中考数学第三轮复习综合题2

合集下载

2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)

2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)

三轮冲刺复习培优同步练习:《二次函数综合》1.如图1,二次函数y=﹣x2+bx+c的图象过A(5,0)和B(0,)两点,射线CE绕点C(0,5)旋转,交抛物线于D,E两点,连接AC.(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接OE,AE,当△CEO是以CO为底的等腰三角形时,求点E的坐标和△ACE的面积;(3)如图2,射线CE旋转时,取DE的中点F,以DF为边作正方形DFMN.当点E和点A 重合时,正方形DFMN的顶点M恰好落在x轴上.①求点M的坐标;②当点E和点A重合时,将正方形DFMN沿射线CE方向以每秒个单位长度平移.设运动时间为t秒.直接写出正方形DFMN落在x轴下方的面积S与时间t(0≤t≤4)的函数表达式.2.如图,抛物线L:y=﹣(x﹣t)2+t+2,直线l:x=2t与抛物线、x轴分别相交于Q、P.(1)t=1时,Q点的坐标为;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数为.3.定义:把函数C1:y=ax2﹣6ax+5a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴为直线x=h.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)填空:h的值为(用含m的代数式表示);(2)若a=1,m=1,当t﹣1≤x≤t时,函数C2的最大值为y1,最小值为y2,且y1﹣y2=3,求t的值;(3)当m=2时,C2的图象与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点D.把线段BD绕原点O顺时针旋转90°,得到它的对应线段B′D′.若线段B′D′与C2的图象有公共点,结合函数图象,求a的取值范围.4.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(4,0),点C坐标为(0,4),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=2∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBGH,随着点P的运动,正方形的大小、位置也随着改变,当顶点G或H恰好落在y轴上时,请直接写出点P的横坐标.6.已知点P 为抛物线y =x 2上一动点,以P 为顶点,且经过原点O 的抛物线,记作“y p ”,设其与x 轴另一交点为A ,点P 的横坐标为m .(1)①当△OPA 为直角三角形时,m = ;②当△OPA 为等边三角形时,求此时“y p ”的解析式;(2)若P 点的横坐标分别为1,2,3,…n (n 为正整数)时,抛物线“y p ”分别记作“”、“”…,“”,设其与x 轴另外一交点分别为A 1,A 2,A 3,…A n ,过P 1,P 2,P 3,…P n 作x 轴的垂线,垂足分别为H 1,H 2,H 3,…H n .1)①P n 的坐标为 ;OA n = ;(用含n 的代数式来表示)②当P n H n ﹣OA n =16时,求n 的值.2)是否存在这样的A n ,使得∠OP 4A n =90°,若存在,求n 的值;若不存在,请说明理由.7.如图,二次函数y =﹣x 2+2(m ﹣2)x +3的图象与x 、y 轴交于A 、B 、C 三点,其中A (3,0),抛物线的顶点为D .(1)求m 的值及顶点D 的坐标;(2)如图1,若动点P 在第一象限内的抛物线上,动点N 在对称轴1上,当PA ⊥NA ,且PA =NA 时,求此时点P 的坐标;(3)如图2,若点Q 是二次函数图象上对称轴右侧一点,设点Q 到直线BC 的距离为d ,到抛物线的对称轴的距离为d 1,当|d ﹣d 1|=2时,请求出点Q 的坐标.8.如图,抛物线y =x 2﹣ax +a ﹣1与x 轴交于A ,B 两点(点B 在正半轴上),与y 轴交于点C ,OA =3OB .点P 在CA 的延长线上,点Q 在第二象限抛物线上,S △PBQ =S △ABQ .(1)求抛物线的解析式.(2)求直线BQ 的解析式.(3)若∠PAQ =∠APB ,求点P 的坐标.9.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.10.如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x 轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1)求抛物线的解析式;(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值;(3)当﹣1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.11.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B、C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值;(2)连接OF,求△OEF的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.13.如图1,已知抛物线y=ax2+bx+c的顶点为P(1,9),与x轴的交点为A(﹣2,0),B.(1)求抛物线的解析式;(2)M为x轴上方抛物线上的一点,MB与抛物线的对称轴交于点C,若∠COB=2∠CBO,求点M的坐标;(3)如图2,将原抛物线沿对称轴平移后得到新抛物线为y=ax2+bx+h,E,F新抛物线在第一象限内互不重合的两点,EG⊥x轴,FH⊥x轴,垂足分别为G,H,若始终存在这样的点E,F,满足△GEO≌△HOF,求h的取值范围.14.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y 轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,抛物线y=﹣+bx+c的对称轴是直线x=与x轴的交点为点A,且经过点B、C两点.(1)求抛物线的解析式;(2)点M为抛物线对称轴上一动点,当|BM﹣CM|的值最小时,请你求出点M的坐标;(3)抛物线上是否存在点N,过点N作NH⊥x轴于点H,使得以点B、N、H为顶点的三角形与△ABC相似?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标(,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE =45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH 时,请你直接写出此时点Q的坐标.19.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为,点B的坐标为.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.20.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),C(0,2),对称轴为直线x=.(1)求该抛物线和直线BC的解析式;(2)点G是直线BC上方抛物线上的动点,设G点的横坐标为m,试用含m的代数式表示△GBC的面积,并求出△GBC面积的最大值;(3)设R点是直线x=1上一动点,M为抛物线上的点,是否存在点M,使以点B、C、R、M为顶点的四边形为平行四边形,若存在,请直接写出符合条件的所有点M坐标,不存在说明理由.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=﹣x2+2x+①;(2)当△CEO是以CO为底的等腰三角形时,则OC的中点(0,)的纵坐标和点E的纵坐标相同,而点B(0,),即点E、B关于抛物线对称轴对称,∵抛物线的对称轴为直线x=2,故点E的坐标为(4,);△ACE的面积S=S△COE +S△OAE﹣S△AOC=OC•|x E|+OA•|y E|﹣×AO×CO=5×4+×5×﹣×5×5=;(3)①∵OA=OC=5,∴∠CAO=45°,∵对角线DM与AC的夹角为45°,∴∠DMA=90°,即DM⊥x轴,即点D、M的横坐标相同,由A、C的坐标得:直线AC的表达式为:y=﹣x+5②,联立①②并解得:x=1或5(舍去5),故x=1,故点D(1,4),∴点M的坐标为(1,0);②设正方形MFDN平移后为M′F′D′N′,如图1,2所示;由A 、D 的坐标得,DA ==4,∵点F 是AD 的中点,故DF =2,即正方形MFDN 的边长为2,∴正方形MFDN 的面积为S 1=(2)2=8;(Ⅰ)当0≤t ≤2时,如图1所示,设M ′F ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,∴MM ′=t =M ′H ,∴S =S △M ′MH =MM ′•M ′H =(t )2=t 2;(Ⅱ)当2<t ≤4时,如图2所示,设N ′D ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,则DD ′=t ,∴AD ′=AD ﹣DD ′=4﹣t =HD ′,∴S =S 1﹣S △AD ′H =8﹣×AD ′×HD ′=8﹣×(4﹣t )=﹣t 2+8t ﹣8,综上,S =.2.解:(1)当t =1时,x =2t =2, 当x =2时,y =﹣(2﹣1)2+1+2=2, 故点Q 的坐标为(2,2), 故答案为(2,2);(2)点P 、Q 的坐标分别为:(2t ,0)、(2t ,﹣t 2+t +2), 当P 、Q 两点重合时,﹣t 2+t +2=0,解得:t =﹣1或2;(3)当Q 点达到最高时,点Q (t ,t +2),由(2)知函数的对称轴为x=(2﹣1)=,故点Q(,),故抛物线的表达式为:y=﹣(x﹣)2+;(4)①当t=1时,如图1,抛物线表达式为:y=﹣(x﹣1)2+3,令y=0,则x=1,“可点”的个数如图黑点所示,有6个;②当t=2时,抛物线的表达式为:y=﹣(x﹣2)2+4,令y=0,则x=0或4,“可点”的个数如图黑点所示,有8个;②当1<t<2时,点Q的坐标为(t,2+t),即抛物线在y=x+2上运动,2AB<4,当L过点(3,0)时,“可点”的个数如图黑点所示,有7个.故“可点”的个数为6或7或8个,故答案为:6或7或8.3.解:(1)y=ax2﹣6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m,故h=2m﹣3,故答案为:2m﹣3;(2)a=1,C1:y=x2﹣6x+5=(x﹣3)2﹣4,顶点为(3,﹣4),m=1时,C2的顶点为(﹣1,4),C2:y=﹣(x+1)2+4=﹣x2﹣2x+3,①当t≤﹣1时,y随x的增大而增大,y 1﹣y2=﹣t2﹣2t+3﹣[﹣(t﹣1)2﹣2(t﹣1)+3]=3,解得:t=﹣2;②当t﹣1<﹣1<t时,即﹣1<t<0时,分两种情况:(Ⅰ)当﹣1﹣(t﹣1)≥t﹣(﹣1)时,即﹣1<t≤﹣时,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣t2=3,解得:t=(舍去)(Ⅱ)当﹣1﹣(t﹣1)<t﹣(﹣1)时,即﹣<t<0时,y 1﹣y2=3=4﹣(t2﹣2t+3)=t2+2t+1,解得:t=﹣1(舍去);③当t﹣1≥﹣1时,即t≥0时,y随x的增大而减小,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣[﹣t2﹣2t+3]=3,解得:t=1;综上,t=﹣2或t=1;(3)当m=2时,C:y=ax2﹣6ax+5a=a(x﹣3)2﹣4a,1的表达式为:y=﹣a(x﹣1)2+4a,∴C2当y=0时,x=﹣1或3,当x=0时,y=3a,∴点A、B、D的坐标分别为:(3,0)、(﹣1,0)、(0,3a);∵线段BD绕原点O顺时针旋转90°,∴点B′的坐标为(3,0),点D′的坐标为(3a,0).①当a>0时,分两种情况:(Ⅰ)当点D′在点A的右侧(含点A)时,线段B′D′与C的图象有公共点,如图1,2∴3a≥3,解得a≥1;(Ⅱ)当点D′在点A的左侧,且点D在点B′的下方(含点B′)时,线段B′D′与C2的图象有公共点,如图2,∴3a≤1,∴0<a≤;的图象有公共点,如②当a<0时,点D′在点B的左侧(含点B)时,线段B′D′与C2图3,∴3a≤﹣1,解得:a≤;综上,a≤﹣或0<a≤或a≥1;4.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BCE的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).5.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+4=﹣(x﹣1)2+;(2)如图1,在线段DE上取点M,使MD=MB,此时∠EMB=2∠BDE,设ME=a,在Rt△BME中,ME2+BE2=BM2,即a2+32=(﹣a)2,解得:a=,∴tan∠EMB==,过点F作FN⊥x轴于点N,设点F(m,﹣m2+m+4),则FN=|﹣m2+m+4|,∵∠FBA=2∠BDE,∴∠FBA=∠EMB,∴tan∠FBA=tan∠EMB=,∵点B(4,0)、点E(1,0),∴BE=3,BN=4﹣m,∴tan∠FBA=,解得:m=4(舍去)或﹣或,故点F(﹣,﹣)或(,);(3)①当点P在对称轴右侧时,(Ⅰ)当点H在y轴上时,如图2,∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,∴∠CHP=∠MPB,∵∠BMP=∠PNH=90°,PH=BP,∴△BMP≌△PNH(AAS),∴MB=PC,设点P(x,y),则x=y=﹣x2+x+4,解得:x=(舍去负值),故点P的横坐标为;(Ⅱ)当点G在y轴上时,如图3,过点P作PR⊥x轴于点R,同理可得:△PRB≌△BOG(AAS),∴PR=OB=4,即y P=4=﹣x2+x+4,解得:x=2;②当点P在对称轴左侧时,同理可得:点P的横坐标为0或2﹣;综上,点P的横坐标为或2或0或2﹣.6.解:(1)①当△OPA为直角三角形时,∵PO=PA,故△OPA为以点P为顶点的等腰直角三角形,∴点P的横坐标和纵坐标相同,故点P(m,m),将点P的坐标代入y=x2得:m=m2,解得:m=0或2(舍去0),故答案为2;②当△OPA为等边三角形时,同理可得点P(m,m),将点P的坐标代入抛物线表达式并解得:m=2,故点P的坐标为(2,6),故“y p”的解析式为:y=a(x﹣2)2+6,点A的坐标为(2m,0),即(4,0),将点A的坐标代入y=a(x﹣2)2+6并解得:a=﹣,故“y p”的解析式为:y=﹣(x﹣2)2+6=﹣x2+2x;(2)1)①由题意得:P n 的横坐标为n ,则其坐标为(n ,n 2),则A n =2n , 故答案为:(n ,n 2);2n ;②由题意得:P n H n ﹣OA n =n 2﹣2n =16,解得:n =8或﹣4(舍去﹣4),∴n =8;2)存在,理由:如下图所示,由1)知,点P 4的坐标为(4,8),A n =2n ,即OH 4=4,P 4H 4=8,H 4A n =2n ﹣4,∵∠OP 4A n =90°,∴∠OP 4H 4+∠H 4P 4A n =90°,∵∠H 4P 4A n +∠P 4A n H 4=90°,∴∠OP 4H 4=∠P 4A n H 4,∴Rt △OP 4H 4∽Rt △P 4A n H 4,∴P 4H 42=OH 4•H 4A n ,即82=4×(2n ﹣4),解得:n =10.7.解:(1)将点A 的坐标代入函数表达式得:0=﹣32+2(m ﹣2)×3+3, 解得:m =3,故抛物线的表达式为:y =﹣x 2+2x +3,故点D 的坐标为:(1,4);(2)过点A 作y 轴的平行线交过点N 与x 轴的平行线于点M ,交过点P 与x 轴的平行线于点H ,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NA,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).8.解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ =S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BPA=∠QBP,而∠PAQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠PAQ=∠APB,∴DP=DA,∴PA=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).9.