遗传算法实验报告(仅供参照)

合集下载

人工智能 遗传算法实验报告

人工智能 遗传算法实验报告

人工智能试验陈述学号:姓名:试验名称:遗传算法试验日期: 2016.1.5【试验名称】遗传算法【试验目标】控制遗传算法的基起源基础理,熟习遗传算法的运行机制,学会用遗传算法来求解问题.【试验道理】遗传算法(Genetic Algorithm)是模仿达尔文生物进化论的天然选择和遗传学机理的生物进化进程的盘算模子,是一种经由过程模仿天然进化进程搜刮最优解的办法.遗传算法是从代表问题可能潜在的解集的一个种群开端的,而一个种群则由经由基因编码的必定命目标个别构成.每个个别现实上是染色体带有特点的实体.在一开端须要实现从表示型到基因型的映射即编码工作.因为模仿基因编码的工作很庞杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生计和优越劣汰的道理,逐代演变产生出越来越好的近似解,在每一代,依据问题域中个别的顺应度大小选择个别,并借助于天然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群.这个进程将导致种群像天然进化一样的后生代种群比前代加倍顺应于情况,末代种群中的最优个别经由解码,可以作为问题近似最优解.遗传算法程度流程图为:【试验内容】标题:已知f(x)=x*sin(x)+1,xÎ[0,2p],求f(x)的最大值和最小值.数据构造:struct poptype{double gene[length];//染色体double realnumber;//对应的实数xdouble fitness;//顺应度double rfitness;//相对顺应度double cfitness;//累计顺应度};struct poptype population[popsize+1];//最后一位存放max/minstruct poptype newpopulation[popsize+1];//染色体编码:[0,2]x π∈,变量长度为 2 π,取小数点后6位,因为2262322*102;π<<是以,染色体由23位字节的二进制矢量暗示,则X 与二进制串(<b 22 b 21…… b 0>)2之间的映射如下:()22222102010bb ......b 2'i i i b x =⎛⎫=•= ⎪⎝⎭∑;232'21x x π=- 顺应度函数: 因为请求f(x)的最值,所以顺应度函数即可为f(x).但为了确保在轮赌法选择过中,每个个别都有被选中的可能性,是以须要将所有顺应度调剂为大于0的值.是以,设计求最大值的顺应度函数如下:将最小问题转化为求-f(x)的最大值,同理,设计最小值的顺应度函数如下:种群大小:本试验默以为50,再进行种群初始化.试验参数:重要有迭代数,交叉概率,变异概率这三个参数.一般交叉概率在0.6-0.9规模内,变异概率在0.01-0.1规模内.可以经由过程手动输入进行调试.重要代码如下:void initialize()//种群初始化{srand(time(NULL));int i,j;for(i=0;i<popsize;i++)for(j=0;j<23;j++)population[i].gene[j]=rand()%2;void transform()//染色体转化为实数x{int i,j;for(i=0;i<=popsize+1;i++){population[i].realnumber=0;for(j=0;j<23;j++)population[i].realnumber+=population[i].gene[j]*pow(2 ,j);population[i].realnumber=population[i].realnumber*2*p i/(pow(2,23)-1);}}void cal_fitness()//盘算顺应度{int i;for(i=0;i<popsize;i++)population[i].fitness=population[i].realnumber*sin(po pulation[i].realnumber)+6;}void select()//选择操纵{int mem,i,j,k;double sum=0;double p;for (mem=0;mem<popsize;mem++)sum+=population[mem].fitness;for (mem=0;mem<popsize; mem++)population[mem].rfitness=population[mem].fitness/sum;population[0].cfitness=population[0].rfitness;for (mem=1;mem<popsize;mem++)population[mem].cfitness=population[mem-1].cfitness+population[mem].rfitness;for (i=0;i<popsize;i++){ //轮赌法选择机制p=rand()%1000/1000.0;if (p<population[0].cfitness)newpopulation[i]=population[0];else{for (j=0;j<popsize;j++)if(p>=population[j].cfitness&&p<population[j+1].cfitness)newpopulation[i]=population[j+1];}}for (i=0;i<popsize;i++)//复制给下一代population[i]=newpopulation[i];}void cross()//交叉操纵{int i, mem, one;int first = 0;double x;for(mem=0;mem<popsize;mem++){x = rand()%1000/1000.0;if (x<pcross){++first;if (first%2==0)Xover(one,mem);//个别间染色体进行交叉函数else one=mem;}}}void mutate()//变异操纵{int i, j,t;double x;for (i=0;i<popsize;i++)for(j=0;j<length;j++){x=rand()%1000/1000.0;if (x<pvariation){if(population[i].gene[j])population[i].gene[j]=0; else population[i].gene[j]=1;}}}void cal_max()//盘算最大值{int i;double max,sum=0;int max_m;max=population[0].fitness;for(i=0;i<popsize-1;i++){if(population[i].fitness>population[i+1].fitness)if(population[i].fitness>=max){max=population[i].fitness;max_m=i;}else if(population[i+1].fitness>=max){max=population[i+1].fitness;max_m=i + 1;}}if(max>population[popsize].fitness){iteration=0;for (i=0;i<length;i++)population[popsize].gene[i]=population[max_m].gene[i]; population[popsize].fitness=population[max_m].fitness; }for (i=0;i<length;i++)sum=population[popsize].gene[i]-population[max_m].gene[i];if(sum==0)iteration++;transform();printf("%f,%f,%f,%f\n",population[popsize].fitness,po pulation[popsize+1].fitness,population[popsize].realnumbe r,population[popsize+1].realnumber);}【试验成果】。

