聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理_董平

合集下载

不同形态聚苯胺的研究进展

不同形态聚苯胺的研究进展

不同形态聚苯胺的研究进展作者:张杰陈潇程磊来源:《硅谷》2011年第19期摘要:综述聚苯胺的基本特性,并对不同形态聚苯胺的合成及应用做研究,同时指出聚苯胺研究领域中一部分亟待解决的问题,并对它的发展进行展望。

关键词:聚苯胺;特性;合成;应用中图分类号:O633 文献标识码:A 文章编号:1671-7597(2011)1010025-020 引言近年来新技术革命迎来迅猛发展的机遇,功能材料尤其是高分子材料功能性就被提出更高的要求,这些功能性材料主要汇集在导电聚合物、磁性聚合物、液晶高分子、非线性光学聚合物上。

2000年诺贝尔化学奖授予美国的MacDiamid和Heeger及日本的Hideki Shirakawa,以表彰他们开创的新的研究领域导电高聚物。

导电高聚物的出现打破了聚合物为绝缘体的传统观念,同时也预示了这一新兴领域将得到长足的发展。

聚苯胺(PANI)由于有良好的热稳定性和化学稳定性,并且对环境友好、易加工、廉价易得等优点,使得它在二次电池、电致变色、气体分离、防腐等领域有着广泛的应用前景,从而成为目前导电高聚物领域最受关注的三大(聚苯胺、聚噻吩和聚吡咯)导电高分子品种之一。

1 聚苯胺的合成1.1 膜、纤维、棒状聚苯胺的合成1.1.1 化学氧化聚合法化学氧化聚合法是在酸性介质的条件下,用适当的氧化剂对苯胺单体进行氧化的一种方法。

过硫酸氨是最常用的氧化剂,此外,还有铬酸钾、过氧化氢、三氯化铁等;研究表明,氧化剂的浓度过低仅仅会影响产率,而浓度过高则会使聚苯胺降解,产生大量的苯胺齐聚物或溶于水的物质。

常用的质子酸则包括盐酸、磷酸、硫酸等无机酸和萘磺酸、十二烷基苯磺酸等有机酸。

质子酸有两方面的作用:一作为掺杂剂,这对聚苯胺的特性(如导电性)影响很大;二作为酸度控制剂,来控制反应所需要的PH值。

MacDiamid[1]的研究结果表明反应在PH介于0和2之间时聚苯胺的氧化度和电导率达到最佳。

反应温度一般选择低温,因为聚苯胺的聚合是放热反应,温度过高会产生暴聚而引起产物的降解。

聚苯胺的合成与聚合机理研究进展_徐浩

聚苯胺的合成与聚合机理研究进展_徐浩

2008年第27卷第10期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1561·化工进展聚苯胺的合成与聚合机理研究进展徐浩,延卫,冯江涛(西安交通大学能源与动力工程学院,陕西西安 710049)摘要:近年来,聚苯胺因其优良的性能而备受关注,其合成方法与合成机理一直是聚苯胺研究的重要内容之一。

本文详细阐述了聚苯胺的化学氧化和电化学合成方法,并对两类合成方法的反应机理进行了综述。

关键词:聚苯胺;合成方法;聚合机理中图分类号:TQ 317 文献标识码:A 文章编号:1000–6613(2008)10–1561–08Development of synthesis and polymerization mechanism of polyanilineXU Hao,YAN Wei,FENG Jiangtao(School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China) Abstract:In recent years,polyaniline has attracted much attention because of its excellent properties. The study on its synthesis methods and polymerization mechanism is always one of the major research contents of polyaniline. In this paper,the chemical and electrochemical synthesis methods and the polymerization mechanism of polyaniline are reviewed.Key words:polyaniline;synthesis;polymerization mechanism20世纪70 年代后期由于聚乙炔的发现而迅速产生了以共轭高分子为基础的导电聚合物,聚苯胺就是其中之一。

211064115_聚苯胺

211064115_聚苯胺

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 3 期聚苯胺/碳纳米管气敏材料的研究进展薛博,杨婷婷,王雪峰(太原理工大学安全与应急管理工程学院,山西 太原 030024)摘要:聚苯胺具有良好的氧化还原性和环境稳定性以及优异的导电性,是一种良好的气敏材料。

但是聚苯胺的共轭离域结构使其在中性和碱性环境中的应用受到制约。

碳纳米管具有比表面积大、可在常温下表现出对于不同气体良好的吸附能力的特点,但是单纯的碳纳米管对气体的吸附选择性较差。

文章主要介绍了采取金属、金属氧化物或者聚合物掺杂等不同手段改性的聚苯胺、碳纳米管以及聚苯胺/碳纳米管复合材料分别作为气敏材料的气敏性能及气敏机理的研究进展,得出经过改性的聚苯胺/碳纳米管复合材料具备更加优良的气敏特性,但也指出存在复合材料各部分协同作用机理尚不明确,除氨气外其余气体的气敏反应机理研究较少的问题,提出未来应进一步探索复合材料气敏反应机理与复合材料各部分的协同作用机制,设计出所需要材料的分子结构,进而有针对性地对聚苯胺和碳纳米管进行功能化掺杂,合成优良的复合气敏材料。

关键词:聚合物;纳米材料;复合材料;聚苯胺;碳纳米管;改性;气敏性能;气敏机理中图分类号:TB34 文献标志码:A 文章编号:1000-6613(2023)03-1448-09Research progress of polyaniline/carbon nanotube gas sensing materialsXUE Bo ,YANG Tingting ,WANG Xuefeng(School of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China)Abstract: Polyaniline has the advantages of good redox properties, environmental stability and excellent electrical conductivity, and thus polyaniline is a good gas-sensing material. However, the conjugated delocalized structure of polyaniline restricts its application in neutral and alkaline environments. Carbon nanotubes have the characteristics of large specific surface area and can show good adsorption capacity for different gases at room temperature, but simple carbon nanotubes have poor adsorption selectivity to gases. This paper mainly introduces the gas-sensing properties and gas-sensing mechanism of polyaniline, carbon nanotubes and polyaniline/carbon nanotube composites modified by different means such as metal, metal oxide or polymer doping as gas-sensing materials. The research progress shows that the modified polyaniline/carbon nanotube composite material has better gas-sensing properties, but it is also pointed out that the synergistic mechanism of each part of the composite material is not clear, and there are few studies on the gas-sensing reaction of other gases except ammonia gas. It is proposed that in the future the gas-sensing reaction mechanism of the composite material and the synergistic mechanism of each part of the composite material should be further explored, the molecular structure of the required material should be designed, and then the function of polyaniline and carbon nanotubes should be综述与专论DOI :10.16085/j.issn.1000-6613.2022-0787收稿日期:2022-04-29;修改稿日期:2022-05-27。

聚苯胺纳米功能高分子材料的发展

聚苯胺纳米功能高分子材料的发展

聚苯胺纳米功能高分子材料的发展冯志攀1120142220摘要:本文主要介绍了聚苯胺及其复合材料的合成方法,以及其在超级电容器电极中的应用。

关键词:聚苯胺纳米功能材料超级电容器合成方法导电高分子是指具有导电能力的高分子材料。

根据材料的组成分为复合型导电高分子和本征型导电高分子。

本身具有导电性的高分子即为本征型导电高分子,根据结构特征和导电机理分为电子型导电高分子,离子型导电高分子,氧化还原型导电高分子。

本征聚苯胺属于电子型导电高分子的一种,是苯胺单体聚合后形成的聚合物,根据其氧化程度的不同,可分为全还原态(LEB),中间氧化态(EB),全氧化态(PNB)。

只有EB(图一)可以通过质子酸掺杂得到高的导电率,中间氧化态型聚苯胺是研究热点。

由于聚苯胺具有单体价格低廉;阳离子自由基聚合可以方便快捷地合成高品质自掺杂聚苯胺,工艺简单;聚苯胺中氨基具有良好的化学反应活性,大大增强复合材料的相容性;其热分解温度高,在常温下环境稳定性良好[1];聚苯胺具有独特的掺杂方式和二次掺杂等特殊性质,掺杂/解掺杂过程简单;电导率高和赝电容高等优点,聚苯胺已经在电子设备、生物传感、抗腐蚀材料、燃料电池、电致变色、电磁干扰屏蔽以及环境处理吸附等领域有广泛的应用。

图1:中间氧化态聚苯胺(EP)的结构式纳米材料是指在三维空间中至少有一维处于纳米尺寸(0。

1-100 nm)或由它们作为基本单元构成的材料,由于其独有的表面与界面效应,小尺寸效应,量子尺寸效应,宏观量子隧道效应等性质,纳米材料会表现出不同的光、电、磁效应和物理化学性质等。

1.9K 时,盐酸掺杂的聚苯胺中获得30%的巨磁阻效应,纳米后的聚苯胺纳米管颗粒在温度为3K 时有高达91%的巨磁阻效应[2];聚苯胺的纳米化改变了体型聚苯胺不溶不熔的特点,大大增加了在有机溶剂中的溶解度及可加工性[3];由于纳米结构高比表面积和高孔隙率,显著提高了纳米聚苯胺超级电容器的性能[4],和聚苯胺气体分离膜的通量、过滤性能[5]等。

阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制

阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制

a o i a mi m xd A O) s mpa . i a o b r y r a o r r y r o tie yc a gn e n dc l n o i u u e( A a t l e N n t ear so n wi ar s ae t n u a n e a wee ban db h n ig t h
c c n ai n oft lc olt nd t e o r t ni loft lcr e sto on e t to r he ee t y e a h vepo e ta r he ee tod po iin.Thei to ci n ofc ltng s ce s n r du to hea i pe isi c uca o a ot e f r ai n be a s e a e lt e e f ci e c nc nr ton o e e e tol e r i lf r n n ub o m to c u e t y c n r gua e t fe tv o e tai f t l c h h h r yt.A os il p sb e m e h nim o hef r ai n oft e n no u esna w ie sp op e y c nsde i hedif r ntc nti tn fc o s c a s f rt o m to a t b / no r si r os d b o i rng t fe e o rbu ig a t r h
物 理化学 学报 ( lHu x e u b o Wui aБайду номын сангаасu e a ) X
J l uy
Aca尸 s 一 h m. i.2 1 , 6 7 : 0 7 2 4 t . C i Sn , 0 0 2 ( )2 3 - 0 3

聚苯胺纳米材料的制备及应用

聚苯胺纳米材料的制备及应用

聚苯胺纳米材料的制备及应用聚苯胺纳米材料的制备及应用聚苯胺具有原料易得,合成简便,掺杂机理独特,优良的环境稳定性、电磁微波吸收性能、电化学性能及光学性能和潜在的溶液和熔融加工性能等优点,被认为是最有希望在实际中得到应用的导电聚合物材料,在日用商品及高科技等方面有着广泛的应用前景。

[1,2]因此,自MacDiarmid等发现其质子酸掺杂过程后,[3,4]聚苯胺一跃成为当今导电聚合物研究的热点和推动力之一,备受人们的关注。

在这30多年期间,国内外相关学者们已对聚苯胺各方面进行了较为深入的研究。

1 聚苯胺的制备方法聚苯胺通常由苯胺单体的化学氧化聚合或电化学氧化聚合的方法来制备,选择不同的合成方法和合成条件所得聚苯胺的微观形貌和各种物理、化学性质都有较大的差异。

1.1 化学氧化聚合化学法制备聚苯胺一般是在酸性介质中把氧化剂直接加入到苯胺溶液中,使苯胺发生氧化聚合反应,生成粉末状的聚苯胺。

苯胺的化学氧化合成法具有操作简单、反应条件容易控制等优点。

研究较多的化学氧化聚合法主要有溶液聚合、乳液聚合、微乳液聚合与现场吸附聚合法等。

1.1.1 溶液聚合法代写论文聚苯胺的溶液聚合是指在酸性溶液中用氧化剂使苯胺单体氧化聚合。

化学氧化法能够制备大批量的聚苯胺,也是最常用的一种制备聚苯胺的方法。

化学氧化法合成聚苯胺主要受到反应介质酸的种类及浓度、氧化剂的种类及浓度、单体浓度和反应温度、反应时间等因素的影响。

质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需的pH值和充当掺杂剂。

苯胺化学氧化聚合常用的氧化剂有:H2O2、K2Cr2O8、MnO2、(NH4)2S2O8、FeCl3等。

1.1.2 乳液聚合法乳液聚合有两大类型:①水包油(O/W)型,称为普通乳液聚合;②油包水(W/O)型,即反相乳液聚合。

它们的差别主要体现在反应连续相的选择上,O/W型乳液的连续相是水,而W/O型乳液的连续相是有机溶剂。

典型的乳液聚合过程为:以表面活性剂(如有机磺酸钠等)为乳化剂,同时加溶剂(如水、二甲苯)及苯胺,再用氧化剂(如过硫酸铵(NH4)2S2O8)引发聚合,反应结束用丙酮破乳,经洗涤、干燥即得产物聚苯胺。

聚苯胺@碳纳米管导电压敏复合材料及其应用[发明专利]

聚苯胺@碳纳米管导电压敏复合材料及其应用[发明专利]

专利名称:聚苯胺@碳纳米管导电压敏复合材料及其应用专利类型:发明专利
发明人:冯超,万菲,黄微波,杨阳
申请号:CN201510811855.7
申请日:20151120
公开号:CN105330858A
公开日:
20160217
专利内容由知识产权出版社提供
摘要:本发明提供了一种聚苯胺碳纳米管导电压敏复合材料及其制备方法。

聚苯胺碳纳米管导电压敏复合材料,所述聚苯胺通过芘基与碳纳米管之间以π-π堆积的形式相结合。

聚苯胺碳纳米管导电压敏复合材料,通过以下步骤制备得到:(1)制备氨基芘碳纳米管复合材料:(2)原位接枝聚苯胺导电聚合物:(3)聚苯胺碳纳米管导电压敏复合材料的性能优化。

本发明的导电压敏复合材料通过碳纳米管与聚苯胺之间通过芘基以π-π堆积的形式相结合,既实现了碳纳米管表面的化学接枝,又保证了碳纳米管的SP杂化轨道结构不被破坏。

聚苯胺碳纳米管导电压敏复合材料具有良好的导电性能和一定的压敏特性,极大拓展了聚苯胺碳纳米管导电压敏复合材料的应用前景。

申请人:青岛理工大学
地址:266000 山东省青岛市市北区抚顺路111号
国籍:CN
代理机构:青岛联信知识产权代理事务所
更多信息请下载全文后查看。

聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理

聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理

聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理聚苯胺纳米管是一种具有十分独特的物理和化学特性的材料,因此其在化学、物理和生物学领域都有着广泛的应用技术。

电化学生长技术(Electrochemical Growth)是一种制备纳米管的有效方法。

目前,聚苯胺纳米管的电化学制备技术已经成为一种重要的制备方式,因为它具有环保、低成本、简单易行等优点。

其中,阳极氧化铝模板法可以简单、可靠地制备复杂结构的聚苯胺纳米管,因此得到了广泛的应用。

本文将探讨聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理。

首先,阳极氧化铝模板可以在电解液中高电压电离氧化,产生一个有序、均匀的多孔氧化铝膜。

此后,在阳极氧化铝模板表面进行电极化处理,将模板置于电解液中,通过外加电压的控制,控制阴阳极的直接反应,产生聚合物在模板孔内生成,并随着电势的增加进一步扩张,从而形成纳米管。

其中,阳极氧化铝模板内不同大小孔洞的阻挡效应可以控制纳米管的生长方向和大小。

而阳极氧化铝模板的孔径大小、壁厚度、形状以及表面特性等则会影响纳米管的形貌和性能。

其次,聚苯胺是一种在碱性条件下呈现出电活性的电聚合物,其电聚合能力来源于其共轭结构。

针对聚苯胺的电聚合机理,研究表明其电极化学行为实际上是一种电催化反应。

在电极表面,聚苯胺结构单元中的苯环成为主要可反应的基团,接着,负离子在电极表面捕获电子,逐渐形成中间体,并在电解质中生成带正电荷的物质。

这些带正电荷的物质与带负电荷的临近分子结合形成聚合物,在电解质中不断生长,从而形成纳米管结构。

最后,纳米管的形态控制和性能调控是纳米管研究领域热点和难点问题。

目前,人们通过适当选择聚苯胺的聚合反应离子、控制阳极氧化铝模板的制备工艺,以及优化电化学生长条件等方法来达到纳米管的形态控制和性能调控。

此外,人们也可以将其它材料包覆在聚苯胺纳米管表面,在其上进行改性和修饰,以实现其特定功能的增强或改善。

聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理

聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理

2 n ]PQFrstu # . fPgh ]PQ g i & op AB jkl t *F GH @ E rs J @Pop e mn ++,8 2 0 8 * 0 8J @$ o & PopFrs m pq A6f kl t * # FJH 23D > h r2 ]PQFPopN H st . e S9U u lS./ # DEF X Pop& ,-7& J * [Z e ’(& ]PQ& rstu ,?4?
’"")("!(’; v? g w &’"")(%%(%) v?xyw #
$4 & $’ & $% &
0< 9:&FF XY=>? q&op]PQAWB GH @Ers # h\ opF]PQrstuWT & ]^ F # _}‘ab Y]ZJDE^)9 cd].eu V&DE_ ++, ’(q]PQPop,-7Fr stu&fghDE’( ijJknPoprsF UV & lm nPop_ ++, ’( n rstuFD E& opq ersht,-7FQ@ #
G# *+," #
JK789*+=V;6=NO;PG L $M ( 4;6Q,-RS=./0123=TU;PG L )M -./ 0+123,2456 37 8# 9:91;23<9 47;92 2903=+>, $$% ;905:4;9 ?$ @( A./ 0+123,2456 37 53:B4>+:+>9 >4>3;CDC:9 ,23E+>, 3> 8# 9:91;23<9 ?) @

模板法制备聚苯胺纳米管及性能应用

模板法制备聚苯胺纳米管及性能应用

模板法制备聚苯胺纳米管及性能应用作者:罗云清等来源:《吉林农业》2015年第03期摘要:利用自然界存在的易得且没有价值的柳絮为模板,以硫酸作为合成聚合物纳米聚苯胺(PANI)的质子酸、使用过二硫酸铵作为聚合反应的引发剂,通过模板聚合法在超声辅助条件下可控易合成纳米管PANI产品。