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4①.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)①当点P在BA下方时,如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为:y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8);②当点P(P′)在BA上方时,此时∠P′BA+∠CBO=45°,而∠PBA+∠CBO=45°,故∠P′BA=∠PBA,即BA是∠PBP′的角平分线,∵OA=OB=4,故△ABO为等腰三角形,以BA为对角线作正方形BOAM,设直线BP交边(x轴)OA于点H,直线BP′交AM于点H′,在点H、H′关于AB对称,∴AH=AH′,由①知:直线PB解析式为:y=﹣2x+4,令y=0,则x=3,故点H(2,0),即AH=4﹣2=2=AH′,∴点H′(4,2),由点H′、点B的坐标可得,直线BH′的表达式为:y=﹣x+4②,联立①②并解得:x=3,故点P′(3,);综上,点P的坐标为:(3,)或(6,﹣8).10.解(1)∵在Rt△AOC中,∠AOC=90°,∴OA==3,∴A(3,0),将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中得,解得,,∴抛物线解析式为y=﹣x2+x+4;(2)由A(3,0),C(0,4)可得直线AC解析式为y=﹣x+4,∴M坐标为(m,﹣m+4),∵MG∥BC,∴∠CBO=∠MGE,且∠COB=∠MEG=90°,∴△BCO∽△GME,∴=,即=,∴GE=﹣m+1,∴OG=OE﹣GE=m﹣1,∴S△COM =S梯形COGM﹣S△COG﹣S△GEM=m(﹣m+4+4)﹣4×(m﹣1)×﹣(﹣m+1)(﹣m+4),=﹣m2+m=﹣(m﹣)2+2,∴当m=时,S最大,即S最大=2;(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,∴△PCM的直角顶点可能是P或C,第一种情况:当∠CMP=90°时,如图③,则CP∥x轴,此时点P与点D重合,∴点P(2,4),此时m=2;第二种情况:当∠PCM=90°时,如图④,延长PC 交x 轴于点F ,由△FCA ∽△COA ,得 =, ∴AF =, ∴OF =﹣3=, ∴F (﹣,0),∴直线CF 的解析式为y =x +4,联立直线CF 和抛物线解析式可得,解得,,∴P 坐标为(,),此时m =;综上可知存在满足条件的实数m ,其值为2或. 11.解:(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a .∵点A 位于点B 的左侧,与y 轴的负半轴交于点C ,∴a <0,∴点B 坐标为(1,0).(2)①由(1)可得,点A 的坐标为(a ,0),点C 的坐标为(0,a ),a <0, ∴AB =1﹣a ,OC =﹣a ,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.12.解:(1)∵△ABC为等腰直角三角形,∴AO=BC,∵△ABC面积为4,∴BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴,∴,即a、c的值分别为﹣和2;(2)如图1,连接OF,由(1)可知:y=﹣x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线定点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣(x﹣m)2+m+2,将点C(2,0)代入y=﹣(x﹣m)2+m+2,得﹣(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣x2+6x﹣10,当y=0时,﹣x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF==10,EF==4,∴△OEF的周长为OE+OF+EF=10+10+4=20+4;(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ==2,∴Q(6,2),当P在x轴下方时,如图3,∵△PQE≌△POE,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK==8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,2)或Q(6,3).13.解:(1)∵抛物线y=ax2+bx+c的顶点为P(1,9),∴设该抛物线解析式为y=a(x﹣1)2+9(a≠0),把(﹣2,0)代入抛物线解析式得9a+9=0,a=﹣1,∴y=﹣(x﹣1)2+9=﹣x2+2x+8;(2)令y=0得﹣(x﹣1)2+9=0,x=﹣2,或x=4,∴B(4,0),∴OB=4抛物线对称轴直线x=1与x轴交点为T,如图1,作原点O关于直线x=1的对称点D(2,0),连接CD,则∠CDO=∠COD=2∠CBO,∵∠CDO=∠BCD+∠CBO,∴∠BCD=∠CBO,∴CD=DB=2.∴.∴.∴设直线BM的解析式为y=kx+t,则,解得,.∴直线BM解析式为,与抛物线y=﹣x2+2x+8联立得.∴,.∴,故点M坐标为;(3)如图2,设E(m,n)(m>0,n>0,m≠n),∵△GEO≌△HOF,∴OH=EG=n,FH=OG=m,∴F(n,m),设新抛物线解析式为y=﹣x2+2x+h,把点E,F的坐标代入抛物线的解析式得:m=﹣n2+2n+h,n=﹣m2+2m+h,即h=n2﹣2n+m,h=m2﹣2m+n,∴m2﹣2m+n=n2﹣2n+m,m2﹣n2+3(n﹣m)=0,(m﹣n)(m+n﹣3)=0,∵m≠n,∴m+n=3,m=3﹣n,∵m>0,n>0,m≠n,∴0<n<3且把m=3﹣n代入h=n2﹣2n+m,得.∵0<n<3且.∴.故h的取值范围.14.解:(1)把A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2得到,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)设D(m,m2﹣m﹣2),∵C(0,﹣2),B(4,0),∴直线BC的解析式为y=x﹣2,∴E(m,m﹣2),∴DE=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m,=•DE•OB=﹣m2+4m=﹣(m﹣2)2+4,∴S△BCD∵﹣1<0,∴m=2时,△BDC的面积最大,此时DE=﹣×22+2×2=2.(3)如图3中,连接BC.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(4,0),点C的坐标为(0,﹣2),点A的坐标为(﹣1,0),∴直线BC的解析式为y=x﹣2,直线AC的解析式为y=﹣2x﹣2,设点Q的坐标为(2,n),则过点Q且垂直AC的直线的解析式为y=x+n﹣1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(2﹣0)2+(n﹣0)2=(﹣2)2+(﹣n)2,整理,得:n2﹣3n﹣4=0,解得:n1=﹣1,n2=4,∴点Q的坐标为(2,﹣1)或(2,4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q 的坐标为(2,﹣1)或(2,4).15.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,∴.解这个方程,得.∴该抛物线解析式是y=﹣x2+x+4.∵y=﹣x2+x+4=y=﹣(x﹣)2+.∴这条抛物线的顶点坐标是(,);(2)∵A(﹣3,0),C(4,0),∴OA=3,OB=OC=4,则AB=5,AC=7,CD=2;如图1,连接DQ,由于BD垂直平分PQ,则DP=DQ,得:∠PDB=∠QDB,而AD=AB,得:∠ABD=∠ADB,故∠QDB=∠ABD,得QD∥AB;∴△CDQ∽△CAB,则有:==,∴=.∴PD=DQ=,AP=AD﹣PD=5﹣=,故t=;(3)存在,如图2,连接AQ交对称轴于M,此时MQ+MC为最小,过Q作QN⊥x轴于N,∵DQ∥AB,∴∠QDN=∠BAC,sin∠QDN=sin∠BAC==,∴=,∴QN=,设直线BC的解析式为:y=kx+b,把B(0,4)和C(4,0)代入得:,解得,∴直线BC的解析式为:y=﹣x+4,当y=时,=﹣x+4,x=,∴Q(,),同理可得:AQ的解析式为:y=x+,当x=时,y=×+=,∴M(,).16.解:(1)在直线y=x﹣4,令x=0,则y=﹣4,令y=0,则x=8,∴A(8,0)、B(0,﹣4),将A(8,0)、B(0,﹣4)代入y=x2+bx+c有,解得:;故抛物线的表达式为:y=x2﹣x﹣4;(2)①如图1,过C作CE∥y轴交直线AB于点E,过M作MF∥y轴交直线AB于点F.则CE∥MF,∴,设点M(x,x2﹣x﹣4),∵MF∥y轴交直线AB于点F,直线AB:y=x﹣4,故点F(x,x﹣4),则MF=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,可求得C(﹣2,0),C作CE∥y轴交直线AB于点E,∴E(﹣2,﹣5),CE=5,∴,∴当x=4时,的最小值为;②存在.理由如下:∵C(﹣2,0);B(0,﹣4);A(8,0).∴OC=2,OB=4,OA=8,∵∠CBO+∠ABO=90°,∠CAB+∠ABO=90°,∴∠CBO=∠CAB,又∠ABC=∠BCO=90°,∴△BOC∽△ABC.有∠ABC=∠AOB=90°,又MD⊥AB于D,∴∠BDM=∠ABC=90°,∠BAC<45°.因此在△BMD只能是∠BMD=2∠BAC或∠MBD=2∠BAC.在图2中,取AC中点H,连接BH,可得∠BHO=2∠BAC,OH=OA﹣AH=3,tan∠BHO=,过D作DT⊥y轴于T,过M作MG⊥TD交其延长线于G.∵∠GDM+∠TDB=90°,∠TDB+∠TBD=90°,∴∠GDM=∠TBD,又∵∠DTB=∠MGD=90°,∴△TBD∽△GDM,,又DM⊥AB,tan∠DMB=,tan∠DBM=.当∠BMD=2∠BAC时,则=,当∠MBD=2∠BAC时,则,设点D(a,a﹣4),点M(m2﹣m﹣4)(8>a>0,8>m>0),则点T(0,a﹣4),点G(m,a﹣4),∴DT=a,DG=m﹣a,∴BT=a﹣4﹣(﹣4)=a,当∠BMD=2∠BAC时,,又,∴,解得:m=0或(舍去0),故点M的坐标为(,﹣),如图2,当∠MBD=2∠BAC时,,又,∴,解得:m=0或4(舍去0),故点M(4,﹣6);综合得存在满足条件的点M的坐标为(,﹣)或(4,﹣6).17.解:(1)针对于y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),∵点C在抛物线y=﹣+bx+c上,∴c=2,∴抛物线的解析式为y=﹣+bx+2,∵点B(4,0)在抛物线上,∴﹣8+4b+2=0,∴b=,∴抛物线的解析式为y=﹣+x+2;(2)∵|BM﹣CM|最小,∴|BM﹣CM|=0,∴BM=CM,∴BM2=CM2,设M(,m),∵B(4,0),C(0,2),∴BM2=(4﹣)2+m2,CM2=()2+(m﹣2)2,∴(4﹣)2+m2=()2+(m﹣2)2,∴m=0,∴M(,0);(3)由(1)知,抛物线的解析式为y=﹣+x+2,令y=0,则0=﹣+x+2,∴x=4或x=﹣1,∴A(﹣1,0),∵B(4,0),C(0,2),∴BC2=20,AC2=5,AB2=25,∴CB2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵NH⊥x,∴∠BHN=90°=∠ACB,设N(n,﹣n2+n+2),∴HN=|﹣n2+n+2|,BH=|n﹣4|,∵以点B、N、H为顶点的三角形与△ABC相似,∴①△BHN∽△ACB,∴,∴,∴n=﹣5或n=3或n=4(舍),∴N(﹣5,﹣18)或(3,2),②△BHN∽△BCA,∴,∴,∴n=0或n=4(舍)或n=﹣2,∴N(0,2)或(﹣2,﹣3),即满足条件的点N的坐标为(﹣5,﹣18)或(﹣2,﹣3)或(0,2)或(3,2).18.解:(1)∵抛物线经过A(1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x﹣1)(x﹣3),把C(0,3)代入得到a=1,∴抛物线的解析式为y=x2﹣4x+3,设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x+3,由,解得或,∴E(5,8).故答案为:y=x2﹣4x+3,y=x+3,5,8.(2)如图1中,过点E作EH⊥x轴于H.∵C(0,3),D(﹣3,0),E(5,8),∴OC=OD=3,EH=8,∴∠PDE=45°,CD=3,DE=8,EC=5,当∠CPE=45°时,∵∠PDE=∠EPC,∠CEP=∠PED,∴△ECP∽△EPD,∴=,∴PE2=EC•ED=80,在Rt△EHP中,PH===4,∴把点H向左或向右平移4个单位得到点P,∴P1(1,0),P2(9,0).(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.设Q(t,t2﹣4t+3),由题意点Q只能在点B的右侧的抛物线上,则QH=t2﹣4t+3,BH =t﹣3,AH=t﹣1,∴==t﹣3=,∵∠QHB=∠AHM=90°,∴△QHB∽△AHM,∴∠BQH=∠HAM,∵∠BQH+∠QBH=90°,∠QBH=∠ABN,∴∠HAM+∠ABN=90°,∴∠ANB=90°,∴QN⊥AM,∴当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,在Rt△BHM中,BH===,∴t=3+,∴Q(3+,3+2).19.解:(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),故点A、B的坐标分别为:(﹣1,0)、(3,0),故答案为:(﹣1,0)、(3,0);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,设:D(1,n),点C(0,﹣3m),∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,又∵∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴==,其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,将以上数值代入比例式并解得:m=±,∵m<0,故m=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),∴C(0,﹣3m),CO=﹣3m.∵A(﹣1,0),B(3,0),∴AB=4,∴S2=S△AOC=×1×(﹣3m)=﹣m,设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,BC==3,由面积法得:OM==﹣,∴tan∠COB==﹣m,则cos∠COB=,MB=OB•cos∠COB=,∴S1=S△BOD=×DO×MB=OM×MB=﹣,又S1=S2,∴m2+1=(m<0),故m=﹣.20.解:(1)∵A(﹣1,0),对称轴为直线x=.∴B(4,0),设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;设直线BC的表达式为:y=sx+t,则,解得:,故直线BC的表达式为:y=﹣x+2;(2)设G点坐标(m,﹣m2+m+2),过G作GH∥y轴,交直线BC于H点,则H坐标为(m,﹣m+2),∴△GBC面积S=S△GHC +S△GHB=GH×OB=[﹣m2+m+2﹣(﹣m+2)]×4=﹣m2+4m,∵﹣1<0,故S有最大值,当m=2时,S的最大值为4;(3)设点M的坐标为(m,n),n=﹣m2+m+2,点R(1,s),而点B、C的坐标分别为:(4,0)、(0,2);①当BC为平行四边形的边时,点C向右平移4个单位,向下平移2个单位得到点B,同样点M(R)向右平移4个单位,向下平移2个单位得到点R(M),即m±4=1,解得:m=﹣3或5,故点M的坐标为:(5,﹣3)或(﹣3,2);②当BC为平行四边形的对角线时,由中点公式得:m+1=4,解得:m=3,故点M(3,2),综上,点M的坐标为(5,﹣3)或(﹣3,﹣7)或(3,2).。

