(x) = f(x) - Ln(x) 显然 Rn(xi ) =0 ,i=0,1,…,n, 故可设Rn(x)=K(x) ωn+1(x) 现在[a,b]上任意固定一点x,引进辅助函数 g(t)=f(t)- Ln(t)-K(x)ωn+1(t), (*) 则g(t)在[a,b]上具有n阶连续导数,在(a,b)内存在n+1阶 导数,在 t= x0, x1,…, xn, x诸点处皆等于零,即g(t)在 [a,b]中有n+2个零点,由Rolle定理知g'(t)在[a,b]中有n+1 个零点,如此反复,最后可推知g(n+1)(t)在[a,b]中有1个 零点, ,即有 g(n+1)( ξ)=0, a< ξ<b. 因为ωn+1(t)是n+1次多项式, ωn+1(n+1)(t)=(n+1)!,又因为 ϕn(t)是次数为n的多项式,因此ϕn (n+1)(t) = 0 。这样,由 (*)式便有 ( n +1) ( n +1) ( n +1) ( n +1)
=∏
j =0 j≠k
n
x − xj
xk − x j
从而得n 阶拉格朗日(Lagrange)插值公式:
⎛ n ⎞ x − xj ⎟ ⎜ Pn ( x ) = ∑ l k ( x ) yk = ∑ ⎜ ∏ ⎟ yk k =0 ⎜ j =0 xk − x j ⎟ k =0 ⎝ j≠k ⎠
n n
25
n次插值多项式(7)
5
存在唯一性定理证明(续)
此方程组的系数行列式为
1 x0 D= 1 x1 LL 1 xn

x x
2 0
L x L x
n 0
2 1
n 1
=
0≤ j < i ≤ n
∏(x
i
− xj)
x
2 n
L x
n n
范得蒙行列式 !
xi ≠ x j
i = 1,2, L n;
j = 1,2, L n
时,
D ≠ 0, 因此,Pn(x)由a0, a1,…, an唯一确定。
6
插值方法
一、解方程组法: 类似插值唯一性定理证明过程,先设插值多项式函数 为
n Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x,将
n +1 个节点的
函数值代入多项式里,便得到 所要求的插值多项式。
个等式,得到一个关 n +1
于多项式里系数的线性方程组,解此线性方程组,便得到
二、基函数法:一种既能避免解方程组,又能适合于计算机 求解的方法,下面将具体介绍。
7
拉格朗日插值公式
拉格朗日(Lagrange)插值公式的基本思想是, 把 pn(x) 的 构 造 问 题 转 化 为 n+1 个 插 值 基 函 数 li(x)(i=0,1,…,n)的构造。
8
线性插值函数
f(x)
j =0 j≠k n
又由
lk ( x k ) = 1
,得:
1 λ= ( xk − x0 )( xk − x1 )L( xk − xk −1 )( xk − xk +1 )L( xk − xn )
24
n次插值多项式(6)
( x − x0 )( x − x1 )L ( x − x k −1 )( x − x k +1 )L ( x − x n ) lk ( x ) = ( x k − x0 )( x k − x1 )L ( x k − x k −1 )( x k − x k +1 )L ( x k − x n )
Pn ( x ) = a0 + a1 x + L + a n x n
使之满足条件
Pn ( x i ) = y i
i = 0, 1, 2,…, n
xi ≠ x j
11
要求:无重合节点,即 i ≠ j
一次Lagrange插值多项式(1)
已知函数 y = f ( x )在点 x0 , x1上的值为 y0 , y1 ,要
由直线两点式可知,通过A,B的直线方程为
y1 − y0 y = y0 ( x − x0 ) = p1 ( x ) x1 − x0
它也可变形为
x − x0 x − x1 l0 ( x0 ) = , l1 ( x ) = x 0 − x1 x1 − x 0
显然有:
14
一次Lagrange插值多项式(4)
1
多项式插值定义
在众多函数中,多项式最简单、最易计算,已知函数 y = f ( x)在n +1 个互不相同的点处的函数值 y i = f ( x i ), i = 0 ,1 , L , n ,为求 y = f (x ) 的近似式,自然应当选 n 次多项式
Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x n
15
一次Lagrange插值多项式(5)
线性插值基函数 l0 ( x), l1 ( x) 满足下述条件
xi
l0 ( x) l1 ( x)
x0
1 0
x1
0 1
并且它们都是一次函数。 注意它们的特点对下面的推广很重要
16
一次Lagrange插值多项式(6)
l1 • 我们称 l0 ( x )为点 x0 的一次插值基函数,( x ) 为点 x1 的一次插值基函数。它们在对应的插值点上取
0 1
0 0
0 0
L
ln ( x)
L
0
L
0
L
0
L
1
22
L
n次插值多项式(4)
求n次多项式
lk ( x ) , k
= 0, 1,…, n

⎧1, l k ( xi ) = ⎨ ⎩0,
n
k=i k≠i
i = 0, 1, 2,…, n
Pn ( xi ) = ∑ yk l k ( xi ) = yi
k =1
18
二次Lagrange插值多项式(2)
设被插函数在插值节点 x0 , x1 , x2 处的函数值为
y0 , y1 , y2 以过节点 ( xi , yi ) (i = 0,1, 2) 的二次函数
L2 ( x) 为插值函数。 用基函数的方法获得 L2 ( x)
L2 ( x) = y0l0 ( x) + y1l1 ( x) + y2l2 ( x)
19
其中
n次插值函数(1)
• 我们看到,两个插值点可求出一次插值多项 式 式 ,而三个插值点可求出二次插值多项 。当插值点增加到n+1个时,我们可以利用 ,如
Lagrange插值方法写出n次插值多项式 下所示:
20
n次插值多项式问题(2)
已知n+1个节点处的函数值
xi yi
x0 y0
x1 y1
L L
2
插值的几何意义
插值多项式的几何意义
3
插值唯一性定理
定理:(唯一性) 满足 P ( x i ) = y i , i = 0 , ... , n 的 n 阶插值 多项式是唯一存在的。
4
存在唯一性定理证明
设所要构造的插值多项式为:
Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x n
由插值条件
Pn ( x i ) = yi
i = 0, 1, L , n
得到如下线性代数方程组: n ⎧1 ⋅ a0 + x0 a1 + L + x0 a n = y0 ⎪ n ⎪1 ⋅ a0 + x1a1 + L + x1 a n = y1 ⎨ ⎪LL ⎪1 ⋅ a + x a + L + x n a = y n 1 n n n ⎩ 0
相关文档
最新文档