人工智能遗传算法实验报告

人工智能遗传算法实验报告

人工智能实验报告学号:姓名:实验名称:遗传算法实验日期:2016.1.5【实验名称】遗传算法【实验目的】掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。

【实验原理】遗传算法( Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。

每个个体实际上是染色体带有特征的实体。

在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

遗传算法程度流程图为:【实验名称】遗传算法【实验目的】掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。

【实验原理】遗传算法( Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。

每个个体实际上是染色体带有特征的实体。

在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。

遗传算法报告

遗传算法报告

遗传算法实验报告一、实验目的1、 掌握遗传算法原理;2、 学会编写遗传算法程序寻找函数最大值。

二、实验设备装有matlab7.0以上版本软件的PC 机一台三、实验原理传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。

与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。

遗传算法的搜索结果会有很大的差异。

遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。

遗传算法实质上是在群体空间中寻求较优解。

四、实验步骤及内容1、实验步骤:(1)群体初始化;(2)评价群体中每一个体性能;(3)选择下一代个体;(4)执行简单的操作算子(如交叉、变异);(5)评价下一代群体的性能;(6)判断终止条件满足否?若不,则转(3)继续,若满足,则结束。

2、实验内容:寻找函数 22212121(,)100()(1)f x x x x x =-+- 的最大值及所对应的x1和x2的值。

( 2.048 2.048i x -≤≤)五、实验程序clc;clear;%**************************遗传算法*****************************num=80;A1=rand(num,10); %生成随机数A2=rand(num,10);A1=round(A1); %编码A2=round(A2);times=100;for k=1:times %遗传次数SIZE(k)=size(A1,1);for i=1:size(A1,1)B1(i)=binvec2dec(A1(i,:));%二进制转换十进制B2(i)=binvec2dec(A2(i,:));X1(i)=4.096*B1(i)/1023-2.048;%映射到实际取值范围X2(i)=4.096*B2(i)/1023-2.048;H(i)=100*(X1(i)^2-X2(i))^2+(1-X1(i))^2;%计算函数值endJ=1./H;[J1,IX]=sort(J);Hm(k)=H(IX(1)); %得本次迭代的函数最大值Xm1(k)=X1(IX(1));%得本次迭代的使函数值最大的X1值Xm2(k)=X2(IX(1));%得本次迭代的使函数值最大的X2值S=sum(H)/size(H,2); %求适应度C1=[];C2=[];for i=1:size(A1,1)%复制过程if round(H(i)/S)==0 %为0则淘汰C1=C1;C2=C2;elseif round(H(i)/S)==1 %为1保留一次C1=[C1;A1(i,:)];C2=[C2;A2(i,:)];elseif round(H(i)/S)==2 %为2保留两次C1=[C1;A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:)];elseif round(H(i)/S)==3 %为3保留三次C1=[C1;A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:)];elseif round(H(i)/S)==4 %为4保留四次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:)];else %其他值时保留五次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:);A1(i,:)]; C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:);;A2(i,:)]; endendA1=C1;A2=C2;for i=1:size(A1,1) %交叉a=rand;%生成本次交叉概率b=round(rand*9+1);%确定交叉位置if a>=0.6c=round(rand*(size(A1,1)-1)+1);%开始交叉D=A1(i,1:b);A1(i,1:b)=A2(c,1:b);A2(c,1:b)=D;endendfor i=1:size(A1,1) %变异e=rand;%生成变异概率f=round(rand*9+1);%确定变异位置if e<=0.1A1(i,f)=~A1(i,f);%开始变异A2(i,f)=~A2(i,f);endendendHH=1./Hm;[Q,IY]=sort(HH);Hmax=Hm(IY(1)) %最优解X1you=Xm1(IY(1)) %最优解时X1值X2you=Xm2(IY(1)) %最优解时X2值t=IY(1)%寻得最优解时的迭代次数s=SIZE(t)%训得最优解时种群中个体个数%************************寻优曲线********************** count=1:times;%figure(1);subplot(2,1,1);plot(count,Hm,'r.-');grid on;title('寻优曲线');xlabel('迭代次数');ylabel('函数取值');%figure(2);subplot(2,1,2);plot(count,SIZE,'b.-');grid on;title('种群个数曲线');xlabel('迭代次数');ylabel('种群个数');六、实验结果第一次运行结果:Hmax = 3.9059e+003 ,X1you = -2.0480,X2you = -2.0480,t =26,s = 42(此结果是最优解)第二次运行结果:Hmax = 3.8855e+003,X1you =-2.0440,X2you =-2.0480,t = 27,s =44(此结果不为最优解)第三次运行结果:Hmax = 3.9059e+003,X1you = -2.0480,X2you =-2.0480,t =17,s =60(此结果是最优解)改变初始种群个体个数为30Hmax = 3.8308e+003,X1you = -2.0440,X2you =-2.0040,t = 7,s = 24 (此结果不为最优解)改变迭代次数为30Hmax =3.8805e+003,X1you = -2.0440,X2you =-2.0440,t = 28,s = 57(此次不为最优解)七、分析实验结果在初始种群为80,迭代次数为100情况下,第一次和第三次运行结果寻得了最优解,而第二次并没寻得最优解,并且第一次和第三次寻得最优解时的迭代次数t和寻得最优解时的种群中个体个数s也不一样。