重庆市大足区双路 2022年中考数学第三轮压轴题:四边形 综合复习

重庆市大足区双路 2022年中考数学第三轮压轴题:四边形 综合复习

重庆市大足区双路中学2022年中考数学第三轮压轴题:四边形综合复习1、如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.2、菱形ABCD的边长为6,∠D=60°,点E在边AD上运动.(1)(4分)如图1,当点E为AD的中点时,求AO:CO的值;(2)(6分)如图2,F是AB上的动点,且满足BF+DE=6,求证:△CEF是等边三角形.3、如图,点E,F分别在正方形ABCD的边AB,AD上,且AE=DF,点G,H分别在边AB,BC 上,且FG⊥EH,垂足为P.(1)求证:FG=EH;(2)若正方形ABCD边长为5,AE=2,tan∠AGF=,求PF的长度.4、如图,平行四边形ABCD的对角线AC,BD相交于点O,AB⊥AC,AB=6cm,BC=10cm,点P 从点A出发,沿AD方向以每秒1cm的速度向终点D运动,连接PO,并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长(用含t的代数式表示);(2)当四边形ABQP是平行四边形时,求t的值;(3)当时,点O是否在线段AP的垂直平分线上?请说明理由.5、如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P.(1)当AM =13时,AE 的值是 ;(2)随着点M 在边AD 上位置的变化,△PDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC 的面积为S ,求出S 的最小值.6、有公共顶点A 的正方形ABCD 与正方形AEGF 按如图1所示放置,点E ,F 分别在边AB 和AD 上,连接BF ,DE ,M 是BF 的中点,连接AM 交DE 于点N . 【观察猜想】(1)线段DE 与AM 之间的数量关系是 ,位置关系是 ; 【探究证明】(2)将图1中的正方形AEGF 绕点A 顺时针旋转45°,点G 恰好落在边AB 上,如图2,其他条件不变,线段DE 与AM 之间的关系是否仍然成立?并说明理由.7、在正方形ABCD 中,点E 是边BC 上一动点(不含端点B 、C ). (1)如图1,AE ⊥EF ,AE =EF ,连接CF . ①求∠ECF 的大小;②如图2,N 为CF 的中点,连接DN 、DE ,求证:DE =√2DN ;(2)如图3.若AD =1+√3,直接写出12BE +DE 的最小值.8、如图,将正方形纸片ABCD 折叠使点D 落在射线BA 上的点E ,将纸片展平,折痕交AD 边于点F ,交BC 边于点G ,DC 的对应边EC '所在的直线交直线BC 于点H ,连接DE .(1)若点E 在AB 边上, ①求证:AED DEH ∠=∠. ②当23AE EB =时,求sin BHE ∠的值. (2)若AE k EB=,求BHCH 的值(用含k 的代数式表示)。

2021年中考数学第三轮冲刺专题复习:四边形的综合 (含答案)

2021年中考数学第三轮冲刺专题复习:四边形的综合 (含答案)

