见过这么全的真空灭弧室的基础知识吗
真空灭弧室的基本结构及工作原理
一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。
Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。
2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。
是唯一可动的外壳部分,因此它的作用也称为“动密封”。
既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。
波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。
由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。
某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。
波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。
3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。
①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。
目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。
②触头结构对灭孤室的开断能力有很大影响。
采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。
真空灭弧室基础知识介绍
真空电弧的熄弧条件:
真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电 弧必须将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄 灭。在交流情况下,真空电弧电流有很多个过零的时刻,这就给出了熄弧的 条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧电流有 一个过零的机会,以创造一个同样的熄弧条件。
选择合适的老练工艺 避免零件进炉前的氧化 减小动静端的不同轴度
提高熄弧后 耐压能力
选择合适的触头材料及触头制造工艺 固定合闸时触头的接触面
减少真空灭弧室因分合闸振动而在电极间隙 产生悬浮的细小微粒
谢 谢!
气体电弧:
电弧或弧光放电是气体放电的一种形式。放电在性质上和外观上是各种 各样的。在正常状态下,气体有良好的电气绝缘性能。但当在气体间隙的两 端加上足够强的电场时,就可以引起电流通过气体,这种现象称为放电。
1
2
3 1--动导电杆 4 2--导向套
3--波纹管 5 4--动盖板 6 5--波纹管屏蔽罩 7 6--瓷壳 8 7--屏蔽筒
8--触头系统 9--静导电杆 9 10—静盖板
10
真
圆柱形触头
空
灭
弧
室
的
触
横向磁场触头:螺旋槽、杯状、万字槽。
头
结
构
纵向磁场触头:杯状、线圈式、马蹄铁式、R 触头、球形触头
排气台工艺
真
空
灭
弧
室
的
一次封排工艺
封
排
工
艺
完全一次封排工艺
真空度
真
型式试验性能
触头材料、触头系统结构
空
波纹管
灭 弧 室
同轴度 陶瓷金属化
(完整word版)真空灭弧室的基本结构及工作原理
一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。
Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。
2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。
是唯一可动的外壳部分,因此它的作用也称为“动密封”。
既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。
波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。
由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。
某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。
波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。
3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。
①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。
目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。
②触头结构对灭孤室的开断能力有很大影响。
采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。
真空灭弧室结构及原理讲解
真空灭弧室结构及原理◆ 电弧◆ 真空和真空度◆ 真空电弧◆ 交流真空电弧◆ 真空击穿◆ 灭弧原理◆ 真空灭弧室的寿命1、电弧电弧或弧光放电是气体放电的一种形式。
气体放电在性质上和外观上是各种各样的。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。
这种现象称为放电。
放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
电弧具有电流密度大和阴极电位降低的特点。
2、真空和真空度低于1个大气压的气体状态,都称为真空。
描述真空程度的量叫真空度,用该气体的压力大小来表示。