该产品通过紫外—可见光谱、红外光谱、X—射线粉末衍射及扫描电镜等手段对其PANI结构进行测试表征。

与此同时,发现PANI产品具有可溶于绿色有机溶剂乙醇的性能,其实验研究结果还表明该产品还具有良好的导电性能。

关键词:聚苯胺;硫酸;纳米管;可溶性;导电性中图分类号: O612 文献标识码: A DOI编号: 10.14025/ki.jlny.2015.05.063聚苯胺(PANI)具有不溶于水和绝大多数有机溶剂的特点,这一特点局限了人们对PANI 结构的表征及其结构和性能关系的研究,同时也限制PANI的广泛应用,因而解决PANI溶解性问题已成为各国竞相研究的热点[1-4]。

Y. Cao等通过有机质子酸掺杂实现了掺杂态PANI可溶性的问题,但同时具有很大的局限性,例如溶剂的选择仅限于N-甲基-2-吡咯烷酮、间甲酚等几种溶剂。

另外,用N-甲基-2-吡咯烷酮制备的聚苯胺膜导电性和机械性能都很差,而间甲酚又是一种高沸点的有致癌性的有机溶剂,不可大量使用。

因此,我们利用自然界中易得的柳絮不仅有利于环境保护,而且会使所合成的产品PANI 具有导电性能和可溶性能,这样解决了实际应用成为可能,从而会给社会发展创造出更大的经济效益。

在本文中,我们利用硫酸提供反应的酸性环境和聚合反应的掺杂剂,过二硫酸铵为氧化剂,通过柳絮为模板成功地合成出PANI产品。

以红外光谱(IR)、X—射线粉末衍射(XRD)、紫外—可见光谱(UV-Vis)和扫描电镜(SEM)等方法手段对PANI进行了测试和表征,同时还对PANI样品性能进行研究。

1 实验部分1.1 试剂苯胺(分析纯,使用前经过二次减压蒸馏);浓硫酸(分析纯,沈阳化学试剂厂);过二硫酸铵(分析纯,沈阳化学试剂厂);实验所用试剂无水乙醇、乙醚、丙酮等均为分析纯,天津化学试剂厂。

聚苯胺纳米线阵列的电化学组装研究

聚苯胺纳米线阵列的电化学组装研究

聚苯胺纳米线阵列的电化学组装研究张璐;姚素薇;梁学磊;张圆圆【摘要】利用二次氧化法制备了多孔阳极氧化铝模板,通过控制电位聚合技术在阳极氧化铝模板内组装了聚苯胺纳米线阵列.采用扫描电子显微镜、透射电子显微镜和能谱仪等检测技术对填孔过程和阵列的形貌、结构进行分析和表征.结果表明,苯胺在纳米孔中的聚合过程经历四个阶段,填孔终止时间控制为第二阶段结束时间.阳极氧化铝模板中苯胺聚合适宜的电位为1.0V,pH为2.5.聚苯胺纳米线的直径均匀,约为70 nm,与模板孔径基本一致,为非晶结构.%Porous anodic aluminum oxide template was prepared by secondary oxidation and a polyaniline nanowire array was fabricated on the AAO template by potentiostatic polymerization.The morphology,phase structure of PANI nanowire array and the filling process were characterized by SEM,TEM and EDS.The results showed that the polymerization process undergone four stages and the filling termination time was controlled in the end of the second stage.The optimum polymerization potential was 1.0 V and the proper pH value was 2.5.The obtained nanowires had uniform diameters of about 70 nm which accorded with diameter of the nano-holes.【期刊名称】《电镀与精饰》【年(卷),期】2013(035)007【总页数】5页(P1-5)【关键词】阳极氧化铝模板;恒电位聚合法;聚苯胺;纳米线阵列【作者】张璐;姚素薇;梁学磊;张圆圆【作者单位】北京中医药大学中药学院,北京100102;天津大学化工学院,天津300072;北京大学信息科学技术学院纳米器件物理与化学教育部重点实验室,北京100871;北京中医药大学中药学院,北京100102【正文语种】中文【中图分类】O633.21引言随着材料尺寸和维度的变化,会展现出众多新奇的物理特性,这些物理特性将会成为未来制造纳米器件的物理学基础。

阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制

阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制

In recent years,one dimensional (1D)nanostructured materials,including nanowires,nanotubes,and nanorods,have attracted considerable attention because of their novel physical properties and potential applications in nanodevices,such as carbon [1-2],metals [3-5],metal sulfides [6-7],metal hydroxide [8],metal oxides [9-10],polymers [11],and some organic molecules [12-13].A variety of strate ⁃gies,such as direct catalyzed growth,templated growth,and self ⁃assembly and so on,have been utilized for successful fabri ⁃阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制郭元元1,2汪明2毛晓波2蒋月秀1,*王琛2,*杨延莲2,*(1广西大学化学系,南宁530004;2国家纳米科学中心,北京100190)摘要:利用阳极氧化铝模板(AAO)进行Ni 的电化学沉积,通过在溶液中引入螯合剂控制电解质的有效浓度和电沉积的过电位,实现了Ni 纳米线和纳米管阵列的可控制备.通过分析电沉积过程中纳米线和纳米管在不同位置生长速率(侧壁(V w )和底端(V b ))的控制因素,我们提出了纳米线和纳米管生长的可能机制.当电解质浓度高而还原电位更负(如-1.5V)时,或者当电解质浓度低而还原电位较负(如-0.5V)时,V w >V b ,可以获得Ni 纳米管阵列;当电解质浓度高而还原电位较负(如-0.5V)时,或者当电解质浓度低而还原电位更负(如-1.5V)时,V w ≈V b ,可以获得Ni 纳米线阵列.这种生长机制适用于多种金属纳米管或者纳米线阵列的可控制备.关键词:纳米管;纳米线;阳极氧化铝;电沉积;生长机制中图分类号:O647Growth Mechanism for Controlled Synthesis of Metal Nanotube andNanowire Arrays Using Anodic Aluminum Oxide TemplatesGUO Yuan ⁃Yuan 1,2WANG Ming 2MAO Xiao ⁃Bo 2JIANG Yue ⁃Xiu 1,*WANG Chen 2,*YANG Yan ⁃Lian 2,*(1Department of Chemistry,Guangxi University,Nanning 530004,P.R.China ;2National Center for Nanoscience and Technology,Beijing 100190,P.R.China )Abstract :We report the controlled fabrication of Ni nanotube and nanowire arrays by electrodeposition using anodic aluminum oxide (AAO)as a template.Ni nanotube arrays or nanowire arrays were obtained by changing the concentration of the electrolyte and the overpotential of the electrodeposition.The introduction of chelating species is crucial for nanotube formation because they can regulate the effective concentration of the electrolyte.A possible mechanism for the formation of the nanotubes/nanowires is proposed by considering the different contributing factors for the growth rate of the wall (V w )and that of the bottom (V b ).Ni nanotube arrays can be obtained when V w >V b either at a high electrolyte concentrations (C Ni 2+)and at a more negative electrodeposition potential (U ed )or at a lower C Ni 2+with a less negative U ed .Ni nanowire arrays can also be obtained when V w ≈V b either at a high C Ni 2+with a less negative U ed or at a lower C Ni 2+with a more negative U ed .This mechanism may be used as a general strategy for the controlled synthesis of nanotube or nanowire arrays containing many kinds of metals such as Cu,Co,and Au etc.Key Words :Nanotube;Nanowire;Anodic aluminum oxide;Electrodeposition;Growth mechanism[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2010,26(7):2037-2043July Received:March 15,2010;Revised:May 24,2010;Published on Web:June 4,2010.∗Corresponding authors.JIANG Yue ⁃Xiu,Email:jyx63826@;Tel:+86⁃771⁃3273937.YANG Yan ⁃Lian,Email:yangyl@;Tel:+86⁃10⁃82545559.WANG Chen,Email:wangch@;Tel:+86⁃10⁃82545561.The project was supported by the National Natural Science Foundation of China (20873033,20973043)and National Key Basic Research Program of China (973)(2007CB936800,2006CB932100).国家自然科学基金(20873033,20973043)和国家重点基础研究发展规划项目(973)(2007CB936800,2006CB932100)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinica2037Acta Phys.鄄Chim.Sin.,2010Vol.26Table 1Electrodeposition conditions for preparing Ni nanotubes and nanowirescation of 1D nanomaterials [14-16].Among these methods,the tem ⁃plated synthesis of 1D nanomaterials using the anodic aluminum oxide (AAO)is an effective venue for fabricating nanotubes and nanowires of metals,metal oxides,fullerenes,organic molecul ⁃es [17-19],as well as metallic 1D nanomaterials [20-22].The well ⁃defined length and diameter of the AAO channels facilitate controlled fabrication of 1D nanostructures.Chemical replacement [23],chem ⁃ical infiltration [24],chemical vapor deposition (CVD)[25],and elec ⁃trochemical deposition [26-27]have been utilized for preparation of 1D nanomaterials within the porous alumina template.Among these techniques,electrodeposition method was widely used for preparing metallic and semiconducting nanowires,such as Ni,Cu,Au,Ag,bimetallic nanowire junctions for magnetic,catalytic applications [28-29].It could be noted that metal nanotubes are con ⁃sidered very promising for high performance catalysts [30-31],highly sensitive gas sensors [31-33],and up ⁃conversion non ⁃linear optics [34],etc.Thus,many efforts have been put into the controlled syn ⁃thesis of metal nanotubes.As a general approach to fabricate well ⁃defined metal nanotubes,the inner surfaces of the AAO channels are usually chemically modified with suitable func ⁃tional groups ⁃molecular anchors [35-36],so that the electrodeposited metal atoms can bind to the nanopore walls to form nanotubes.A number of metallic nanotubes have been successfully synthe ⁃sized by this method,while the unavoidable organic impurities introduced from the chemical modification process limited its applications [37-38].Metal nanotubes can also be obtained by con ⁃trolling the thickness of the electrode film for preventing the pores from being blocked [39-40]and followed by electrodeposition of the metals [41].The fabrication via multi ⁃step template replica ⁃tion and electrodeposition approach was also reported to get metal nanotube array [42].Fundamentally the growth of metal nanotubes and nanowires is governed by the electrochemical deposition process and the concentration diffusion of the metal ions.The understanding of the growth mechanism would benefit the controlled fabrication of desired metal nanostructures for specific applications.Some reports have attributed the nanotube growth to the well ⁃known tip effect [43-44].Recently,Yoo et al .[20]proposed the bottom ⁃up and the wall ⁃up growth modes to describe the metal nanotube for ⁃mation,and also reported the preparation of Pt and Pd nanotubes by a wall ⁃up growth mechanism at high current density.Cao et al .[45]also reported the controlled preparation of metal (Fe,Co,Ni)nanotube arrays and proposed a mechanism of competitive growth rates along two directions:parallel to and perpendicularto the current direction.The mechanisms proposed by Yoo [20]and Cao [45]et al .can be considered principally the same.In addi ⁃tion,Chowdhury et al .[46]put forward the mechanism related to overpotential increase by gas evolution for the central portion shielding and thus the promotion of the reaction at the sides of the porous mon to these studies is that the nano ⁃tube formation is dependent on the different growth rates of the metal along the wall surface (V w )and from the central bottom of the nanochannels (V b ),while systematic studies are still needed to fully understand the growth mechanisms which are critical for controlled growth of nanowires and nanotubes.In this work,we examined the controllable synthesis of Ni nanowires and nano ⁃tubes by electrodeposition method using AAO as template.Based on the systematic studies,mechanisms for the nanowire and nanotube growth were proposed.1Experimental1.1Templated electrodepositionThe AAO templates used in our experiments were purchased from Whatman Company (Anodisc 47,200nm in nominal pore diameter and 60μm in thickness).The electrodeposition was carried out with the constant potential mode in a conventional three ⁃electrode electrochemical cell.Before the electrodeposi ⁃tion,Au film was first deposited as an electrode on one side of the AAO membrane using a vacuum evaporation apparatus and a small portion of the inside channels were filled to shape a bowl ⁃like structure [4,43].AAO template coated by Au layer,a piece of platinum plate (ca 1.0cm 2),and a calomel electrode were used as the working,counter,and reference electrodes,respectively.All the electrodeposition experiments were performed at room temperature and the deposition time was kept constant at 1000s.The electrochemical deposition was conducted in aqueous so ⁃lutions containing NiSO 4·6H 2O (AR),ethylenediaminetetraace ⁃tic acid (EDTA,AR),NaOH (AR),and K 2HPO 4(AR).The con ⁃centration of EDTA was two times higher than that of the Ni 2+ions.The concentration of K 2HPO 4was kept constant at 20g ·L -1and the pH values were adjusted by NaOH to 11for the solu ⁃tions with EDTA.All the solutions were prepared with ultrapure Milli Q water (resistivity ≥18M Ω·cm).The electrodeposition was performed at room temperature and the detailed electrode ⁃position conditions are shown in Table 1.1.2Characterization of Ni nanowires or nanotubes After electrodeposition,the AAO templates were removed by immersion in 2mol ·L -1NaOH solutions at 25℃for 2h.Then,*For samples 3,4,7,and 8,nanotubes or nanowires in the brackets are the resulted nanostructures with less probability coexisting with the major nanostructures listedbefore the brackets.U ed :potentialSample No.Result U ed /V Electrolyte compositionU ed /V Result Sample No.1nanotubes -1.50.05mol ·L -1NiSO 4,0.1mol ·L -1EDTA,20g ·L -1K 2HPO 4,pH=11-0.5nanowires 52nanotubes -1.50.01mol·L -1NiSO 4,0.02mol ·L -1EDTA,20g ·L -1K 2HPO 4,pH=11-0.5nanowires 63478nanowires(nanotubes)*nanowires (nanotubes)*-1.5-1.50.005mol ·L -1NiSO 4,0.01mol ·L -1EDTA,20g ·L -1K 2HPO 4,pH=110.001mol ·L -1NiSO 4,0.002mol ·L -1EDTA,20g ·L -1K 2HPO 4,pH=11-0.5nanowires (nanotubes)*nanotubes (nanotubes)*-0.52038No.7GUO Yuan ⁃Yuan et al .:Growth Mechanism for Controlled Synthesis of Metal Nanotube and Nanowire Arraysthe as ⁃prepared samples were thoroughly rinsed with distilledwater and subsequently dried in air.Scanning electron micro ⁃scopic (SEM)characterizations of the products were performed on a Hitachi S ⁃3400N SEM apparatus.For transmission electron microscopic (TEM)characterizations,the samples were subjected to ultrasonic treatment in ultrapure water for 1min,then a drop of suspension was dipped on the carbon ⁃coated copper grid.All