2021年中考数学第三轮冲刺专题复习:四边形的综合专项练习1、如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2、如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.3、如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4、如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.5、如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.6、如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.7、如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.8、如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.9、定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.10、如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.11、如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.12、如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G 不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.13、在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.14、已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM 的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.15、如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.16、综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.17、已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF的值.参考答案2021年中考数学第三轮冲刺专题复习:四边形的综合专项练习1、如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.2、如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OVF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)解:过点O作ON∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=BC=2,BN=AB=3,∵ON∥BC,∴△ONE∽△MBE,∴=,即=,解得,BE=1.3、如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.4、如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB=,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA∴AD=DE=10,∴BC=10,AB=CD=DE+CE=16,∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°;(2)解:∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE===8,∴cos∠DAE=cos∠EAB===.5、如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DF A=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DF A=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.6、如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为27、如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.【解答】(1)证明:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.8、如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC∴ME=AB=BC∴BE=MA=MF∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN∴DH⊥GH9、定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.10、如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.【解答】(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4﹣x,在Rt△PGC中,GC2=CP2﹣PG2=17﹣x,在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,∴17﹣x2=9+8x﹣x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=×AD×CG=×6×4=12;(2)证明:连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=MC+2EC.11、如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.12、如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G 不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为3;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.【解答】(1)解:①P在线段AD上,PQ=AB=20,AP=x,AM=12,四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;②当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,∴0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊥AB于M,交CD于N,作GE⊥CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,∵△GDC是等腰直角三角形,∴DE=CE,GE=CD=10,∴GF=GE+EF=20,∴GH=20﹣x,由题意得:PQ∥CD,∴△GPQ∽△GDC,∴=,即=,解得:PQ=40﹣2x,∴梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,∴当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,∵0≤x≤20,∴10≤10+≤15,对称轴在10和15之间,∵10≤x≤20,二次函数图象开口向下,∴当x=20时,S最小,∴﹣202+×20≥50,∴a≥5;综上所述,a的取值范围为5≤a≤20.13、在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.【解答】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵P A⊥AB,PF⊥BD,BP平分∠ABD,∴P A=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵P A=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.14、已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM 的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【解答】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=×2×6+(6+15﹣2x)×3﹣×5×(15﹣2x)=2x,∴S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.15、如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.【解答】(1)证明:如图1中,延长DM交FG的延长线于H.∵四边形ABCD,四边形BCFG都是正方形,∴DE∥AC∥GF,∴∠EDM=∠FHM,∵∠EMD=∠FMH,EM=FM,∴△EDM≌△FHM(AAS),∴DE=FH,DM=MH,∵DE=2FG,BG=DG,∴HG=DG,∵∠DGH=∠BGF=90°,MH=DM,∴GM⊥DM,DM=MG,连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,∵∠EBD=∠DBF=45°,∴∠EBF=90°,∴EF==a,∵EM=MF,∴BM=EF=a,∵HM=DM,GH=FG,∴MG=DF=a,∴==.(2)解:(1)中的值有变化.理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF于O′.∵DO=OA,DG=GB,∴GO∥AB,OG=AB,∵GF∥AC,∴O,G,F共线,∵FG=AB,∴OF=AB=DF,∵DF∥AC,AC∥OF,∴DE∥OF,∴OD与EF互相平分,∵EM=MF,∴点M在直线AD上,∵GD=GB=GO=GF,∴四边形OBFD是矩形,∴∠OBF=∠ODF=∠BOD=90°,∵OM=MD,OG=GF,∴MG=DF,设BC=m,则AB=2m,易知BE=2OB=2•2m•sinα=4m sinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,∵BM=EF==,GM=DF=m•sinα,∴==.16、综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是67.5°,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:菱形EMCH或菱形FGCH.【解答】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°﹣∠CMG﹣∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.17、已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A在(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF的值.【解答】解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.。

2021年中考数学第三轮:三角形的综合 解答题专题复习(含答案)

2021年中考数学第三轮:三角形的综合 解答题专题复习(含答案)

2021年中考数学第三轮:三角形的综合解答题专题复习1、已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.2、如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.3、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.4、在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.5、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.6、在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.7、小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一段P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图①,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B、P'、D'、E'四点不共线,所以P'A+P'B+P'C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图②,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图③,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P 到三个顶点的距离之和的最小值.8、如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;α,得到图②,AE与MP、BD分别(2)现将图①中的△CDE绕着点C顺时针旋转)︒α<90<0(︒交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=k AC,CD=k CE,如图③,写出PM与PN的数量关系,并加以证明.9、如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.10、(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其它条件不变,则EBAD的值是多少?(直接写出结论,不要求写解答过程)11、问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=____________(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=____________(用α表示). 拓展研究:(2)如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=____________(用α表示),并说明理由.(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=____________ .12、已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.13、在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.14、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).15、如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.16、尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO 的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.17、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.⑴求证:BD=AC;⑵将△BHD绕点H旋转,得到△EHF(点B、D分别与点E、F对应),连接AE.i) 如图②,当点F落在AC上时(F不与C重合),若BC=4,tan C=3,求AE的长;ii)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH.试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案2021年中考数学第三轮:三角形的综合解答题专题复习1、已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.2、如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.3、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.4、在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.5、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.6、在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解析】(1)证明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如图,作CQ∥BM交AB延长线于Q,设BP=x,则PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x)(3+x),∴x即BP②如图:作CQ ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0,∵AC =2,∴AQ =1,CQ =BQ ,设P 0Q =PQ =1-x ,BP -1+x ,∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0,∴△AP 0C ∽△MPB ,∴00AP P CMP BP=,∴MP ∙ P0C =2012P C =AP 0∙BP =x -1+x ),解得x∴BP 1+1.7、小颖在学习“两点之间线段最短”查阅资料时发现:△ABC 内总存在一段P 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图①,点P 为等边△ABC 的中心,将△ACP 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .在△ABC 中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B 、P'、D'、E'四点不共线,所以P'A +P'B +P'C >PA+PB+PC ,即点P 到三个顶点距离之和最小.【探究】(1)如图②,P 为△ABC 内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小; 【拓展】(2)如图③,△ABC 中,AC=6,BC=8,∠ACB=30°,且点P 为△ABC 内一点,求点P 到三个顶点的距离之和的最小值.解:(1)将△APC 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .在△ABC 中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B 、P'、D'、E'四点不共线,所以P'A +P'B +P'C >PA+PB+PC ,即点P 到三个顶点距离之和最小.(2)将△ACP 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .此时点P 到三个顶点距离之和最小.连接CE ,∵∠CAE=60°,AC=AE , ∴△ACE 为等边三角形, ∴CE=AC=6,∠ACE=60°, ∵∠ACB=30°, ∴∠BCE=90°, ∵BC=8,∴10682222=+=+=CE BC BE ,即点P 到三个顶点的距离之和的最小值为10.8、如图①,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE 、BD . (1)猜想PM 与PN 的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE 绕着点C 顺时针旋转)900(︒<<︒αα,得到图②,AE 与MP 、BD 分别交于点G 、H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)若图②中的等腰直角三角形变成直角三角形,使BC =k AC ,CD =k CE ,如图③,写出PM 与PN 的数量关系,并加以证明.解:(1)PM =PN ,PM ⊥PN .(2) ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC=CD ,∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD . ∴△ACE ≌△BCD .∴AE =BD ,∠CAE =∠CBD . 又∵∠AOC =∠BOE , ∠CAE =∠CBD ,∴∠BHO =∠ACO =90°. ∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴PM =21BD , PM ∥BD ;PN =21AE , PN ∥AE .∴PM =PN . ∴∠MGE+∠BHA =180°. ∴∠MGE=90°. ∴∠MPN=90°. ∴PM ⊥PN .(3) PM = kPN∵△ACB 和△ECD 是直角三角形, ∴∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD . ∵BC =kAC ,CD =kCE , ∴k CECDAC BC ==. ∴△BCD ∽△ACE . ∴BD = kAE .∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴PM =21BD ,PN =21AE .∴PM = kPN .9、如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【解答】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.10、(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;的值是多少?(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其它条件不变,则EBAD(直接写出结论,不要求写解答过程)证明:(1)过D点作BC的平行线交AC于点F.∵△ABC是等腰三角形,∠A=60°∴△ABC是等边三角形.∴∠ABC=60 °∵DF∥BC,∴∠ADF=∠ABC=60 °,∴△ADF是等边三角形.∴AD=DF,∠AFD=60 °.∴∠DFC=180°-60 °=120°,∵∠DBE=180°-60 °=120°,∴∠DFC=∠DBE.又∵∠FDC=∠DCE,∠DCE=∠DEC,∴∠FDC=∠DEC,ED=CD.∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.(2)BE=AD成立.理由如下:过D点作BC的平行线交AC的延长线于点F.同(1)可证△ADF是等边三角形,∴AD=DF,∠AFD=60 °.∵∠DBE=∠ABC=60 °,∴∠DBE=∠AFD.∵∠FDC=∠DCE,∠DCE=∠DEC,∴∠FDC=∠DEC,ED=CD.∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.(3)EBAD过D点作BC的平行线交AC于点G,∵△ABC是等腰三角形,∠A=90°∴∠ABC=∠ACB=45°,∴∠DBE=180°-45°=135°.∵DG∥BC,∴∠GDC=∠DCE,∠DGC=180°-45°=135°,∴∠DBE=∠DGC,∵∠DCE=∠DEC,∴ED=CD,∠DEC=∠GDC.∴△DBE≌△CGD(AAS),∴BE=GD.∵∠ADG=∠ABC=45°,∠A=90°,∴△ADG是等腰直角三角形.∴DG,∴BE,∴EBAD11、问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=____________(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=____________(用α表示). 拓展研究:(2)如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=____________(用α表示),并说明理由.(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=____________ .解:(1)如图①,在△ABC中,∵点O是∠ABC和∠ACB平分线的交点,∴∠CBO=12∠ABC,∠BCO=12∠ACB.∵∠A=α,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=180°-12(180°-∠α)=180°-90°+12∠α=90°+12∠α.如图②,∵∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,∴∠BOC=180°-13(∠ABC+∠ACB)=180°-13(180°-∠A)=180°-13(180°-∠α)=180°-60°+13∠α=120°+13∠α.故答案为90°+12∠α,120°+13∠α.(2)如图③,∵∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,∴∠BOC=180°-13(∠DBC+∠ECB)=180°-13[360°-(∠ABC+∠ACB)]=180°-13[360°-(180°-∠A)]=180°-13(180°+∠α)=180°-60°-13∠α=120°-13∠α.故答案为120°-13∠α.(3)∵∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,∴∠BOC=180°-1n(∠DBC+∠ECB)=180°-1n[360°-(∠ABC+∠ACB)]=180°-1n[360°-(180°-∠A)]=180°-1n(180°+∠α)=1nn-×180°-1n∠α.=1180-nnα-⋅∠()故答案为1180-nnα-⋅∠().12、已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.13、在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.14、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.15、如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.【解答】解:(1)如图①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,,又∵EF是△ACD的中位线,∴,在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,在△FGD中,GF=DF•sin60°=,∴矩形EFGH的面积;(2)如图②,设矩形移动的距离为x,则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去),当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴,即矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)如图③,作H2Q⊥AB于Q,设DQ=m,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.16、尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO 的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.17、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.⑴求证:BD=AC;⑵将△BHD绕点H旋转,得到△EHF(点B、D分别与点E、F对应),连接AE.i) 如图②,当点F落在AC上时(F不与C重合),若BC=4,tan C=3,求AE的长;ii)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH.试探究线段GH与EF之间满足的等量关系,并说明理由.解:⑴∵AH ⊥BC ,∴∠BHD =∠AHC =90°,∵∠ABC =45°,∴∠ABH =∠BAH =45°,∴BH =AH ,又∵DH =CH ,∴△BDH ≌△ACH ,∴BD =AC ;⑵i)过点H 作HG ⊥AC 于点G ,由题意可知△EHF ≌△AHC ,∴∠EHF =∠AHC =90°,EH =AH ,HF =CH ,∴∠AHE =∠FHC ,EH AH HF CH =,∴△AEH ∽△CFH ,∴AE AH CF CH =,在Rt △AHC 中,tan C =AH CH=3,∴BH =AH =3CH ,∵BC =BH +CH =4,∴AH =3,CH =1,∴AC∵S △AHC =12AH HC ⋅=12AC HG ⋅,∴HG =AH HC AC ⋅CG=,∴CF =2CG,∴AE =CF AH CH⋅=351ii) 设CG 、AH 交于点Q ,由题意可知EH =AH ,HF =CH ,∠AHE =∠FHC =90°+30°=120°,∴∠HAE =∠HEA=1802AHE ︒-∠,∠FCH =∠CFH =1802FHC ︒-∠=30°,又∵∠AQG =∠CQH ,∴△AQG ∽△CQH ,∴AQ GQ CQ HQ =,又∵∠AQC =∠GQH ,∴△AQC ∽△GQH ,∴GH QH AC CQ ==sin30°,∵AC =EF ,∴12GH EF =.。