遗传算法求函数最大值实验报告

遗传算法求函数最大值实验报告

遗传算法求函数最大值实验报告遗传算法是一种模拟自然界进化过程的优化算法,它通过模拟生物进化过程中的遗传、交叉和变异等机制,逐步优化解空间中的个体,以找到问题的最优解。

在本次实验中,我们利用遗传算法来求解一个函数的最大值。

下面我们将详细介绍实验的过程和结果。

首先,我们选择了一个简单的函数作为实验对象,即f(x) = x^2,在x的范围为[-10, 10]。

我们的目标是找到使函数值最大的x。

首先,我们需要定义遗传算法中的基本元素,包括编码方式、适应度函数、选择策略、交叉和变异操作等。

在本实验中,我们选择二进制编码方式,将x的范围[-10, 10]离散化为10位的二进制编码。

适应度函数即为f(x) = x^2,它表示个体的适应度。

选择策略采用轮盘赌选择算法,交叉操作采用单点交叉,变异操作采用随机位变异。

接下来,我们需要初始化种群,并迭代进行交叉和变异操作,直到满足终止条件。

在每一代中,我们根据适应度函数对种群中的个体进行评估,并根据选择策略选择父代个体进行交叉和变异操作。

通过交叉和变异操作,产生新的子代个体,并替代原有种群中的个体。

在本次实验中,我们设置了100个个体的种群,并进行了100代的迭代。

实验结果显示,经过多次迭代,算法逐渐优化到了最优解。

最终找到了使函数值最大的x,即x=10,对应的函数值为100。

总结起来,本次实验利用遗传算法求解函数的最大值,展示了遗传算法在优化问题中的应用。

通过适当选择编码方式、适应度函数和操作策略,我们可以有效地找到问题的最优解。

在后续的研究中,我们可以进一步探索遗传算法在更复杂问题上的应用,并通过改进算法的参数和操作策略来提高算法的性能。

遗传算法实验报告

遗传算法实验报告

遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟生物进化过程的优化算法,通过模拟自然选择、遗传变异和交叉等操作,逐步优化问题的解。

本实验旨在探究遗传算法在解决优化问题中的应用,并通过实验验证其效果。

一、实验背景遗传算法最早由美国科学家约翰·霍兰德于20世纪60年代提出,其灵感来源于达尔文的进化论。

遗传算法通过基因编码、适应度评估、选择、交叉和变异等操作,模拟了进化过程中的遗传和变异,从而找到问题的最优解。

二、实验目的本实验旨在通过遗传算法解决一个经典的优化问题,验证其在解决实际问题中的有效性。

同时,对遗传算法的参数设置和操作过程进行调整和优化,以提高算法的性能。

三、实验步骤1. 问题定义:选择一个经典的优化问题,例如旅行商问题(TSP)或背包问题。

2. 解空间建模:将问题的解表示为染色体,设计基因编码方式。

3. 适应度函数定义:根据问题的特点,设计一个能够评估染色体解的适应度函数。

4. 初始化种群:随机生成一组初始染色体,作为种群。

5. 选择操作:根据适应度函数,选择一部分较优秀的染色体作为父代。

6. 交叉操作:通过交叉操作,生成新的子代染色体。

7. 变异操作:对子代染色体进行变异操作,引入新的基因变异。

8. 适应度评估:计算新的子代染色体的适应度。

9. 父代替换:根据适应度函数,选择一部分较优秀的子代染色体替换掉父代染色体。

10. 终止条件判断:判断是否满足终止条件,若满足则结束算法,否则返回步骤5。

11. 输出结果:输出最优解及其适应度值。

四、实验结果与分析通过实验,我们得到了一组优化问题的最优解,并计算出其适应度值。

通过观察实验结果,我们可以发现遗传算法在解决优化问题中的有效性。

同时,我们还可以通过调整遗传算法的参数和操作过程,进一步提高算法的性能。

五、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。

遗传算法作为一种优化算法,具有较强的适应性和鲁棒性,在解决实际问题中具有广泛的应用前景。

遗传算法实验报告

遗传算法实验报告

人工智能实验报告遗传算法实验报告一、问题描述对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。

若遗传操作规定如下:(1)选择概率为100%,选择算法为轮盘赌算法;(2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序;(3)变异几率为0请编写程序,求取函数在区间[0,30]的最大值。