TEM characterizations were performed on an FEI TEM (Tecnai G220)at an accelerating voltage of 120kV.X ⁃ray photoelec ⁃tron spectroscopic (XPS)measurements were conducted on an XPS spectrometer (VG Scientific ESCALab 220i ⁃XL)operated at 300W in vacuum (3×10-7Pa)with a monochromatic Al K 琢radi ⁃ation.The binding energies were corrected for charging by ad ⁃ventitious carbon (C 1s )at 284.8eV.Curve fitting of the XPS spectra was performed by using XPS PEAK software.2Results and discussion2.1Impact of chelating agent EDTAElectrodeposition of Ni was conducted with the aid of the AAO template for the preparation of nanowire or nanotube ar ⁃rays.All the samples were etched using NaOH solution for 2h to remove the AAO membrane,thus the nanowires or nanotubes can be exposed from the template.The Ni nanowires can be ob ⁃tained in the solution (the concentration of Ni ions,C Ni 2+=0.01mol ·L -1)without addition of EDTA at electrodeposition poten ⁃tial U ed =-1.5V.SEM image in Fig.1(a)shows highly ordered Ni nanowire arrays with uniform structures in large area.The aver ⁃age diameter of the Ni nanowires is about 200nm which resem ⁃bles the pore diameter of the AAO template (200nm).Upon the introduction of EDTA,nanotube arrays could be obtained with the same C Ni 2+(0.01mol ·L -1)and the same U ed (-1.5V).SEM im ⁃age in Fig.1(b)reveals the typical morphology of the highly or ⁃dered Ni nanotube arrays with clear open ends.The outer diam ⁃eters of the nanotubes were around 200nm (nearly the same as the pore diameter of the AAO template)and the inner diameters were around 140-160nm.In other words,the thickness of nan ⁃otube walls was about 20-30nm.The length of the nanotubes and nanowires could reach about 20μm in 1000s.The conversion of the nanowire to nanotube morphology with the introduction of the EDTA into the solution demonstrated the impact of the coordination ion on the eletrodeposition mecha ⁃nisms.The growth of nanowires and nanotubes can be viewed as a balance between two dominated growth rates,V w and V b .The bottom ⁃up and the wall ⁃up growth modes proposed by Yoo et al .[20],and the current ⁃directed tubular growth (CDTG)mech ⁃anisms proposed by Cao et al .[45],have revealed the relationship between the morphologies of the 1D nanomaterials and the cur ⁃rent densities at different locations.However,the underlying mechanism for the relationship of the current densities and the growth rates is still need to be clarified.In the reduction process of nickel ions,nanotubes can be obtained if V w >V b .It should be noted that both V w and V b could be affected by the introduction of the chelating agent EDTA,and the well ⁃known tip growth ef ⁃fect should be also taken into account.The electrochemical de ⁃position process of Ni with EDTA can be divided into three steps as following.a)The coordination of Ni 2+with EDTA.There are seven forms for EDTA in solution (H 6Y 2+,H 5Y +,H 4Y,H 3Y -,H 2Y 2-,HY 3-,Y 4-)and their populations are dependent on the solution acidity.The complex NiY 2-is the compound with the highest population when pH>10.The chelation and the dissociation balance of the complex can be described as below.Ni 2++Y 4-⇌NiY 2-b)The diffusion of NiY 2-and Ni 2+ions to the surface of the electrode.When the Ni 2+was depleted near the working elec ⁃trode,it will be supplied by the dissociation of NiY 2-.The con ⁃centration of Ni 2+was limited in the range of 10-16mol ·L -1,be ⁃cause the stability constant of the complex was 1018and the con ⁃centration of Y 4-ions was kept in the range of 10-2mol ·L -1.c)At last,Ni 2+receives electrons on the surface of the cathode and forms nanotubes or nanowires.As mentioned above,Au film deposited as a working electrode at the bottom of the AAO membrane with bowl ⁃shaped structures [4,43].Because of the tip ef ⁃fect,the edge tips of the initial bowl ⁃shaped Au electrode give rise to higher electric field,which is electrochemically more ac ⁃tive than the smooth surface.Meanwhile,the surface energy of the inner walls of the nanochannels [48]also facilitates the bottom edge of the nanochannels to be a preferential site for the deposi ⁃tion of metal ions.Considering that the effective growth rate is correlated to the effective Ni 2+concentration,the addition of EDTA would result in decreased reduction rate of NiY 2-com ⁃pared with that of the Ni 2+hydrate.Both V w and V b were greatly reduced by the chelating agent.At this slower reduction rate,the tip effect of the electric field would render the predominance of the higher deposition rate of V w (V w >V b )and finally give rise to the formation of metal nanotubes.On the contrary,both of the growth rates (V w and V b )are very fast in the solution without EDTA,so the tip effect could be ignored (V w ≈V b ),thus the nanowires can be obtained.2.2Impact of electrodeposition potential andelectrolyte concentrationThe electrodeposition potential is a key factor for the forma ⁃tion of metal nanotubes and nanowires.When other conditions are constant,more negative U ed (higher than the potential for gas evolution)would lead to the higher current density which isFig.1SEM images of Ni nanowire and nanotube arrayswithout and with EDTA(a)top view of the Ni nanowires deposited from the solution with C NiSO 4=0.01mol ·L -1at U ed =-1.5V;(b)top view of the Ni nanotubes deposited from thesolution with C NiSO 4=0.01mol ·L -1,C EDTA =0.02mol ·L -1,C K 2HPO 4=20g ·L -1atU ed =-1.5V (sample2)2039Acta Phys.鄄Chim.Sin.,2010Vol.26keenly related to the growth rates,V b and V w ,thus the final mor ⁃phology of the 1D metallic nanostructures.Meantime,U ed also influences the electromigration rate of the NiY 2-,which has the opposite direction to the concentration diffusion in the solution.In order to further understand the growth mechanism for the formation of metal nanotubes and nanowires,systematic studies were performed under different conditions listed in Table 1.At a higher NiY 2-ion concentration (sample 1),Ni nanotubes with thin wall could be gained at more negative U ed =-1.5V.When the concentration of NiY 2-decreases gradually (samples 1-4),at U ed =-1.5V,the SEM images in Fig.2(a,d,e)clearly illustrate the evolution of the 1D nanomaterials from well ⁃aligned nanotubes in sample 1,to coexistence of nanotubes and nanowires (mainly nanotubes)in sample 3and finally to coexistence of nanowires and nanotubes (mainly nanowires)in sample 4.In addition,the gradual increase of the nanowire proportions is also accompa ⁃nied by the gradual increase of the nanotube wall thickness.The TEM image in Fig.2(b)clearly shows the typical hollow structure of the nanotubes (sample 2).The selected ⁃area electron diffrac ⁃tion pattern in Fig.2(c)was acquired from a 200nm diameter Ni nanotubes in sample 2.The continuous bright rings indicate the polycrystalline structure with face ⁃centered cubic Ni metals,in which the lattice parameters 0.202,0.175,and 0.124nm corre ⁃spond to the facets (111),(200),and (220),repectively.Fig.3(a)presents the XPS spectrum of Ni nanotubes,which are fabricat ⁃ed under the condition of sample 2.The binding energy of Ni (metal)is 853.1eV which is consistent with the reported value in the reference [49].Three Ni 2p 3/2peaks (Ni,Ni (satellite),and NiO)reveal that the Ni nanotubes were mainly composed of metallic Ni.The existence of NiO is unavoidable due to the oxidation of the surface of Ni nanotubes exposed to the air.Interestingly,Ni nanowires could be obtained at less negative potential (U ed =-0.5V,Table 1)in the solutions with higher NiY 2-concentrations (samples 5and 6).Ni nanotubes would gradually appear and coexist with Ni nanowires in the solution with medium NiY 2-concentration (sample 7).When the concentration of NiY 2-was decreased to 0.001mol ·L -1(sample 8),Ni nanotubes became the dominant 1D nanostructures.The SEM images in Fig.4(a,c,d)(samples 5,6,8correspondingly)present the evolution from Ni nanowires to nanotubes in view of the end features of the 1D nanostructures from flat ends (sample 5),bowl ⁃shaped ends (sam ⁃ple 6),to open ends (sample 8).The solid structure of the nanowire (sample 5)has also been proved by TEM characterizations (Fig.4(b)).The XPS spectrum for Ni nanowires in sample 5(Fig.3(b))shows that the metallic Ni is the main component with the appearance of NiO ascribed to the oxidation of Ni in the air,which is similar to the nanotubes in sample 2(Fig.3(a)).The evolution from nanotubes to nanowires at more negative U ed and from nanowires to nanotubes at less negative U ed indicated the coef ⁃fect of the electrolyte concentrations and the electrodeposition potentials.2.3Proposed mechanism for electrodeposition ofnanotubes or nanowiresFrom the systematic studies above,Fig.5(a,b)can be proposedFig.2SEM and TEM images of Ni nanowire and nanotube arrays deposited at U ed =-1.5V(a)top view of the Ni nanotubes deposited from the solution with C NiSO 4=0.05mol·L -1,C EDTA =0.1mol ·L -1,C K 2HPO 4=20g ·L -1(sample 1),(b)typical TEM image of a piece of Ni nanotubes deposited from the solution with C NiSO 4=0.01mol ·L -1,C EDTA =0.02mol ·L -1,C K 2HPO 4=20g ·L -1(sample 2),(c)selected area electron diffraction pattern acquiredfrom a Ni nanotube with 200nm diameter (sample 2),(d)top view of the Ni nanotubes (nanowires)deposited from the solution with C NiSO 4=0.005mol ·L -1,C EDTA =0.01mol ·L -1,C K 2HPO 4=20g ·L -1(sample 3),(e)top view of the Ni nanowires (nanotubes)deposited from the solution with C NiSO 4=0.001mol ·L -1,C EDTA =0.002mol ·L -1,C K 2HPO 4=20g ·L -1(sample4)2040No.7GUO Yuan ⁃Yuan et al .:Growth Mechanism for Controlled Synthesis of Metal Nanotube and Nanowire Arraysto schematically illustrate the electrodeposition processes in theelectrolytes with higher NiY 2-ion concentration at U ed =-1.5V and U ed =-0.5V.The electromigration of NiY 2-ions can be ne ⁃glected when the NiY 2-ion concentration near the working elec ⁃trode is high enough.The faster reduction rate