2013年中考数学三轮复习每天30分综合训练2

2013年中考数学三轮复习每天30分综合训练2

2013年中考数学三轮复习每天30分综合训练2总分100分 时间30分钟一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin 30°的值等于( ) A .1 B .2 C .3 D .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且220x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .1-C .2D .2-4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a C .32a D .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D .6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是( ) A .8.5,8.5 B .8.5,9 C .8.5,8.75 D .8.64,9 7.在A B C △和D EF △中,22A B D E A C D F A D ==∠=∠,,,如果A B C △的周长是16,面积是12,那么D E F △的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,68.在平面直角坐标系中,已知线段A B 的两个端点分别是()()41A B --,,1,1,将线段A B 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43,B .()34,C .()12--,D .()21--, 9.如图,A B C △内接于O ⊙,若28O A B ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )E H I N A第(9)题CABOA.22y x x=--+B.22y x x=-+-C.22y x x=-++D.22y x x=++二、填空题:本大题共8小题,每小题4分,共32分,请将答案直接填在题中横线上.11.化简:188-= .12.若分式22221x xx x--++的值为0,则x的值等于.13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形A B C D的中点四边形是一个矩形,则四边形A B C D可以是.14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y轴交点的坐标为__________15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x本,付款金额为y元,请填写下表:x(本) 2 7 10 22y(元)1616.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片A B C D,要将其剪拼成边长分别为a b,的两个小正方形,使得2225a b+=.①a b,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:_________________________________________________________________________________________________________三、解答题:本大题共3小题,共38分.解答应写出文字说明、演算步骤或证明过程.19.(本小题12分)解不等式组5125431x xx x->+⎧⎨-<+⎩,.第(17)题510152010 12 14 15 黄瓜根数/株株数第(16)题第(18)题D CBA20.(本小题12分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支.(Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当O A B △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题14分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率. \xyO一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题4分,共32分.11.2 12.213.正方形(对角线互相垂直的四边形均可) 14.()01-, 15.56,80,156.8 16.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以B C 为直径的半圆上的任意一点(点B C ,除外).B E C E ,的长分别为两个小正方形的边长. 三、解答题:本大题共3小题,共38分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩,①②由①得2x >, ············································································································· 2分 由②得,52x >-·········································································································· 4分∴原不等式组的解集为2x > ························································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ··················································· 1分因为这个反比例函数的图象分布在第一、第三象限,所以50m ->,解得5m >. ························································································· 3分 (Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上, 设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,, 0014242O A B S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ································································································· 6分 又 点A 在反比例函数5m y x-=的图象上,542m -∴=,即58m -=.∴反比例函数的解析式为8y x=.··················································································· 8分21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:DCB AE 2 312 31 2 3 第一个球xyO BA y=2x从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.········································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,. ()2163P A ∴==. ········································································································· 8分PCBAO第二个球 第一个球 (1,3) (2,3)(1,2)(3,2) (3,1)(2,1)3 2 11 2 3。

2020年中考数学三轮复习 题型2 规律探索题

2020年中考数学三轮复习 题型2 规律探索题
……
第n个黑色 形由4n-1(个)正方形组成, 那么第8个黑色 形由4×8-1=31(个)正方形组成. 故选A.
课件目录
首页
末页
4.[崇左中考]如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),
D(1,-2).把一条长为2 014个单位长度且没有弹性的细线(线的粗细忽略不计)
由5个圆组成,第3个图由11个圆组成,……,按照这样的规律排列下去,则第6
个图由
个圆组成( C )
A.39 C.41
B.40 D.42
……
课件目录
首页
末页
2.[2019·南岸区]如图是一组有规律的图案,第1个图案由5个基础图形组成,第2
个图案由8个基础图形组成,……,如果按照以上规律继续下去,那么通过观
【解析】 由题意给出的5个数可知, 2n+1
an=(-1)n·n2+1 ,
当n=8时,a8=1675.
课件目录
首页
末页
类型之二 图形规律探索题
[崇左中考]下列图形是将正三角形按一定规律排列,则第4个图形中所有 正三角形的个数有( B )
A.160 C.162
B.161 D.163
……
课件目录
首页
末页
1 2
x的图象分别为直
线l1,l2,过点A1 1,-12 作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点 A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…,依次进 行下去,则点A2 018的横坐标为 21 008 .
课件目录
首页
末页
10.[2018·北部湾模拟]将一些边长为1的正方形按如图所示的规律依次摆放,第 ①个图的周长为4,向第②个图的外沿周长为8,第③个图的外沿周长为12,…, 依照此规律摆放下去,若第 个图的外沿周长为1 024,则n的值为 256 .

重庆市大足区双路 2022年中考数学第三轮压轴题:二次函数 综合复习

重庆市大足区双路 2022年中考数学第三轮压轴题:二次函数 综合复习

重庆市大足区双路中学2022年中考数学第三轮压轴题:二次函数 综合复习1、已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (Ⅰ)求该二次函数的解析式及点C ,D 的坐标;(Ⅱ)点(,0)P t 是x 轴上的动点,①求||PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||2||3y a x a x =-+的图象只有一个公共点,求t 的取值范围.2、在平面直角坐标系中,关于x 的函数y =ax 2﹣6ax ﹣4x +8a +12(a 为常数且a ≠0)的图象记为G .(1)求证:G 与x 轴恒有两个交点.(2)当2<x <4时,关于x 的函数y =ax 2﹣6ax ﹣4x +8a +12(a 为常数且a ≠0)的值随着x 的增大而减小时,求a 的取值范围.(3)当a >0时,①设G 与直线y =4的两个交点为A 、B ,求线段AB 长度的取值范围.②设横、纵坐标都是整数的点为“整点”,当G 与x 轴围成的封闭图形的内部纵坐标大于﹣4的“整点”恰好有6个时,直接写出a 的取值范围.3、已知函数y =,记该函数图象为G .(1)当m =2时,①已知M (4,n )在该函数图象上,求n 的值;②当0≤x ≤2时,求函数G 的最大值.(2)当m >0时,作直线x =m 与x 轴交于点P ,与函数G 交于点Q ,若∠POQ =45°时,求m 的值;(3)当m ≤3时,设图象与x 轴交于点A ,与y 轴交于点B ,过点B 作BC ⊥BA 交直线x =m 于点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若a =﹣3c ,求m 的值.4、如图,在平面直角坐标系中,直线y =﹣x +3与y 轴交于点A ,与x 轴交于点B .抛物线y =﹣x 2+bx +c 过A 、B 两点.(1)点A ,B 的坐标分别是A ,B ;(2)求抛物线的解析式;(3)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上一动点(点P 在AC 上方),作PD 平行于y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积.5、如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于C 点,AC =3==.OB OC OA(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q 为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.6、如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).7、如图,抛物线23y ax bx =+-过(1,0)A ,(3,0)B -,直线AD 交抛物线于点D ,点D 的横坐标为2-,点(,)P m n 是线段AD 上的动点.(1)求直线AD 及抛物线的解析式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R ,使得P ,Q ,D ,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.8、如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0),C (0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.9、如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.10、在平面直角坐标系中,抛物线223(0)y ax ax a a =+-≠)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,该抛物线的顶点为D .(1)求该抛物线的对称轴及点A 、B 的坐标;(2)当0a >时,如图1,连接AD ,BD ,是否存在实数a ,使ABD 为等边三角形?若存在,求出实数a 的值,若不存在,请说明理由;(3)当1a =时,如图2,点P 是该抛物线上一动点,且位于第三象限,连接AP ,直线PO 交AC 于点Q ,APQ 和OCQ 的面积分别为1S 和2S ,当12S S -的值最大时,求直线PO 的解析式.11、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.12、如图,对称轴为直线1x=的抛物线经过(1,0)C两点,与x轴的另一个交点为B,A-、(0,3)点D在y轴上,且3=OB OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当03<<时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;t②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.13、如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE =2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.14、如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.(1)抛物线的解析式为;(2)当四边形AHCE面积最大时,求点E的坐标;(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.15、已知抛物线的解析式y=ax2+bx+3与x轴交于A、B两点,点B的坐标为(﹣1,0)抛物线与y轴正半轴交于点C,△ABC面积为6.(1)(3分)如图1,求此抛物线的解析式;(2)(5分)P为第一象限抛物线上一动点,过P作PG⊥AC,垂足为点G,设点P的横坐标为t,线段PG的长为d,求d与t之间的函数关系式,并直接写出自变量t的取值范围;(3)(6分)如图2,在(2)的条件下,过点B作CP的平行线交y轴上一点F,连接AF,在BF的延长线上取点E,连接PE,若PE=AF,∠AFE+∠BEP=180°,求点P的坐标.16、已知:抛物线y=﹣(x+k)(x﹣7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OB=OC.(1)如图1,求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);(3)如图3,在(2)的条件下,过点P作PE⊥y轴于点E,延长EP至点G,使得PG=3CE,连接CG交AP于点F,且∠AFC=45°,连接AG交抛物线于T,求点T的坐标.17、如图1,已知二次函数y=﹣(x+1)2+的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D是抛物线的顶点.(1)求点A,点C的坐标.(2)如图2,连结AC,DC,过点C作CE∥AB交抛物线于点E.求证:∠DCE=∠CAO.(3)如图3,在(2)的条件下,连结BC,在射线EC上有点P,使以点D,E,P为顶点的三角形与△ABC 相似,求EP 的长.18、如图,已知抛物线y =ax 2+bx -4与x 轴交于A ,B 两点,与y 轴交于点C ,且点A 的坐标为(-2,0),直线BC 的解析式为y =x -4. (1)求抛物线的解析式;(2)如图1,过点A 作AD ∥BC 交抛物线于点D (异于点A ),P 是直线BC 下方抛物线上一点,过点P 作PQ ∥y 轴,交AD 于点Q ,过点Q 作QR ⊥BC 于点R ,连接PR .求△PQR 面积的最大值及此时点P 的坐标; (3)如图2,点C 关于x 轴的对称点为点C ′,将抛物线沿射线C ′A 的方向平移个单位长度得到新的抛物线y ′,新抛物线y ′与原抛物线交于点M ,原抛物线的对称轴上有一动点N ,平面直角坐标系内是否存在一点K ,使得以D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写出点K 的坐标;若不存在,请说明理由.1219、如图1,在平面直角坐标系中,抛物线y=ax2﹣2ax+3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点A的坐标为(﹣1,0),点D为抛物线的顶点,对称轴与x轴交于点E.(1)填空:a=,点B的坐标是;(2)连接BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当△MNF的周长取得最大值时,求FP+PC的最小值;(3)在(2)中,当△MNF的周长取得最大值时,FP+PC取得最小值时,如图2,把点P向下平移个单位得到点Q,连接AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得GQ′=OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.。