二、方法原理遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。

与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。

目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。

在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。

遗传操作包括三个算子:选择、交叉和变异。

选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。

选择算子的作用效果是提高了群体的平均适应值。

由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。

交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。

变异是对个体的某一个或某一些基因值按某一较小概率进行改变。

从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。

交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。

三、实现过程(1)编码:使用二进制编码,随机产生一个初始种群。

遗传算法实验报告豆

遗传算法实验报告豆

遗传算法实验报告豆实验报告:遗传算法在问题求解中的应用1. 引言遗传算法是一种模拟自然进化过程的优化算法,适用于解决复杂的优化问题。

在遗传算法中,通过模拟“遗传、变异、选择”等进化过程,逐渐进化出最优解。

本实验旨在通过编写代码,使用遗传算法解决一个优化问题,并对结果进行评估与分析。

2. 实验目标本实验要求使用遗传算法解决一个函数极值求解问题。

具体要求如下:- 目标函数:f(x) = 3x^4 - 4x^3 - 12x^2 + 2x + 6- 变量范围:-10 <= x <= 10- 求解目标:找到使得f(x)取得最大值的x的取值。

3. 实验步骤本次实验采用Python语言编写代码,使用遗传算法进行求解。

具体步骤如下:(1)初始化种群:随机生成一定数量的个体,并将其编码成二进制串表示。

(2)选择操作:通过计算适应度函数值,按照一定的策略选择个体。

这里采用轮盘赌选择策略,适应度越高的个体被选中的概率越大。

(3)交叉操作:随机选择两个个体,按照一定的概率进行交叉操作。

采用单点交叉的方法,将两个个体的某一位进行交换。

(4)变异操作:对选中的个体按照一定的概率进行变异操作。

这里采用单点变异的方法,随机选择一个位点进行变异。

(5)迭代操作:重复上述步骤,直到满足终止条件(迭代次数达到设定值或者达到了较好的适应度值)为止。

4. 实验结果与分析经过运行1000次实验,并进行统计,得到了一组实验结果。

最终,遗传算法找到了一个较好的近似解,f(x)取得最大值时的x的取值为2.976,并且f(x)取得的最大值为102.441。

下面对结果进行详细分析。

4.1. 初始种群影响初始种群的选择对于遗传算法的收敛速度和找到全局最优解的准确性都有一定的影响。

本次实验,我们随机生成了一定数量的个体作为初始种群,经过实验发现,初始种群越大,算法在相同条件下的迭代次数越少,收敛速度越快。

4.2. 参数选择遗传算法中的参数选择也对算法求解效果有一定影响。

遗传算法实验报告

遗传算法实验报告

遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟自然选择和遗传机制的优化算法,它通过模拟基因的变异和交叉来寻找问题的最优解。

本实验旨在通过编写遗传算法程序,探索其在求解优化问题中的应用。

一、实验背景遗传算法最初是为了模拟达尔文的进化论而提出的。

通过模拟自然界中的进化过程,遗传算法可以逐步优化解空间,找到问题的最优解。

遗传算法适用于各种优化问题,如旅行商问题、背包问题等。

二、实验目的本实验旨在通过编写遗传算法程序,研究其在求解优化问题中的效果。

具体目标如下:1. 熟悉遗传算法的基本原理和流程;2. 实现一个简单的遗传算法程序;3. 运用该程序求解一个具体的优化问题。

三、实验步骤1. 确定问题:选择一个具体的优化问题,如旅行商问题;2. 设计编码方式:将问题转化为遗传算法可以处理的编码形式,如二进制编码;3. 初始化种群:随机生成一定数量的个体作为初始种群;4. 评估适应度:根据问题的目标函数,计算每个个体的适应度;5. 选择操作:根据适应度选择优秀的个体作为父代,采用轮盘赌等方法进行选6. 交叉操作:对选出的父代进行交叉操作,生成新的个体;7. 变异操作:对新个体进行变异操作,引入随机性;8. 更新种群:将原种群和新生成的个体合并,更新种群;9. 判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到最优解;10. 输出结果:输出找到的最优解。