l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa 真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。
其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。
在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。
真空度的高低对灭孤能力有影响。
实验表明:灭孤室真空度在10-3Pa数量级时就能够可靠地灭弧。
真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。
固封极柱用真空灭弧室
固封极柱用真空灭弧室固封极柱用真空灭弧室是一种用于高压开关设备的重要组件,它的作用是在开关操作时消除电弧,并且保证设备的可靠性和安全性。
本文将介绍固封极柱用真空灭弧室的工作原理、结构特点、应用领域以及未来发展趋势。
一、工作原理固封极柱用真空灭弧室的工作原理主要是利用高真空状态下的电场效应和磁场效应来消除电弧。
在设备操作时,当触头分离时,产生的电弧会迅速扩散并在灭弧室内形成一个电弧柱。
灭弧室内部安装了一组电极和磁场线圈,利用电场效应和磁场效应将电弧柱的能量转化为热能,使电弧迅速熄灭。
利用高真空状态下的绝缘性能,确保设备的安全可靠性。
二、结构特点固封极柱用真空灭弧室的结构主要包括外壳、触头、灭弧室、绝缘材料、电极和磁场线圈等组件。
外壳采用高强度金属材料制成,具有良好的耐压性能。
触头采用铜合金或其他导电材料制成,具有良好的导电性能和耐磨性。
灭弧室采用高真空度的材料制成,确保灭弧效果。
绝缘材料采用高压绝缘材料,确保设备的绝缘性能。
电极和磁场线圈组成了灭弧系统,通过优化设计可实现更好的灭弧效果。
三、应用领域固封极柱用真空灭弧室主要应用于高压断路器、负荷开关、隔离开关等高压开关设备中。
在这些设备中,灭弧室起着关键的作用,可以有效消除电弧,确保设备的安全可靠性。
固封极柱用真空灭弧室具有体积小、重量轻、寿命长等特点,适用于各种高压开关设备的应用场景。
四、未来发展趋势随着高压开关设备的不断发展,固封极柱用真空灭弧室也在不断改进和完善。
未来,固封极柱用真空灭弧室将继续向高性能、高可靠性和智能化方向发展。
在材料方面,将会出现更多新型高性能材料的应用,如碳纳米材料、高温陶瓷材料等,以提高灭弧室的耐压性能和绝缘性能。
在结构设计上,将会更加注重产品的紧凑性和便捷性,以适应设备的小型化和智能化趋势。
在灭弧技术上,将会采用更先进的电极和磁场线圈设计,以提高灭弧效果和稳定性。
固封极柱用真空灭弧室将会在高压开关设备领域发挥越来越重要的作用,为设备的安全可靠性提供更好的保障。
真空灭弧室
1 真空灭弧室工作原理1.1电弧电弧是一种能量集中、温度高、亮度大的气体放电现象,是一种电离的气体,质量极轻,发出耀眼的光芒,在外力作用下迅速移动、卷缩和伸长。
在操作电力开关分断电路的过程中,当开关的触头即将分离时,由于触头的接触面突然减小,使得触头接触处的电阻猛增,同时电路上被消耗的电能将产生上千度的高温,使触头产生热电子发射,这与人们在电子管中观察到的热电子发射情况类似,只不过这时触头表面的温度比电子管内灯丝的温度要高得多,发射的热电子强度也大得多。
同时在开关触头分离的瞬间,电路加在触头上的电压将在触头间极小的间隙内形成很强的电场,它将在高温作用下触头发射的热电子迅速加速,这些高速运动的热电子碰撞其周围的气体分子而产生自由电子和正离子,被电离出来的自由电子在高温和强电场的作用下继续加速,又碰撞其附近的其它气体分子,如此继续,形成连锁反应,使开关触头间的气体在极短的时间发生雪崩似的电离,接通电路,发出耀眼的亮光,这就是人们看到的电弧。
1.2熄灭电弧的方法交流电弧的熄灭条件是在零休期间不发生热击穿,同时在此之后弧隙介质恢复过程总是胜过电压恢复过程,也即不发生击穿。
但从灭弧效果来看,零休期间是最好的灭弧时机:一则这时弧隙的输入功率近乎等于零,只要采取适当措施加速电弧能量的散发以抑制热电离,即可防止因热击穿引起电弧重燃;二则这时线路所储能量很小,需借电弧散发的能量不大,不易因出现较高的过电压而引起电击穿。
反之,若灭弧非常强烈,在电流自然过零前就“截流”,强迫电弧熄灭,则将产生很高的过电压,即使不致影响灭弧,对线路及其中的设备也很不利。
因此,除非有特殊要求,交流开关电器多采用灭弧强度不过强的灭弧装置,使电弧是在零休期间,而且是在电流首次自然过零时熄灭实际上交流电弧未必均能于电流首次自然过零时熄,有时需经2~3个半周才熄灭。
如图2所示,触头刚分(t=t0)时,弧隙甚小,uh也不大。
故电流在首次过零(t=t1)前,其波形基本上仍属正弦波,且在电流过零处电源电压滞后约为δ≈90°。
真空灭弧室结构及原理
真空灭弧室结构及原理◆ 电弧◆ 真空和真空度◆ 真空电弧◆ 交流真空电弧◆ 真空击穿◆ 灭弧原理◆ 真空灭弧室的寿命1、电弧电弧或弧光放电是气体放电的一种形式。
气体放电在性质上和外观上是各种各样的。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。
这种现象称为放电。
放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
电弧具有电流密度大和阴极电位降低的特点。
2、真空和真空度低于1个大气压的气体状态,都称为真空。
描述真空程度的量叫真空度,用该气体的压力大小来表示。
l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa 真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。
其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。
在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。