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

2021年中考数学第三轮冲刺:三角形的综合 专题复习练习1、如图,在等边三角形ABC 中,6BC cm =,射线AG BC ∥,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,同时点F 从点B 出发沿射线BC 以2/cm s 的速度运动,设运动时间为()t s(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ≅ (2)填空:①当t 为 s 时,四边形ACFE 是菱形;②当t 为 s 时,以,,,A F C E 为顶点的四边形是直角梯形。

2、在Rt △ABC 中,∠ACB =90°,AB =,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ′B ′C (点A ,B 的对应点分别为A ',B ′),射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求∠ACA ′的度数;(2)如图2,设A ′B ′与BC 的交点为M ,当M 为A ′B ′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA 'B ′Q 的面积是否存在最小值.若存在,求出四边形PA ′B ′Q 的最小面积;若不存在,请说明理由.3、阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF 于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.4、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE 填空:(1)∠AEB的度数为;(2)线段BE之间的数量关系是。

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021中考数学三轮复习专题:正方形及四边形综合问题一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形3. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.24. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.5. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.6. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 17. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.658. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.11. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.12. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.13. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.14. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三、解答题17. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.18. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.19. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.20. 已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.2021中考数学三轮复习专题:正方形及四边形综合问题-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】B3. 【答案】D[解析]由旋转的性质可知,△ADE ≌△ABF ,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D .4. 【答案】C[解析]连接EF .∵AE=AF ,∠EAF=60°,∴△AEF 为等边三角形,∴AE=EF .∵四边形ABCD 为正方形,∴∠B=∠D=∠C=90°,AB=AD ,∴Rt △ABE ≌Rt △ADF (HL),∴BE=DF ,∴EC=CF .设CF=x ,则EC=x ,AE=EF==x ,BE=1-x.在Rt △ABE 中,AB 2+BE 2=AE 2,∴1+(1-x )2=(x )2,解得x=-1(舍负).故选C .5. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x xx x +-=-+-,解得:x =154.故选B.6. 【答案】B【解析】∵AB =2,∴BF =2,又∵BM =12BC =1,由勾股定理得FM =FB 2-BM 2= 3.7. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CD DP CB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x 5∴DC =5,BC =5AB =10,△ABC 的斜边上的高=25454AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .8. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.10. 【答案】8[解析]∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠CAE+∠BAF=90°,又∠CAE+∠ECA=90°,∴∠ECA=∠BAF,则在△ACE和△F AB中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.11. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.12. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.13. 【答案】(3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图14. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】4[解析]如图,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.三、解答题17. 【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD是正方形,BD是角平分线,可想到连接CG,易得CG=AG,再由四边形CEGF是矩形可得AG2=GE2+GF2;(2)给出∠AGF=105°,可得出∠AGB=60°,再由∠ABG=45°,可想到过点A作BG的垂线,交BG于点M,分别在两个直角三角形中得出BM和MG的长,相加即可得出BG的长.解:(1)AG2=GE2+GF2;(1分)理由:连结CG,∵ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,(2分)∴AG=CG,又∵GE⊥DC,GF⊥BC,∠GFC=90°,∴四边形CEGF是矩形,(3分)∴CF=GE,在直角△GFC中,由勾股定理得,CG2=GF2+CF2,∴AG2=GE2+GF2;(4分)(2)过点A作AM⊥BD于点M,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,(6分)∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AMGM,∴GM=66,(8分)∴BG=BM+GM=22+66=32+66.(10分)18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF.即点E为线段DF的中点.①四边形ECFG为菱形时,CF=CE.∵CE=EF,∴CE=CF=EF.∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°. 故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE , ∴∠D=∠DCE=22.5°. 故填22.5°.19. 【答案】解: (1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a,∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′∵四边形ABCD 为正方形,∴BD CD BDC=45°.∴DB DE ′=BDCD, ∵∠EDB ′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BD CE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m 。

九年级中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习(含答案)

九年级中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习(含答案)

2021年中考数学第三轮压轴题冲刺:统计与概率的综合专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.2、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x<;及格6075x;良好7585格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.4、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<,D等级:060x<.该校随机抽取了x<,C等级:6080x,B等级:8090一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<t<2040t<4060t<6080t<80100解答下列问题:(1)频数分布表中a=,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080<的男生人数为2人,其余为女生,现从该组中任选2人h t h代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A .书画类”所占扇形的圆心角的度数为___________度; (2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C .社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(1)统计表中m 的值为_______;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“3040x ≤<”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;x<”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树(4)若从年龄在“20状图的方法,求恰好抽到2名男性的概率.14、为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.15、为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.16、“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有___________人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为_________度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?17、为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.参考答案2021年中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有 50 人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为 ; (2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.【解答】解:(1)本次比赛参赛选手共有:(84)24%50+÷=(人), “59.5~69.5”这一范围的人数占总参赛人数的百分比为23100%10%50+⨯=, 79.5~89.5∴”这一范围的人数占总参赛人数的百分比为100%24%10%30%36%---=;故答案为:50,36%;(2) “69.5~79.5”这一范围的人数为5030%15⨯=(人),∴ “69.5~74.5”这一范围的人数为1587-=(人),“79.5~89.5”这一范围的人数为5036%18⨯=(人),∴ “79.5~84.5”这一范围的人数为18810-=(人);补全图2频数直方图:(3)能获奖.理由如下:本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为5040%20⨯=(人),又8884.5>,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率82==.1232、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x;良好7585x<;及格6075格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ; (2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数. 【解答】解:(1)在抽取的学生中不及格人数所占的百分比120%25%50%5%=---=, 故答案为5%.(2)所抽取学生测试成绩的平均分9050%7825%6620%425%79.81⨯+⨯+⨯+⨯==(分).(3)由题意总人数25%40=÷=(人),4050%20⨯=,2010%200÷=(人)答:该校九年级学生中优秀等级的人数约为200人.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率. 【解答】解:(1)24040%600÷=(人), 所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为60010%60⨯=(人),喜欢C种口味粽子的人数为60018060240120---=(人),所以喜欢C种口味粽子的人数所占圆心角的度数为12036072︒⨯=︒;600补全条形统计图为:(3)600040%2400⨯=,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率31==.1244、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<.该校随机抽取了x<,D等级:060x,B等级:8090x<,C等级:6080一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a8 ,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【解答】解:(1)1640%20%8a=÷⨯=,1640%(120%40%10%)12b=÷⨯---=,120%40%10%30%m=---=;故答案为:8,12,30%;(2)本次调查共抽取了410%40÷=名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为82 123=.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.【详解】(1)1220%60÷=,∴本次调查的学生人数为60人,1830%60=,故m=30.故答案为:60,m=30.(2)C的人数为:60-18-12-9=21(人),补全图形如下所示:(3)星期一到星期五连续的两天为(星期一、星期二),(星期二、星期三),(星期三、星期四),(星期四、星期五)共4种情况,符合题意的只有(星期一、星期二)这一种情况,故概率为14;在星期一到星期四任选两天的所有情况如下:(星期一、星期二),(星期一、星期三),(星期一、星期四),(星期二、星期三)、(星期二、星期四),(星期三、星期四)共6种情况,其中有一天是星期三的情况有:(星期一、星期三),(星期二、星期三),(星期三、星期四)共3种情况,所以概率是31 62 =.故答案为:14,12.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.【详解】(1)本次接受问卷调查的学生有:3636%100÷=(名),故答案为100;(2)喜爱C的有:10082036630----=(人),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=,故答案为72︒;(4)82000160100⨯=(人),答:该校最喜爱新闻节目的学生有160人.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有50 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?【解答】解:(1)612%50m=----=(人),÷=(人),5018410612故答案为:50;补全条形统计图如图所示:(2)103607250︒⨯=︒,答:喜欢“毽球”所在的圆心角的度数为72︒;(3)18180064850⨯=(人),答:全校1800名学生中喜欢跳绳活动的有648人.8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【详解】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”扇形的圆心角度数为436072 20⨯︒=︒m=810040 20⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P(女生被选中)=42 63 =.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<2040t<4060t<6080t<80100t<解答下列问题:(1)频数分布表中a= 5 ,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080h t h<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)(20.1)0.255a=÷⨯=,m=÷=,4200.2补全的直方图如图所示:故答案为:5,0.2;(2)400(0.250.15)160⨯+=(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况, 1男1女有12种,故所选学生为1男1女的概率为:123205P ==. 10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________. (2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 【详解】(1)由条形统计图知:等级“良好”的人数为:200名 由扇形统计图知:等级“良好”的所占的比例为:40% 则该校八年级总人数为:20040%500÷=(名) 由条形统计图知:等级“优秀”的人数为:150名 其站该校八年级总人数的比例为:15050030%÷= 所以其所对的圆心角为:36030%108︒︒⨯= 故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名) 补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010% 500=故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:61 122=.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.【详解】解:(1)由题意可知总人数=10÷20%=50名;(2)补全条形统计图如图所示:扇形统计图中C等级所对应扇形的圆心角=15÷50×100%×360°=108°;(3)列表如下:得到所有等可能的情况有20种,其中恰好抽中2名同学都是女生的情况有6种,所以恰好选到2名同学都是女生的概率=620=310.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【详解】解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为103607250⨯︒=︒;故答案为:50,72;(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:(3)86009650⨯=名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)所有可能的情况如下表所示:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率41 164==.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全。