at more negative U ed would enhance the tip effect leading to the nanotube forma ⁃tion due to V w >V b .The underlying mechanism may be proposed that the bottom and the wall will grow together at beginning,while the faster growth rate will deplete the NiY 2-ions in the nanochannels.The shorter distance from the bulk solution to the nanochannels would lead to the faster diffusion of NiY 2-ions to the far front ends of the deposited Ni,which renders the domi ⁃nant tip effect for nanotube growth.When it comes to the solution with the same higher concentration of the NiY 2-,while at less negative U ed (-0.5V,Fig.5(b)),the reduction rate is much slow ⁃er than that at -1.5V.The diffusion rate of NiY 2-ions from the bulk solution to the nanochannels is high enough to overcome the edge ⁃predominance,which leads to the similar lower growth rates of the wall surface and the bottom (V w 抑V b ).Then the bot ⁃tom and the wall would grow together and finally result in the formation of nanowire arrays (Fig.5(b)).When the concentration of the NiY 2-ions is decreased to very low level in Fig.5(c,d)(such as 0.001mol ·L -1),the fabricated nanostructures indicated the opposite trends for nanotube and nanowire compared with those at higher NiY 2-ion concentra ⁃tions,that is nanowires at -1.5V and nanotubes at -0.5V.BesidesFig.3XPS spectra of Ni nanotubes (sample 2)and nanowires (sample 5)(a)Ni 2p 3/2peak in the XPS spectrum of Ni nanotubes deposited from the solution with C NiSO 4=0.01mol·L -1,C EDTA =0.02mol ·L -1,C K 2HPO 4=20g ·L -1at U ed =-1.5V (sample 2),(b)Ni 2p 3/2peak in the XPS spectrum of Ni nanowires deposited from the solution with C NiSO 4=0.05mol ·L -1,C EDTA =0.1mol ·L -1,C K 2HPO 4=20g ·L -1at U ed =-0.5V (sample 5).Curve fitting of the XPS spectra was performed by using XPS PEAK software.The corresponding peaks obtained from the curve fitting are asigned as Ni,Ni (satellite),and NiO,respectively.Full survey XPS spectra for the Ni nanotubes (sample 2)and Ni nanowires (sample 5)can be found in Supporting Information (Fig.S1),which are available free of charge via the internet at.Fig.4SEM and TEM images of Ni nanowire and nanotube arrays deposited at U ed =-0.5V(a)top view of the Ni nanowires deposited from the solution with C NiSO 4=0.05mol ·L -1,C EDTA =0.1mol ·L -1,C K 2HPO 4=20g ·L -1(sample 5),(b)typical TEM image of a piece ofNi nanowire in sample 5,(c)top view of the Ni nanowires deposited from the solution with C NiSO 4=0.01mol ·L -1,C EDTA =0.02mol ·L -1,C K 2HPO 4=20g ·L -1(sample 6),(d)top view of the Ni nanotubes (nanowires)deposited from the solution with C NiSO 4=0.001mol ·L -1,C EDTA =0.002mol ·L -1,C K 2HPO 4=20g ·L -1(sample8)2041Acta Phys.鄄Chim.Sin.,2010Vol.26the U ed mentioned above,the effect of electromigration on the growth rates,V w and V b ,should also be taken into account at lower diffusion rate.The electromigration of NiY 2-ions to the counter electrode and concentration diffusion to the work elec ⁃trodes can both increase the overpotential for the electrochemi ⁃cal deposition.The increased overpotential could lead to the de ⁃crease of the V w and the V b .The reduction rate of the Ni 2+is rela ⁃tively faster at more negative U ed (Fig.5(c),such as -1.5V),while the lower diffusion rate of the NiY 2-ions would largely reduce the deposition rate.So the similar growth rate of the wall and the bottom V w 抑V b would be obtained for the nanowire formation.We believe that the similar growth rates at middle level in cases of Fig.5(b,c)give rise to the similar results,which is originated from the balance between the potential effect and the concentra ⁃tion effect.At less negative U ed (-0.5V),the reduction rate of Ni 2+should be very low at lower concentration of the NiY 2-ions.The less influence of the NiY 2-electromigration and the very low re ⁃duction rate make the diffusion of the NiY 2-ions sufficient enough.The Ni 2+ions on the edge can be supplemented in time and adsorbed on the edge preferentially.As the result,the V w is relatively higher than the V b ,which leads to the final nanotube formation.Based on the above mentioned mechanism,Cu nanotube and nanowire arrays have also been fabricated at higher electrolyte concentration with more negative U ed (Fig.S2,which is available free of charge via the internet at ).The nanowires can be obtained without the introduction of the chelating agent EDTA,while the nanotube arrays can be obtained with EDTA.The common mechanism for 1D nanostructure growth of Ni and Cu indicates that it could be a general strategy for growth of metal nanotubes and nanowires.The controlled preparation of Au (Fig.S3)and Co (Fig.S4)(which are availableFig.5Schematic diagrams of the growth processes of Ni nanotubes and nanowires at different electrodeposition conditions(a)and (b)are schematic diagrams of the growth processes of nanotubes at U ed =-1.5V and nanowires at U ed =-0.5V in the electrolytes with higher NiY 2-concentrations,respectively,(c)and (d)are schematic diagrams of the growth processes of nanowires at U ed =-1.5V and nanotubes at U ed =-0.5V in the electrolytes with lower NiY 2-concentrations,respectively.The dashed arrows represent the electromigration direction of NiY 2-and their lengths show the different electromigration rates.The solidarrows represent the concentration diffusion direction of NiY 2-.2042No.7GUO Yuan⁃Yuan et al.:Growth Mechanism for Controlled Synthesis of Metal Nanotube and Nanowire Arraysfree of charge via the internet at ) nanotube arrays at the similar electrodeposition conditions with the chelating agent(EDTA)confirms the possible application of this mechanism in fabrication of other1D metal nanomaterials. 3ConclusionsIn summary,controlled synthesis of Ni nanotube and nanowire arrays can be obtained by electrodeposition using AAO template. Both nanotubes and nanowires can be readily achieved by vary⁃ing the electrodeposition potential and the concentration of NiY2-.The detailed growth mechanism for metal nanotubes and nanowires was proposed based on systematic studies.The cru⁃cial contributing factors of the chelating agent,the electrodepo⁃sition potential,the concentration of the NiY2-,and the electro⁃migration were all taken into account for clarification of the growth process.This method could be applicable to fabrication of other metal nanotubes and nanowires,which has high pote⁃tials for applications in nanocatalyses,chemical sensors,and nanoscale electronic and magnetic devices. Acknowledgment:The authors would like to thank Dr.ZHONG Liang⁃Shu and Dr.LIANG Han⁃Pu at the Institute of Chemistry,Chi⁃nese Academy of Sciences for helpful discussion in electrodeposition experiments.References1Iijima,S.Nature,1991,354:562Li,Y.L.;Kinloch,A.;Windle,A.H.Science,2004,304:2763Wirtz,M.;Martin,C.R.Adv.Mater.,2003,15:4554Zhang,X.Y.;Zhang,L.D.;Lei,Y.;Zhao,L.X.;Mao,Y.Q.J.Mater.Chem.,2001,11:17325Hong,B.H.;Bae,S.C.;Lee,C.W.;Jeong,S.;Kim,K.S.Science, 2001,294:3486Chen,J.;Tao,Z.;Li,S.Angew.Chem.Int.Edit.,2003,42:2147 7Xu,D.S.;Xu,Y.J.;Chen,D.P.;Guo,G.L.;Gui,L.L.;Tang,Y.Q.Chem.Phys.Lett.,2000,325:3408Zhang,W.;Wen,X.;Yang,S.;Berta,Y.;Wang,Z.L.Adv.Mater., 2003,15:8229Yan,C.;Xue,D.Adv.Mater.,2008,20:105510Huang,B.H.;Shen,P.Y.;Chen,S.Y.Nanoscale Res.Lett.,2009, 4:50311Xiao,R.;Cho II,S.;Liu,R.;Lee,S.B.J.Am.Chem.Soc.,2007, 129:448312Lu,Q.;Gao,F.;Komarneni,S.;Mallouk,T.E.J.Am.Chem.Soc., 2004,126:865013Matsumoto,F.;Nishio,K.;Masuda,H.Adv.Mater.,2004,16: 210514Korgel,B.A.;Fitzmaurice,D.Adv.Mater.,1998,10:66115Wang,M.H.;Li,Y.J.;Xie,Z.X.;Liu,C.;Yeung,E.S.Mater.Chem.Phys.,2010,119:15316Gao,P.;Cai,Y.G.ACS Nano,2009,3:347517Xiao,Z.L.;Han,C.Y.;Welp,U.;Wang,H.H.;Kwok,W.K.;Hiller,J.M.;Cook,R.E.;Miller,D.J.;Crabtree,G.W.Nano Lett.,2002,2:129318Martin,C.R.Science,1994,266:196119Gao,H.;Mu,C.;Wang,F.;Xu,D.S.;Wu,K.;Xie,Y.C.;Liu,S.;Wang,E.G.;Xu,J.;Yu,D.P.J.Appl.Phys.,2003,93:560220Yoo,W.C.;Lee,J.K.Adv.Mater.,2004,16:109721Wang,Y.;Wu,K.J.Am.Chem.Soc.,2005,127:968622Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.Adv.Mater.,2004,16: 120023Yan,C.;Xue,mun.,2007,9:124724Wang,Y.;Lee,J.Y.;Zeng,H.C.Chem.Mater.,2005,17:3899 25Franklin,N.;Dai,H.Adv.Mater.,2000,12:89026Routkevitch,D.;Bigioni,T.;Moskovits,M.;Xu,J.M.J.Phys.Chem.,1996,100:1403727Kamalakar,M.V.;Raychaudhuri,A.K.Adv.Mater.,2008,20:149 28Wang,H.;Xu,C.W.;Cheng,F.L.;Jiang.S.P.Electrochem.Commun.,2007,9:121229Liang,H.P.;Guo,Y.G.;Hu,J.S.;Zhu,C.F.;Wan,L.J.;Bai,C.L.Inorg.Chem.,2005,44:301330Yang,L.X.;He,D.M.;Cai,Q.Y.J.Phys.Chem.C,2007,111: 821431Han,C.H.;Hong,D.W.;Kima,I.J.;Gwak,J.;Han,S.D.;Singh, K.C.Sens.Actuators B,2007,128:32032Andzelm,J.;Govind,N.;Maiti,A.Chem.Phys.Lett.,2006,421:58 33Sadrzadeh,A.;Farajian,A.A.;Yakobson,B.I.Appl.Phys.Lett., 2008,92:02210334Schider,G.;Krenn,J.R.;Gotschy,W.;Lamprecht,B.;Ditlbacher,H.;Leitner,A.;Aussenegg,F.R.J.Appl.Phys.,2001,90:3825 35Lee,W.;Scholz,R.;Lee,N.K.W.;Scholz,R.;Nielsch,K.;Gosele, U.Angew.Chem.Int.Edit.,2005,44:605036Bao,J.;Tie,C.;Xu,Z.;Zhou,Q.;Shen,D.;Ma,Q.Adv.Mater., 2001,13:163137Levina,L.;Sukhovatkin,V.;Musikhin,S.;Cauchi,S.;Nisman,R.;Bazett⁃Jones,D.P.;Sargent,E.H.Adv.Mater.,2005,17:1854 38Nanda,K.K.;Kruis,F.E.;Fissan,H.Nano Lett.,2001,1:60539Li,L.;Pan,S.S.;Dou,X.C.;Zhu,Y.G.;Huang,X.H.;Yang,Y.W.;Li,G.H.;Zhang,L.D.J.Phys.Chem.C,2007,111:7288 40Zhang,X.Y.;Wang,H.T.;Bourgeois,L.;Pan,R.J.;Zhao,D.Y.;Webley,P.A.J.Mater.Chem.,2008,18:46341Fu,J.;Cherevko,S.;Chung,mun.,2008, 10:51442Mu,C.;Yu,Y.X.;Wang,R.M.;Wu,K.;Xu,D.S.;Guo,G.L.Adv.Mater.,2004,16:155043Huang,C.W.;Hao,Y.W.Nanotechnology,2009,20:445607 44Liu,L.F.;Zhou,W.Y.;Xie,S.S.;Song,L.;Luo,S.D.;Liu,D.F.;Shen,J.;Zhang,Z.X.;Xiang,Y.J.;Ma,W.J.;Ren,Y.;Wang,C.Y.;Wang,G.J.Phys.Chem.C,2008,112:225645Cao,H.Q.;Wang,L.D.;Qiu,Y.;Wu,Q.Z.;Wang,G.Z.;Zhang, L.;Liu,X.W.ChemPhysChem,2006,7:150046Chowdhury,T.;Casey,D.P.;mun., 2009,11:120347Lahav,M.;Sehayek,T.;Vaskevich,A.;Rubinstein,I.Angew.Chem.Int.Edit.,2003,42:557648Liu,F.;Zhao,Z,J.;Qiu,L,M.;Zhao,L,Z.Anal.Test.Technol.Instrum.,2009,15:12043。