四、实验结果本实验选择旅行商问题作为优化问题进行求解。

旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商可以依次访问一系列城市并回到起点。

经过多次实验,得到了如下结果:- 初始种群大小为100个个体;- 迭代次数为1000次;- 交叉概率为0.8,变异概率为0.01;- 最优解为路径长度为1000的路径。

五、实验分析通过对遗传算法的实验结果进行分析,可以得出以下结论:1. 遗传算法能够在一定程度上寻找到问题的最优解,但并不能保证一定找到全局最优解;2. 实验中的参数设置对算法的性能有很大影响,不同的参数设置可能导致不同的结果;3. 遗传算法适用于解决各种优化问题,但对于复杂问题可能需要更多的优化和六、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。

技术报告_遗传算法

技术报告_遗传算法

遗传算法1.概述遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

1.1产生与背景生物只有经过许多世代的不断进化(evolution,演化),才能更好地完成生存与繁衍的任务。

遗传算法也遵循同样的方式,需要随着时间的推移不断成长、演化,最后才能收敛,得到针对某类特定问题的一个或多个解。

了解一些有关有生命的机体如何演化的知识,对理解遗传算法的演化机制是是有帮助的。

从本质上说,任何生物机体不过就是一大堆细胞的集合。

每个细胞都包含若干组相同的DNA链,人们一般称之为染色体(chromosome)。

染色体中包含的DNA分为两股,这两股DNA 链以螺旋状绞合在一起,这就是我们所熟悉的DNA双螺旋结构模型。

图 1.1 DNA双螺旋结构单个染色体是由称作基因(gene)的更小结构模块组成,而基因则又由称作核苷酸(nucleotide)的物质组成。

遗传算法实验报告

遗传算法实验报告

实验一 二进制编码函数优化一、实验目的根据给出的数学模型,利用遗传算法求解,并用C 语言编程实现。

采用二进制编码方式,通过不断调整种群规模、进化代数、交叉因子和变异因子等参数,对目标函数进行优化求解。

重点:掌握二进制编码的编程过程。

二、实验仪器Acer Aspire V5-472G ,Windows 7 旗舰版,64位操作系统 Intel(R) Core(TM) i5-3337 CPU @1.8GHz 1.80 GHz Microsoft Visual C++ 6.0 Microsoft Office Excel 2016三、实验内容及步骤采用二进制编码方式优化如下测试函数: (1) De Jong 函数F1:极小点f 1(0, 0, 0)=0。

(2) De Jong 函数F2:极小点f 2(1,1) = 0。

(3) De Jong 函数F3:对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值30),,,,(543213-=x x x x x f 。

要求:对每一个测试函数,分析不同的种群规模(20~100)、交叉概率(0.4~0.99)和变异概率(0.0001~0.1)对优化结果的影响,试确定最佳参数组合。

四、实验报告(1) 根据De Jong函数F1:极小点f1(0, 0, 0)=0。

给定Cmax=100,MaxGeneration=100,在此基础上改变A:Popsize(20、60、100)、B:Pc(0.3、0.6、0.9)、C:Pm(0.1、0.05、0.001)等参数,设计一个3因素3水平的正交实验,根据正交实验表进行实验。

将正交实验因素和实验结果整合成一个正交实验表,如表1.1.1所示。

其中M表示best达到0的最小迭代数,N代表Average的收敛性,收敛为1,不收敛为0。

对实验结果M、N两项参数进行分析,得到均值响应表,如表1.1.2所示。

表1.1.1 函数F1正交实验表表1.1.2 函数F1均值响应表通过分析均值响应表,得到较优的组合为A1B1C2和A1B1C1。

遗传算法实验报告

遗传算法实验报告
遗传算法实验报告
13349035计算机系黄定帮
一、实验背景
遗传算法(Genetic Algorithm)又叫基因进化算法,是一种模拟遗传继承和达尔文适者生存原理的随机搜索算法。由于其结构简单,鲁棒性强,适用于并行处理以及高效实用等特点,对于传统搜索算法难以解决的非线性函数优化等问题具有明显的优势,因而在提出之后立即受到了各国学者的广泛关注,无论是理论研究还是应用研究都成了十分热门的课题。
图1函数的三维图
实验要求:
1.通过修改“演化程序prog.cpp”文件里的代码evaluation函数,将适应值目标函数定义为上述函数。
2.将原程序中的参数改为:种群规模100,迭代次数为500,pc=0.7,pm=0.07。适当修改代码使得该算法运行30次,求平均数。
3.探究参数pc和pm对实验结果的影响:分别设pc=0.1,0.2,0.3….,0.9。pm=0.01,0.02,0.03,…0.09,对每一组参数组合在函数上运行30次,基于30次的平均结果作图进行分析。
int main(void)
{
srand(time(NULL));
int num =0;
int i,j;
if ((galog = fopen("galog.txt","w"))==NULL){ exit(1); }
for( pm =0.01;pm <0.095;pm =pm +0.01)
for( pc=0.1;pc<0.95;pc=pc+0.1){
elitist();
}
sum=sum+population[POPSIZE].fitness;
if(j==29)
fprintf(galog,"%3.4f ",sum/30.0);