2021年中考数学三轮综合复习:三角形综合 专题冲刺练习二

2021年中考数学三轮综合复习:三角形综合 专题冲刺练习二

2021年中考数学三轮综合复习:三角形综合专题冲刺练习二1.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC=90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1cm/s,点Q从点B开始沿B→C→A 方向运动,且速度为2cm/s,它们同时出发,设运动的时间为ts.(1)当t=2时,PQ=.(2)求运动几秒时,△APC是等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.(直接写答案)3.如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.4.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(I)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.5.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S=y,求y关于x的函数关系式(不△DAF需要写函数的定义域);(3)如果AG=8,求DE的长.6.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系7.如图1,在等边△ABC中,AB=2,点D是直线BC上一点,在射线DA上取一点E,使AD=AE,以AE为边作等边△AEF,连接EC.(1)若点D是BC的中点,则EA=,EC=;(2)如图2,连接BF,当点D由BC中点向点C运动时,请判断BF和EC的数量关系,并说明理由;(3)如图3,点D在BC延长线上,连接BF,BE,当BE∥AC时,求BF的长.8.如图,△ABC为等边三角形,点D、E分别是边AB、BC所在直线上的动点,若点D、E以相同的速度,同时从点A、点B出发,分别沿AB、BC方向运动,直线AE、CD交于点O.(1)如图1,求证:△ABE≌△CAD;(2)在点D、点E运动过程中,∠COE=°;(3)如图2,点P为边AC中点,连接BO,PO,当点D、E分别在线段AB、BC上运动时,判断BO与PO的数量关系,并证明你的结论.9.如果三角形的两个内角差为90°,那么我们称这样的三角形为“准直角三角形”.(1)若△ABC是“准直角三角形”,∠C>90°.①若∠A=60°,则∠B=°;②若∠A=20°,则∠B=°.(2)如图1,在Rt△ABC中,∠ACB=90°,BC=1,AB=3,点D在AC边上,若△ABD是“准直角三角形”,求CD的长.(3)如图2,在四边形ABCD中,CD=CB,∠ABD=∠BCD,AB=5,BD=6,且△ABC 是“准直角三角形”,求△BCD的面积.10.【背景】在△ABC中,分别以边AB、AC为底,向△ABC外侧作等腰直角三角形ABD 和等腰直角三角形ACE,∠ADB=∠AEC=90°.【研究】点M为BC的中点,连接DM,EM,研究线段DM与EM的位置关系与数量关系.(1)如图(1),当∠BAC=90°时,延长EM到点F,使得MF=ME,连接BF.此时易证△EMC≌△FMB,D、B、F三点在一条直线上.进一步分析可以得到△DEF是等腰直角三角形,因此得到线段DM与EM的位置关系是,数量关系是;(2)如图(2),当∠BAC≠90°时,请继续探究线段DM与EM的位置关系与数量关系,并证明你的结论;(3)【应用】如图(3),当点C,B,D在同一直线上时,连接DE,若AB=2,AC =4,求DE的长.11.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD 上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.12.如图,在△ABC中,AB=AC,∠BAC=90°,BC=14,过点A作AD⊥BC于点D,E 为腰AC上一动点,连接DE,以DE为斜边向左上方作等腰直角△DEF,连接AF.(1)如图1,当点F落在线段AD上时,求证:AF=EF;(2)如图2,当点F落在线段AD左侧时,(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在点E的运动过程中,若AF=,求线段CE的长.13.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC=60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连接CF,已知BD=6,CD=2,求△CDF的面积.14.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)若DG=2,求AC的长;(3)求证:AB=AE+AF.15.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.。