聚苯胺纳米功能高分子材料的发展

聚苯胺纳米功能高分子材料的发展

聚苯胺纳米功能高分子材料的发展冯志攀1120142220摘要:本文主要介绍了聚苯胺及其复合材料的合成方法,以及其在超级电容器电极中的应用。

关键词:聚苯胺纳米功能材料超级电容器合成方法导电高分子是指具有导电能力的高分子材料。

根据材料的组成分为复合型导电高分子和本征型导电高分子。

本身具有导电性的高分子即为本征型导电高分子,根据结构特征和导电机理分为电子型导电高分子,离子型导电高分子,氧化还原型导电高分子。

本征聚苯胺属于电子型导电高分子的一种,是苯胺单体聚合后形成的聚合物,根据其氧化程度的不同,可分为全还原态(LEB),中间氧化态(EB),全氧化态(PNB)。

只有EB(图一)可以通过质子酸掺杂得到高的导电率,中间氧化态型聚苯胺是研究热点。

由于聚苯胺具有单体价格低廉;阳离子自由基聚合可以方便快捷地合成高品质自掺杂聚苯胺,工艺简单;聚苯胺中氨基具有良好的化学反应活性,大大增强复合材料的相容性;其热分解温度高,在常温下环境稳定性良好[1];聚苯胺具有独特的掺杂方式和二次掺杂等特殊性质,掺杂/解掺杂过程简单;电导率高和赝电容高等优点,聚苯胺已经在电子设备、生物传感、抗腐蚀材料、燃料电池、电致变色、电磁干扰屏蔽以及环境处理吸附等领域有广泛的应用。

图1:中间氧化态聚苯胺(EP)的结构式纳米材料是指在三维空间中至少有一维处于纳米尺寸(0。

1-100 nm)或由它们作为基本单元构成的材料,由于其独有的表面与界面效应,小尺寸效应,量子尺寸效应,宏观量子隧道效应等性质,纳米材料会表现出不同的光、电、磁效应和物理化学性质等。

1.9K 时,盐酸掺杂的聚苯胺中获得30%的巨磁阻效应,纳米后的聚苯胺纳米管颗粒在温度为3K 时有高达91%的巨磁阻效应[2];聚苯胺的纳米化改变了体型聚苯胺不溶不熔的特点,大大增加了在有机溶剂中的溶解度及可加工性[3];由于纳米结构高比表面积和高孔隙率,显著提高了纳米聚苯胺超级电容器的性能[4],和聚苯胺气体分离膜的通量、过滤性能[5]等。

模板法制备聚苯胺纳米管状结构材料的开题报告

模板法制备聚苯胺纳米管状结构材料的开题报告

模板法制备聚苯胺纳米管状结构材料的开题报告1. 研究背景和意义聚苯胺是一种重要的导电高分子材料,在传感、光电子器件、储能器件等领域具有广泛应用。

近年来,越来越多的研究者将聚苯胺纳米管应用于能源转换与储存、生物医用和环境治理等领域,其应用前景十分广阔。

然而,制备纳米管状的聚苯胺材料仍然存在一定挑战,因此如何有效地制备聚苯胺纳米管状结构材料成为了当前研究的重要课题。

2. 研究目的本研究旨在通过模板法制备聚苯胺纳米管状结构材料,并研究影响制备过程的关键因素,以期为聚苯胺纳米管材料的制备提供有益的理论基础和实验指导。

3. 研究方法本研究将采用模板法制备聚苯胺纳米管状结构材料。

具体步骤为:首先制备合适尺寸的模板,然后将模板浸入含有苯胺和过氧化铁离子的溶液中,聚合反应后待溶液挥发干燥,最后通过去除模板即可得到聚苯胺纳米管状结构材料。

在制备过程中我们将考虑溶液浓度、反应温度、反应时间等因素的影响。

4. 预期结果通过模板法制备,预期得到形态规整、尺寸均一的聚苯胺纳米管状结构材料。

同时,通过对制备过程中不同因素的控制,我们预计可以实现对聚苯胺纳米管成核、生长过程的精确控制,从而得到理想的纳米管结构。

最后,我们将对材料的导电性和光学性质进行测试验证材料的应用价值。

5. 参考文献1. Yang X, Qian D, Tankasala D, et al. Fabrication of high-performance in situ reduced graphene/carbonyl iron composite film with outstanding electromagnetic interference shielding performance [J]. Journal of Materials Chemistry C, 2018, 6(25): 6782-6792.2. Luo J, Jiang L, Chen X, et al. Mechanical and Thermal Conductivity Property Enhancement of Rubber Composites with Network of SiC Nanowires [J]. ACS Applied Materials & Interfaces, 2018, 10(3): 3212-3220.。

聚苯胺改性技术的研究新进展

聚苯胺改性技术的研究新进展

聚苯胺改性技术的研究新进展
董金桥;张文心;周洪峰;李飞;沈青
【期刊名称】《高分子通报》
【年(卷),期】2009()10
【摘要】导电聚合物由于有很大的应用前景而引起了很多研究者的兴趣。