数学实验七:遗传算法实验报告

数学实验七:遗传算法实验报告

数学实验七:遗传算法实验报告实验七遗传算法1.⽤Matlab编制另⼀个主程序Genetic2.m,求例1的在第⼆种终⽌条件下的最优解.提⽰:⼀个可能的函数调⽤形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001) % 附录1 Genetic2.mfunction[Count,Result,BestMember]=Genetic2(MumberLength,MemberNumber,FunctionFitness,MinX,MaxX,Fmin,MutationProbability,Precision)Population=PopulationInitialize(MumberLength,MemberNumber);Error=Precision+1;global Count;global CurrentBest;Count=1;PopulationCode=Population;PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength); %⽤于计算群体中每⼀个染⾊体的⽬标函数值PopulationFitnessF=FitnessF(PopulationFitness,Fmin); %⽤于计算每个染⾊体的适应函数值PopulationProbability=Probability(PopulationFitnessF); %⽤于计算群体中每个染⾊体的⼊选概率[Population,CurrentBest,EachGenMaxFitness]=Elitist(PopulationCode,PopulationFitness ,MumberLength); %⽤到最佳个体保存⽅法(“优胜劣汰”思想)EachMaxFitness(Count)=EachGenMaxFitness;MaxFitness(Count)=CurrentBest(length(CurrentBest));while Error>PrecisionNewPopulation=Select(Population,PopulationProbability,MemberNumber);Population=NewPopulation;NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength);Population=NewPopulation;NewPopulation=Mutation(Population,MutationProbability);Population=NewPopulation;PopulationFitness=Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength);PopulationFitnessF=FitnessF(PopulationFitness,Fmin);PopulationProbability=Probability(PopulationFitnessF);Count=Count+1;[NewPopulation,CurrentBest,EachGenMaxFitness]=Elitist(Population,PopulationFitness, MumberLength); EachMaxFitness(Count)=EachGenMaxFitness;MaxFitness(Count)=CurrentBest(length(CurrentBest));Error=sum(abs(PopulationProbability-mean(PopulationProbability)));实验七遗传算法Population=NewPopulation;endDim=size(Population);Result=ones(2,Dim(1));for i=1:Dim(1)Result(1,i)=Translate(Population(i,:),MinX,MaxX,MumberLength);endResult(2,:)=PopulationFitness;BestMember(1,1)=Translate(CurrentBest(1:MumberLength),MinX,MaxX,MumberLength); BestMember(2,1)=CurrentBest(MumberLength+1);close allsubplot(211)plot(EachMaxFitness)subplot(212)plot(MaxFitness)>> [Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001) Count = 11Result =0.9748 0.9748 0.9748 0.9748 0.9748 0.97481.4994 1.4994 1.4994 1.4994 1.4994 1.4994BestMember =0.97481.4994123456789101112345678910112.按照例2的具体要求,⽤遗传算法求上述例2的最优解.>> [Count,Result,BestMember]=Genetic1(20,6,'-x*x+x+3',0,2,1,0.01,50)实验七遗传算法50Result =0.6880 0.6880 0.6880 0.6880 0.6880 0.68803.2146 3.2146 3.2146 3.2146 3.2146 3.2146 BestMember =0.68803.2146051015202530354045503.附录9⼦程序Crossing.m中的第8⾏⾄第13⾏的程序表明,当Dim(1)>=3时,将交换数组Population的最后两⾏,即交换最后⾯的两个个体.其⽬的是什么?4.设2f x x∈-,要设定求解精度到15位⼩数.=--+,求max(),[2,2]f x x x()41>> [Count,Result,BestMember]=Genetic2(22,6,'-x*x-4*x+1',-2,2,-12,0.01,1e-15)Count =15Result =-1.8728 -1.8728 -1.8728 -1.8728 -1.8728 -1.87284.9838 4.9838 4.9838 4.9838 4.9838 4.9838 BestMember =-1.87284.9838实验七遗传算法4.854.94.9555.050510154.98384.9838 4.98384.98384.98384.9838。

遗传算法求解TSP问题实验报告(仅供参照)

遗传算法求解TSP问题实验报告(仅供参照)

人工智能实验报告实验六遗传算法实验II一、实验目的:熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。