2020年九年级数学中考三轮冲刺复习 :《图形旋转综合》 练习题

2020年九年级数学中考三轮冲刺复习 :《图形旋转综合》 练习题

中考三轮冲刺复习:《图形旋转综合》练习1.在平面直角坐标系xOy中,已知A(4,0)、B(1,3),直线l是绕着△OAB的顶点A 旋转,与y轴相交于点P,探究解决下列问题:(1)如图1所示,当直线l旋转到与边OB相交时,试用无刻度的直尺和圆规确定点P 的位置,使顶点O、B到直线l的距离之和最大(保留作图痕迹);(2)当直线l旋转到与y轴的负半轴相交时,使顶点O、B到直线l的距离之和最大,请直接写出点P的坐标是.(可在图2中分析)2.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.3.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.(1)判断四边形A1A2B2B1的形状,并说明理由;(2)求A2C的长度.4.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.连接QP并延长,分别交AB、CD于点M,N.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,已知PM=QN;若MN的最小值为,求菱形ABCD的面积.5.四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D 逆时针旋转45°与直线PA交于点F.(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为;(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.6.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.7.(1)如图,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直线交于点F,求∠BFC的度数;(2)在(1)的基础上,若∠BAC每秒扩大10°,且在变化过程中∠ABC与∠ACB始终保持是锐角,经过t秒(0<t<14),在∠BFC,∠BAC这两个角中,当一个为另一个的两倍时,求t的值;(3)在(2)的基础上,∠ABD与∠ACE的角平分线交于点G,∠BGC是否为定值,如果是,请直接写出∠BGC的值,如果不是,请写出∠BGC是如何变化的.8.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL.EN、GM之间满足的数量关系,并说明理由:(2)旋转至如图③位置,使点G落在BC的延长线上,DE交BC于点L,连接BE,求BE 的长.9.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,求∠EAD的度数;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)10.如图,点O是边长为4的等边三角形ABC的中心,∠EOF的两边与△ABC的边AB,BC 分别交于E、F,∠EOF=120°.(1)如图①,当E为AB中点时,求∠EOF与△ABC的边所围成的四边形OEBF的面积;(2)如图②,∠EOF绕点O旋转.在旋转过程中四边形OEBF的面积会改变吗?请说明理由.11.如图,BC为等边△ABM的高,AB=4,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD、BD.(1)问题发现:如图①,当点D在直线BC上时,线段BP与MD的数量关系为,∠DMB=;(2)拓展探究:如图②,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)问题解决:当∠BDM=30°时,请直接写出线段AP的长度.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)直线BD和CE的位置关系是;(2)猜测BD和CE的数量关系并证明;(3)设直线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,直接写出PB的长.13.在矩形ABCD中,AD>AB,连接AC,线段AC绕点A逆时针90°旋转得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交AD,AC于点G,M,连接EF.(1)依题意补全图形.(2)求证:EG⊥AD.(3)连接EC,交BF于点N,若AB=2,BC=4,设BM=a,NF=b,试比较(a+1)(b+1)与9+6之间的大小关系,并证明.14.已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.15.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.16.问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC 是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE ∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC =S△AEC,请你帮他们验证这一结论是否正确,并说明理由.17.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.18.如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C 顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.参考答案1.解:(1)如图1,过A点作直线l⊥OB于点F,l与y轴的交点即为所确定的P点位置.理由如下:如图2所示,过点O作OD⊥l于D,过点B作BC⊥l于C.∵S△OAB=FA•OD+FA•BC=FA(OD+BC)=3为定值.要使点O、B到直线l的距离之和最大,即OD+BC最大,只要使FA最小,∴过A点作直线l⊥OB于点F,此时FA即为最小值(此时,点F、D、C重合).∴l与y轴的交点即为所确定的P点位置;(2)由(1)的解题过程知,如图2所示,延长BA到G点,使BA=AG,连接OG,则S△OAG =S△OAB,旋转直线l至l⊥OG于点F,与y轴的交点即为所确定的P点,过点B作BE⊥OA于点E,∵B(1,3),A(4,0),∴EB=EA=3,过点G作GH⊥x轴于点H,∴△ABE≌△AGH(AAS),∴AH=GH=3,∴OH=7,∴tan∠HOG=,又∵直线l⊥OG于点F,∴∠OPA=∠HOG,∴tan∠OPA=tan∠HOG=,∴=,∴=,∴OP=,∴P(0,﹣),故答案为:(0,﹣).2.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.3.解:(1)四边形A1A2B2B1是平行四边形,理由:∵∠ACB=∠B2C=90°,∴B1C∥C2B2,∵再将△A1B1C沿CB向右平移,∴B1C=C2B2,122∴B 2B 1∥B 1C ,∴B 2B 1∥A 1A 2,∵再将△A 1B 1C 沿CB 向右平移,∴A 1B 1∥A 2B 2,∴四边形A 1A 2B 2B 1是平行四边形;(2)在Rt △ABC 中,BC ===3,由题意:BC =CB 1=C 2B 2=3,∴AB 1=1,∵B 1B 2∥BC ,∴△AB 1B 2∽△ACB , ∴, ∴, ∴B 1B 2=,∴B 1B 2=CC 2=,∴CA 2=A 2C 2﹣CC 2=4﹣=.4.(1)证明:四边形ABCD 是菱形,∴BC =DC ,AB ∥CD ,∴∠PBM =∠PBC =∠ABC =30°,∠ABC +∠BCD =180°,∴∠BCD =180°﹣∠ABC =120°由旋转的性质得:PC =QC ,∠PCQ =120°,∴∠BCD =∠DCQ ,∴∠BCP =∠DCQ ,在△BCP 和△DCQ 中,,∴△BCP ≌△DCQ (SAS );(2)解:过点C作CG⊥PQ于点G,连接AC,∵PC=QC,∠PCQ=120°,∴∠PCG=60°,PG=QG,∴PG=PC,∴PQ=PC.∵PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,∴PC=2,BC=2PC=4,∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴=4,∴菱形ABCD的面积=2S=2×4=8;△ABC5.解:(1)∵∠PAD=45°,DE⊥AP,∴∠DAE=∠EDA,∴AE=DE,∴AD=AE,∵四边形ABCD是正方形,∴AD=AB=BF=AE,∴=;(2)过点B作BH⊥AP于H,∵四边形ABCD是正方形,∴AD=AB,∠ABD=45°,∠BAD=90°,∴∠BAH+∠DAE=90°,又∵∠BAH+∠ABH=90°,∴∠ABH=∠DAE,又∵AD=AB,∠DEA=∠AHB=90°,∴△ADE≌△BAH(AAS),∴AE=BH,∵将射线DE绕点D逆时针旋转45°与直线PA交于点F,∴∠EDF=45°,∴∠EFD=45°=∠ABD,∴点A,点F,点B,点D四点共圆,∴∠BFH=∠ADB=45°,又∵BH⊥AP,∴∠FBH=∠BFH=45°,∴BH=FH,∴BF=BH=AE,∴==.6.解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵△ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴△CEN≌△CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接BD',∵将△CFD沿CF翻折得△CFD′,∴CD=CD',DF=D'F,∠CFD=∠CFD'=90°,又∵EF=BF,∠EFD=∠BFD',∴△EFD≌∠BFD'(SAS),∴BD'=DE,∴BD'=CD,∵当BD'取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.7.解:(1)∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠BDC=90°,∴∠A+∠ACE=90°,∠ACE+∠CFD=90°,∴∠CFD=∠A∴∠BFC=180°﹣∠DFC=180°﹣∠A=140°.(2)由题意∠A=40°+10°×t,∠BFC=180°﹣∠A=140°﹣10°×t.①当0<t<5时,∠BFC=2∠A,则有140﹣10t=2(40+10t),解得t=2.②当5<t<14时,∠A=2∠BFC,∴40+10t=2(140﹣10t),解得t=8,综上所述,当t=2或8时,∠BFC,∠A两个角中,一个角是另一个角的两倍.(3)如图,结论∠BGC是定值.理由:∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠ADB=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,∵BG平分∠ABD,CG平分∠ACB,∠ABG=∠ABD,∠ACG=∠ACE,∴∠ABG+∠ACG=(∠ABD+∠ACE)=∠ABD,∵∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∠G+∠GBC+∠GCB=180°,∴∠G=∠A+∠ABG+∠ACG=∠A+∠ABD=90°,∴∠BGC是定值.8.解:(1)DL=EN+GM.证明:如图1,过点G作GK∥BM,∵四边形EFGD是正方形,∴∠DEF=∠DGF=∠EDG=90°,DG=DE,∴∠EDN+∠NDG=∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,在平行四边形DKMG中,GM=KL,∵DL=DK+KL,∴DL=EN+GM;(2)如图2,过点E作EP⊥BG于点P,在Rt△DCG中,CD=6,DG=10,CG=8,∴tan∠CGD=,∵∠CDL=∠CGD,∴tan∠CDL=,在Rt△CDL中,LC=,DL=,∴BL=8﹣=,EL=10﹣=,同理,在Rt△ELP中,PE==2,PL==,∴BP==2,∴在Rt△BPE中,BE===2.9.解:(1)如图1中,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣50°=40°,∴∠EAD=∠EAC﹣∠DAC=50°﹣40°=10°.(2)如图2中,设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)如图3中,设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°﹣n﹣x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°﹣(180°﹣n﹣x)=n+x﹣90°,∵CF平分∠BCG,∴∠FCG=(180°﹣n),∵∠AFC=∠FCG﹣∠FAC=(180°﹣n)﹣x=90°﹣n﹣x,∴∠DFE﹣∠AFC=2n+2x﹣180°,∵2x+30°+n=180°,∴2x=150°﹣n,∴∠DFE﹣∠AFC=n﹣30°.(4)如图4中,设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°﹣(180°﹣n﹣y)=n+y﹣90°,∠AF1C=180°﹣y﹣n﹣(180°﹣n)=135°﹣y﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣y﹣n)=n+3y﹣225°,∵2y+30°+n=180°,∴y=75°﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣x﹣n)=n+225°﹣n﹣225°=n.10.解:(1)连接OB,∵点O是边长为4的等边三角形ABC的中心,∴∠ABO=∠CBO=30°,∵当E为AB中点时,∴AE=BE=2,OE⊥AB,∴∠BOE=60°,OE==,∵∠EOF=120°,∴∠BOF=60°,∴∠BFO=180°﹣30°﹣60°=90°,∴BF=CF=2,∴OF==,∴四边形OEBF的面积=×2×+×2×=;(2)不变,理由如下:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的中心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=4,∴BN=NC=2,∴ON=tan∠OBC•BN=×2=,∴S=BC•ON=,△OBC∵∠EOF=∠BOC=120°,∴∠EOF﹣∠BOF=∠BOC﹣∠BOF,即∠EOB=∠FOC,,∴△EOB ≌△FOC (ASA ),∴S △EOB =S △FOC ,∴S 四边形OEBF =S △OBC =.11.解:(1)∵△ABM 是等边三角形,BC ⊥AM ,∴∠ABC =ABM =30°,∵∠APD =60°,∴∠BAP =∠ABP =∠PAC =30°,∴AP =PB ,PC =AP ,∵AP =PC ,∴PC =PD ,∴PC =CD ,∵AC =MC ,∠ACP =∠MCD ,∴△APC ≌△MDC (SAS ),∴DM =AP ,∠CMD =∠PAC =30°,∴PB =DM ,∠BMD =60°+30°=90°,故答案为:相等;90°;(2)成立,证明如下:如图②,连接AD ,∵△AMB 是等边三角形,∴AB =AM ,由旋转的性质可得:AP =DP ,∠APD =60°,∴△AMB 是等边三角形,∴PA =PD =AD ,∴∠BAP =∠BAC +∠CAP ,∠MAD =∠PAD +∠CAP ,∠BAC =∠PAD , ∴∠BAP =∠MAD ,∵,∴△BAP≌△MAD(SAS),∴BP=MD,∠AMD=∠ABC=30°.∵∠BMA=60°,∴∠DMB=∠BMA+∠AMD=90°;(3)如图③,由(2)知,∠BMD=90°∵∠BDM=30°,∴∠DBM=60°,∴D在BA的延长线上,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∵BM=4,∴BD=8,∴AP=AD=4;如图④,由(2)知,∠BMD=90°,∵∠BDM=30°,∵BM=4,∴DM=4,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∠PAD=∠BAM=60°,∴∠PAB=∠DAM,∵AB=AM,∴△ABP≌△AMD(SAS),∴PB=DM=4,∵AC=2,BC=2,∴CP=6,∴AP==4综上所述,线段AP的长度为4或.12.解:(1)BD⊥CE,理由:延长CE交BD于P,∵将线段AD绕点A逆时针旋转90°,得到线段AE,∴AD=AE,∠DAE=90°,∵∠BAC=90°,AB=AC,∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴∠ABD=∠ACE,∵∠ABC+∠ACB=∠ABP+∠ABC+∠PCB=90°,∴∠BPC=90°,∴BD⊥CE,故答案为:BD⊥CE;(2)BD和CE的数量是:BD=CE;由(1)知△ABD≌△ACE,∴BD=CE;(3)①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∵∠AEC=∠BEP,∴∠BPE=∠EAC=90°,∵∠PBE=∠ABD,∴△BPE∽△BAD,∴=,∴=,∴BP=.②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,由△BPE∽△BAD,∴=,∴=,∴PB=,综上所述,PB的长为或.13.(1)解:图形如图1所示:(2)证明:如图2中,过点A作AH⊥FE交FE的延长线于H.∵EF∥AD,∠H=90°,∴∠HAD=180°﹣∠H=90°,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,AB=CD,BC=AD,∵∠CAE=∠DAH=90°,∴∠HAE=∠DAC,∵∠H=∠ADC=90°,AE=AC,∴△AHE≌△ADC(AAS),∴EH=CD=AB,AH=AD=EF,∵∠DAH+∠BAD=180°,∴B,A,H共线,∵AH=EF,EH=AB,∴HB=HF,∴∠HBF=∠HFB=45°,∴∠AGB=∠ABG=45°,∴AB=AG,∴EH=AG,∵EH∥AG,∴四边形AHEG是平行四边形,∵∠H=90°,∴四边形AHEG是矩形,∴∠AGE=90°,∴EG⊥AD.(3)解:如图3中,过点A作AH⊥FE交FE的延长线于H.由(2)可知,AB=BG=2,∵∠BAG=90°,∴BG=AB=2,∵AG∥BC,∴==,∴a=BM=BG=,由(2)可知,BH=HF=2+4=6,∵∠H=90°,∴BF=6,∵EF∥BC,∴∠NEF=∠NCB,∵∠ENF=∠CNB,EF=BC,∴△ENF≌△CNB(AAS),∴b=NF=BF=3,∴(a+1)(b+1)=(+1)(3+1)=8++3+1=9+<9+6,∴(a+1)(b+1)<9+6.14.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.15.解:(1)等腰三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,∴∠PCB=∠PBC,∴PC=PB,∴△BCP是等腰三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.16.解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC =S△AEC.17.解:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:AF=BE,90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.18.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,在平面直角坐标系中,抛物线2
(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是抛物线的顶点,对称轴DP 交x 轴于Q 点,已知(1,2)P -,且线段AB=4,tan ∠ODP=
4
1
. (1)求D 点的坐标.
(2)求抛物线2
(0)y ax bx c a =++≠的解析式.
(3)在抛物线上是否存在点M (D 点除外),使DOP MOP S S ∆∆=?若存在,请求出M 点的坐标;
若不存在,请说明理由.
如图,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止.
设点P ,Q 运动的时间是t 秒(t >0). (1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不
必写t 的取值范围).
(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.
(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻
会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.
【答案】解:(1)y = 2t ;
(2)当BP = 1时,有两种情形:
①如图6,若点P 从点M 向点B 运动,有 MB = BC 2
1
= 4,MP = MQ = 3,
∴PQ = 6.连接EM ,
∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.
∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面
积为39.
②若点P 从点B 向点M 运动,由题意得 5=t .
PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,Q E 与AD 或AD 的
延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD
的重叠部分就是梯形FPCG ,其面积为
32
27.
(3)能.
4≤t ≤5.

7
图6。

相关文档
最新文档