在导电聚合物中,聚苯胺由于具有很高的导电性、热稳定性、容易制备等性质而受到了格外的关注。

但是聚苯胺同样有缺点,例如应用范围狭小、很难进行加工等。

为了提高聚苯胺的加工性能,乳液聚合是一种有效的改性方法。

本文讨论了用乳液聚合或反相乳液聚合合成聚苯胺以及聚苯胺的共聚物,同时也报道了聚苯胺与其它物质复合共混和掺杂的研究结果,并且研究了它们的结构以及各方面的性能。

通过改性,可使得聚苯胺的加工性得到很好的改善。

【总页数】11页(P53-63)
【关键词】聚苯胺;乳液聚合;掺杂;共混
【作者】董金桥;张文心;周洪峰;李飞;沈青
【作者单位】东华大学材料科学与工程学院,东华大学纤维材料改性国家重点实验室,上海201620
【正文语种】中文
【中图分类】O633.21;TQ325.14
【相关文献】
1.导电聚苯胺的改性技术研究现状 [J], 宣兆龙;张倩
2.醇酸树脂获得优异防腐性能的一种技术——聚苯胺-纳米复合物的改性 [J], 刘国杰
3.在塑料多元复合共混改性理论指导下填充改性技术的新进展 [J], 陈更新;周宇
4.壳聚糖改性技术的新进展Ⅰ.烷基化、酰化以及接枝化改性 [J], 周天韡;唐文琼;沈青
5.壳聚糖改性技术的新进展Ⅱ 交联化、季铵盐化、羧基化改性及其低聚糖衍生物[J], 周天韡;唐文琼;沈青
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中图分类号 5
(纳 自 .+ 年代以来, 模板法制备纳米结构单元 米粒子、 线、 管) 和纳米结构阵列体系一直成为人们 研究的热点 # 科学家发现, 同块体聚合物相比, 无论 是利用化学氧化还是电化学方法在模板聚合的纳米 管、 线都具有更好的导电性 , 聚合物纳米管的管状
J/ K
单体浓度较大的高氯酸溶液中,苯胺电聚合为三维 瞬时成核生长 # 可见苯胺的电聚合生长机理是比较 复杂的 # 本文主要应用电化学研究方法和金属电结晶理 论,研究在 EEF 模板中电聚合聚苯胺纳米管的生 长机理,并初步研究模板基底形貌对聚苯胺生长的 影响,通过对聚苯胺在 EEF 模板内生长机理的研 究, 期望指导尺寸可控纳米管的合成 #
图! "#$% !
苯胺在裸金电极上电聚合的循环伏安图 &’()#( *+),-..+$/-.0 +1 2)2(,/+3+)’4 .2/#5-,#+6 +1 -6#)#62 -, 78 2)2(,/+92 (+,:2/ (+69#,#+60 -0 "#$% ; )
单体失去电子形成自由基阳离子 * 在浓度较大的酸 溶液中,形成的自由基阳离子主要以头 + 尾方式聚 合成线形聚苯胺 ’ 当电位扫描范围较大时伏安图 (如图 出现电流环,而在 ,- 电极上也有类似的现象 !)’ 根据金属电结晶理论,循环伏安图上电流环的 出现是晶核形成的证据 . /( 0 , 说明无论是在 ,,1 模 板中或是在 ,- 电极上,苯胺电聚合过程都是成核 式生长,并且所制备的聚苯胺纳米管或者聚苯胺膜 包含结晶相 ’ 通过电位阶跃实验发现 )’ 2 $ 也有电 结晶过程出现,而其循环伏安图并没有出现电流 环, 具体的原因有待进一步的研究 ’ (( ) 电位阶跃法 图 " 为苯胺在 3( 电极上电位阶跃法电聚合的 ( , : #) 电流 4 时间 曲线, 从图中可以看出, 曲线出现 一个峰, 峰对应的时间为 #567’ 当 # ; #5678 , 与 # 成 线性关系,当 # 9 #567 时 , : # 曲线呈下降趋势;聚 合电流随着电位增大而增大,而 #567 随着电位的增 大而减小 ’ 根据 :;<=>? 电结晶理论 ./@ 0 8 当生长机理 为无扩散控制的二维瞬时成核时,电流满足以下方 程A /<!= ! = (> ) ? ( # ( E/ F >)?(# C7D 4 ! !( 式中 = 为分子量,! 为沉积液浓度, >) 为成核数, ,B ? 为电化学反应速率常数, # 为成核时间 ’ 从方程中 得出,当时间 # 足够小时,其指数项可以忽略,则 , 与 # 近似成线性; 当 # 足够大时 , 随 # 的增大呈下降 趋势 ’ 由于 ? 与电位成正比,电位从 )’ 2 增加到 因此 , 随之增大 ’ 图中 , : # 曲 )’ G $,? 随之增大, 线没有出现振荡现象 . /! 0 , 说明二维瞬时成核生长仅
!"!
( !"#$ %"&’"( )"(*&+ ) 物理化学学报 (") : ,-.& /0123 450$63 7$8 # $ !""# , !" !"! % !"&
’()
聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理!
董 平 周剑章 席燕燕 蔡成东 张 彦 /$ * 邹旭东 黄怀国 吴玲玲 林仲华
(EEF) 电聚合初始, 苯胺二维非扩散控制的瞬时成核生长形成聚苯胺晶胞链 内电聚合的生长机理 # 结果表明: 段单层 $ 单层形成以后, 聚苯胺的生长过程变为线性扩散控制 # GHI 实验进一步证实电聚合的聚苯胺同时包含 结晶相和无定型相结构 # 关键词 5 聚苯胺, 纳米管, 阳极氧化铝模板, 电聚合, 生长机理 FA!A
图! %&’( !
(" ) ($ ) 溶去氧化铝模板的金电极的扫描电镜图 # 在电极上制备得到的聚苯胺纳米管的透射电镜图 )*+ ,&-./’.012 /3 4! 565-7./85 0375. .5,/9&:’ ""; 75,16075 <" =# >*+ ,&-./’.012 /3 1/6?0:&6&:5 :0:/7@A@65 ’./B&:’ /: 4! 565-7./85 <$ =
*++,-+.-*" 收到初稿,*++,-//-/, 收到修改稿 #
(上海辰华仪器公司) ; NTUA,+、 AA+ 综合测试仪 V1F",+ 场发射扫描电子显微镜 (L1’,德国 V1F 公司) ;D1’-/++NG! 透射电子显微镜(@1’,美国 ; I W ’EG-HN 多晶转靶 G 射线衍射仪 D1FV 公司 ) (GHI,日 本 理学 公 司 ) , 采用 N; 9" 辐射 ( ! X 高氯酸, 草酸等试剂均 +# /"!+A 82) # 实验中苯胺, 为 分 析 纯 # 实 验 中 所 用 溶 剂 水 都 是 经 过 /& ’# Y(8O Z;P< 净化系统过滤得到的超纯水 # 实验在室 温下进行 # $% ! &&’ 模板制备 根据 ’([;=( 等人 J C K 的工作 EEF 模板采用两步
#$% &’ %(%)*+,-% ./0 1,+2%- 34 056**%+789 9,(- ,8 ::; *%25(/*%<
!"#
!"#$ %&’() *+&,-) .,/) 0 123, 42$526 7268$9 ! " !""#
$%&’ ()
图; "#$% ;
苯胺在 <= 电极电聚合的循环伏安图 &’()#( *+),-..+$/-.0 +1 2)2(,/+3+)’4 .2/#5-,#+6 +1 -6#)#62 -, <= 2)2(,/+92
林仲华等: 聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理
!""
图C %&’( C
("";) (") ( $) 溶去阳极氧化铝 模板的电极扫描电镜图 # 在电极上制备得到的聚苯胺纳米管的透射电镜图 )*+ ,&-./’.012 /3 4C 565-7./85 0375. .5,/9&:’ ""; 75,16075 <" =# >*+ ,&-./’.012 /3 1/6?0:&6&:5 :0:/7@A@65 ’./B&:’ /: 4C 565-7./85 <$ =
氯酸混合溶液( 苯胺溶液 )中以 =>> 2I・0 K = 的速 率扫描 E =>>> 次循环(扫描电压范围 F 第一循环为 , 得到 K >< ’ ? >< L IE 第二循环后为 K >< ’ ? >< @ I) 的聚苯胺纳米管样品用于 #DM 测试;:6 和 &’ 电 极在苯胺溶液中分别以 =>> 2I・0 K = 的扫描速率在 K >< ’ ? >< @ I、 K >< ’ ? >< N I、 K >< ’ ? >< L I 不 同 电位范围扫描循环一次,得到苯胺初始聚合的 CI 曲线, 用于研究纳米管生长机理 < (’) (计时电流法) 电位阶跃法 &’ 电极在苯胺溶液中分别从开路电位阶跃至 得到聚苯胺纳米管 >< @、 >< N、 >< L I 电位 E 恒定 ’> 0, 样品进行 OPQ 测试;裸 :6 和 &’ 电极在苯胺溶液 中, 分别从开路电位阶跃至 >< @、 >< N、 >< L I 电位E 聚 ( ! " #) 曲线, 合 ’>>> 0, 测定苯胺电聚合的计时电流 用于研究生长机理 <
.V 0
根据后面的研究结果以及超微电极理论
其中央比周边线性扩散的途径长,故电聚合初始易 形成管状结构,而平整的基底在电聚合的初始阶段 各个位置线性扩散途径相同,因此先形成实心结 构, 但是, 模板中孔周边可能因界面电场较强、 聚苯 胺生长较快,从而形成凹锥形的聚苯胺新基底,促 使聚苯胺生长为纳米管 ’ =% = 77? 模板中电聚合聚苯胺成核式生长机理 (/ ) 循环伏安方法 图 @ 为苯胺在 3( 电极上电聚合的循环伏安图, 其中 )’ G $ 左右的峰位置为苯胺的聚合峰,根据 ,=NC=><INC= .G 0 、 ,M65> ./) 0 、 WC&>%I .// 0 等人的工作 8 相 应该伏安峰的苯胺电聚合机理主要分为二步:苯胺
,A/++" ;
/
0 厦门大学固体表面物理化学国家重点实验室, 化学系, 物理化学研究所$ 厦门 有限公司 $ 厦门 摘要 ,A/++"?
*
厦门紫金科技股份 ,A!*++ B
福建紫金矿冶研究所, 福建紫金矿业股份有限公司 $ 龙岩
利用阶跃电位、循环伏安等电化学方法,应用金属电沉积理论 $ 研究聚苯胺纳米管在阳极氧化铝模板
J! K
$
$% $
实验部分
仪器和试剂
的聚苯胺紧密层, 在单体浓度较低的硫酸溶液中, 其 生长机理为二维连续成核生长,在单体浓度较大的 硫酸溶液中为二维瞬时成核生长;第二阶段聚苯胺 形成分枝结构,为一维成核生长 # 对于聚苯胺紧密 层,NOP=OQ( J" K 和 ROQ(>3><S JA K 等利用平面电极分别 研究其生长机理,发现支持电解质阴离子对苯胺电 聚合的生长机理有影响 # NOP=OQ( 认为在单体浓度 较大的硫酸溶液中,苯胺的电聚合为三维连续成核 生长,而在高氯酸溶液中为二维连续成核或三维连 续成核生长;ROQ(>3><S 认为单体浓度较小的高氯 酸溶液中, 苯胺的电聚合为三维连续成核生长, 而在
相关文档
最新文档