假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。

路径的选择目标是要求得的路径路程为所有路径之中的最小值。

TSP问题是一个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。

它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。

这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。

后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。

群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。

要求利用遗传算法求解TSP问题的最短路径。

三、实验内容:1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

4、上交源代码。

四、实验报告要求:1、画出遗传算法求解TSP问题的流程图。

2、分析遗传算法求解不同规模的TSP问题的算法性能。

规模越大,算法的性能越差,所用时间越长。

3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

遗传算法报告

遗传算法报告

传统优化算法可以解决一些比较简单的问题,但对于一些非线性的复杂问题,往往优化时间很长,并且经常不能得到最优解,甚至无法知道所得解同最优解的近似程度,而一些现代优化算法就能很好地解决这些问题。

2 0 世纪 6 0 年代学者开始对遗传进化感兴趣,进而形成了遗传算法。

遗传算法(GA)是由美国Michigan大学的Holla nd教授于1975年首先提出的。

它源于达尔文的进化论、孟德尔的群体遗传学说和魏茨曼的物种选择学说;其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法。

从公开发表的论文看,我国首先开始研究应用遗传算法的有赵改善和华中理工大学的师汉民等人。

遗传算法最早应用于一维地震波形反演中,其特点是处理的对象是参数的编码集而不是问题参数本身,搜索过程既不受优化函数联系性的约束,也不要求优化函数可导,具有较好的全局搜索能力;算法的基本思想简单,运行方式和实现步骤规范,具有全局并行搜索、简单通用、鲁棒性强等优点,但其局部搜索能力差,容易出现早熟现象。

自1985年起,国际遗传算法会议每两年召开一次,在欧洲,从1990年开始每隔一年也举办一次类似的会议。

1993 年,国际上第一本以遗传算法和进化计算为核心内容的学术期刊《EvolutionaryComputation 》(进化计算)在MIT 创刊; 1994 年,在美国奥兰多召开的IEEE WorldCongressonComputationntelligence(IEEE 全球计算智能大会)上,进化计算与模糊逻辑、神经网络一起统称为计算智能; 1997 年,《IEEETransac-tionsonEvolutionaryComputation 》创刊。

这些刊物及时全面地报道了近年来遗传算法的最新研究成果。

目前,与遗传算法有关的学术会议包括ICGA PPSN ICEG ANN& GA EP、FOGA COGANN EC GP、SEAL等。

遗传算法实验报告

遗传算法实验报告

遗传算法实验报告一、实验目的遗传算法是一种基于自然选择和遗传机制的优化算法,本次实验的主要目的是深入理解遗传算法的原理和工作机制,并通过实际编程实现来解决特定的优化问题,观察其性能和效果。

二、实验原理遗传算法模拟了生物进化的过程,通过对一组潜在的解决方案(称为个体或染色体)进行选择、交叉和变异操作,逐步迭代优化,以找到最优或近似最优的解。

在遗传算法中,每个个体都由一组基因表示,这些基因对应于问题的参数。

适应度函数用于评估每个个体的优劣程度,适应度高的个体更有可能被选择进行繁殖,产生下一代个体。

选择操作通常基于个体的适应度比例,适应度高的个体有更高的概率被选中。

交叉操作将两个父代个体的基因部分组合,生成新的子代个体。

变异操作则以一定的概率随机改变个体的某些基因,以增加种群的多样性。

三、实验环境本次实验使用 Python 编程语言,主要依赖的库有 numpy 用于数组操作,matplotlib 用于结果可视化。

四、实验步骤1、问题定义确定要优化的问题,例如求解函数的最大值或最小值,或者在给定约束条件下寻找最优的参数组合。

定义适应度函数,用于衡量每个个体的优劣。

2、编码方案确定如何将问题的解编码为染色体的形式。

常见的编码方式有二进制编码、实数编码等。

3、初始化种群随机生成一定数量的初始个体,组成初始种群。

4、选择操作根据个体的适应度计算选择概率,使用轮盘赌选择或其他选择方法选择父代个体。

5、交叉操作对选中的父代个体进行交叉,生成子代个体。

6、变异操作以一定的概率对个体的基因进行变异。

7、迭代更新重复进行选择、交叉和变异操作,生成新的种群,直到满足终止条件(如达到最大迭代次数或找到满意的解)。

8、结果分析对最终得到的最优个体进行解码,得到问题的解。

分析遗传算法的性能,如收敛速度、解的质量等。

五、实验结果与分析以求解函数 f(x) = x^2 在区间 0, 10 上的最大值为例,进行了遗传算法的实验。

1、适应度函数定义适应度函数直接采用目标函数 f(x) = x^2 ,即适应度越高,函数值越大。

关于遗传算法的实验报告

关于遗传算法的实验报告

关于遗传算法的实验报告一、实验目的:理解和掌握遗传算法的应用及意义,能用一门自己擅长的语言实现遗传算法的基本功能,在此基础上进一步理解和巩固对遗传算法的重要,以便在今后的学习和工作中能有效的运用和借鉴!需要指出的是遗传算法并不是能保证所得到的就是最佳的答案但通过一定的方法可以将误差控制在一定的范围内!二、实验原理和题目:1.遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。

其求解过程是个最优化的过程。

一般遗传算法的主要步骤如下:(1)随机产生一个确定长度的特征字符串组成的初始种群。

(2)对该字符串种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止:a计算种群中每个个体字符串的适应值;b应用复制、交叉和变异等遗传算子产生下一代种群。

(3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一个解。

2.通过编码、设置种群、设置适应度函数、遗传操作、解码产生需要的解。

f(x)=x*sin(x)+1,x∈[0,2π],求解f(x)的最大值和最小值。

三、实验条件硬件:微型计算机。

语言:本实验选用的为C++语言。

四、实验内容:建造针对f(x)的遗传算法程序,然后进行运行求解。

五、实验步骤:1. 确定基本功能:本实验是实现f(x)的最大值和最小值的求解。

2. 对f(x)进行编码:用一个二进制矢量表示一个染色体,由染色体来代表变量x的实数值,这里精度取小数点后6位数,变量x的域长为2π,整个区间被分为2π*1000000个等长的区间。

由于2π*1000000在23位二进制数的表示范围呢,所以,编码长度为23位。

3. 设计适应度函数:由于要求f(x)的最值,所以适应度函数可根据f(x)做适当的改变。

最大值:f(x)=x*sin(x)+5;最小值:f(x)=1/(x*sin(x)+5 );4. 针对f(x)的设计并且实现遗传算法程序:遗传操作主要包括复制、交叉和变异。

遗传算法实验报告

遗传算法实验报告

信息与管理科学学院计算机科学系实验报告课程名称:人工智能实验名称:遗传算法问题姓名:鹏海贾美丽妍汉昭学号:1510003063 1510003024班级:计科实验室:软件技术实验室指导教师:慧日期:2016.11.09&&遗传算法问题一、实验目的1.熟悉和掌握遗传算法的原理、实质;2.学会使用遗传算法解决问题;3.学会编写遗传算法程序寻找函数最值;二、实验原理遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。

在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。

遗传算法对染色体进行处理,染色体称为基因个体。

一定数量的基因个体组成基因种群。

种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。

三、实验容用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取j(x)=40/(2+|x*x-2|)-10,由x的取值围知j的围是(0,10)x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0,四、步骤分析1.选择目标函数,确定变量定义域及编码精度,形成编码方案2.随机产生一个规模为(即该种群中含有个体)的种群23.个体评价:计算群体P(t)中各个个体适应度4.选择运算:将选择算子作用于群体。

选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。

选择操作是建立在群体中个体的适应度评估基础上的。

(选择运算用轮盘赌算法)5.对被选择进入匹配池中的个体进行交叉操作,形成新种群6.以小概率在种群中选择个体进行变异操作形成新种群7.计算每个个体的适值8.根据适值概率选择新个体形成新种群9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求解;否则转3选择操作:首先要知道适应度函数,所谓的适应度函数就是评价函数,通常是问题的目的函数(或它的倒数),它描述了个体的优劣程度同时也决定了选择操作的概率,设fi表示第i个个体的适应度值,那选择第i个个体的概率就是fi/∑fj,简单来说,这个概率的大小就决定了该个体是被淘汰还是被保留。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能实验报告
遗传算法实验报告
一、问题描述
对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。

若遗传操作规定如下:
(1)选择概率为100%,选择算法为轮盘赌算法;
(2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序;
(3)变异几率为0
请编写程序,求取函数在区间[0,30]的最大值。

二、方法原理
遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。

与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。

目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。

在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。

遗传操作包括三个算子:选择、交叉和变异。

选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。

选择算子的作用效果是提高了群体的平均适应值。

由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。

交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。

变异是对个体的某一个或某一些基因值按某一较小概率进行改变。

从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。

交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。

三、实现过程
(1)编码:使用二进制编码,随机产生一个初始种群。

L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。

(2)生成初始群体:种群规模表示每一代种群中所含个体数目。

随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。

当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。

一般建议的取值范围是20—100。

遗传算法以该群体作为初始迭代点;
(3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。

本例中适应度即为所求的目标函数;
(4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。

本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比;
(5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。

交叉概率控制
着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉概率通常应取较大值;但若过大的话,又可能破坏群体的优良模式。

一般取0.4到0.99。

(6)变异:随机选择中间群体中的某个个体,以变异概率大小改变个体某位基因的值。

变异为产生新个体提供了机会。

变异概率也是影响新个体产生的一个因素,变异概率小,产生新个体少;变异概率太大,又会使遗传算法变成随机搜索。

一般取变异概率为0.0001—0.1。

(7)终止进化代数。

本例中规定遗传代数的收敛判据,根据设置好的进化代数,搜索到规定代数后自动停止。

四、具体代码
代码如下:
五、实验结果
六、实验总结
经过实验的实践,使我更加清楚了解了遗传算法的应用与原理。

相关文档
最新文档