真空度的高低对灭孤能力有影响。
实验表明:灭孤室真空度在10-3Pa数量级时就能够可靠地灭弧。
真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。
高压真空灭弧室的基本结构
一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。
Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。
2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。
是唯一可动的外壳部分,因此它的作用也称为“动密封”。
既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。
波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。
由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。
某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。
波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。
3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。
①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。
目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。
②触头结构对灭孤室的开断能力有很大影响。
采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。
真空灭弧室的基本知识
真空灭弧室的基本知识一真空灭弧室的基本知识1什么是真空真空是指在给定的空间内,远低于一个环境大气压的气体状态。
真空状态下气体的稀薄程度通常用真空度来描述,以压强值来表示。
l大气压= 760mmHg×133.3Pa/mmHg=1.013×105Pa(帕斯卡)或0.1013MPa压强越高则真空度越低;压强越低则真空度越高。
2什么是真空灭弧室真空灭弧室也叫真空开关管或真空泡,是真空开关的核心器件。
它是用一对密封在真空中的电极(触头)和其它零件,借助真空优良的绝缘和熄弧性能,实现电路的关合或分断,在切断电源后能迅速熄弧并抑止电流的真空器件。
3真空灭弧室的工作原理要说明真空灭弧室的工作原理必须要弄清楚电弧、真空电弧、扩散电弧、集聚电弧、横向磁场、纵向磁场的概念3.1电弧电弧或弧光放电是气体放电的一种形式。
放电在性质上和外观上是各种各样的。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够强的电场时,就可以引起电流通过气体,这种现象称为放电。
放电现象与气体的种类和压强、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加电压到一定程度时,空气中游离的电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子。
新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,使气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
电弧具有电流密度大和阴极电位降低的特点。
3.2真空电弧在真空环境中,气体非常稀薄,真空度高于1.33x10-2Pa时气体分子极少。
在1.33x10-2Pa 的真空中,每立方厘米空间中含有的气体分子数仅为标准大气压环境下的千万分之一。
在这样稀薄的气体中即使真空间隙中存在电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞造成真空间隙的电击穿。
真空灭弧室结构与原理4
2.4 屏蔽系统
• 作用:
2.4.1 屏蔽和吸收电弧生成物,防止绝缘外壳 的污染。 2..4.2 均衡系统电场分布,提高灭弧室绝缘水 平。 • 要求: 2.4.3 绝缘水平高,耐高温,易于真空去气。
2.5 波纹管
• 作用:
2.5.1 使灭弧室动端电极在一定范围可动。 2.5.2 保持灭弧室内部的高真空环境。 • 要求: 2.5.3 足够长的机械寿命。 2.5.4 耐腐蚀,耐高温。
真空灭弧室结构与原理
一、真空灭弧室结构简介
1.简述 • 利用真空为绝缘介质和熄灭电弧的介质,用于真空开关电器之 中具有交流电流开断能力的电真空器件。也称为真空开关管、 真空泡等。 • 真空灭弧室是高技术产品。是真空电弧与放电理论、电磁场理 论、材料科学、电真空技术的结合和进步的结果。 • 分类。 按功能用途分:断路器用、负荷开关用、接触器用、重合器 用、真空熔断器等。 按电压等级分:低压(<3kv)、中压(3-24kv)、高压(24kv以 上)。 也有按外壳材料、电极类型分类。我公司灭弧室型号充分反 映了灭弧室的分类特征。
三、真空灭弧室主要技术参数
1. 真空灭弧室主要技术参数。 • 额定电流、电压、频率。 • 额定工频短时耐受电压、雷电冲击耐压。 • 额定短路开断电流、短时耐受电流(热稳定电 流)、峰值耐受电流(动稳定电流)。 • 机械寿命、电寿命。 • 自闭力、额定开距下的触头反力。 • 平均分闸速度、平均合闸速度(合闸弹跳)。 • 额定触头压力、额定触头压力下的接触电阻。
真空灭弧室基础知识介绍
1
2
3
1--动导电杆
4
2--导向套
3--波纹管
5
4--动盖板
6 5--波纹管屏蔽罩
7
6--瓷壳
8
7--屏蔽筒
8--触头系统
9--静导电杆
9 10—静盖板
10
圆柱形触头
真
空
灭
弧
室
横向磁场触头:螺旋槽、杯状、万字槽。
的
触
头
结
构
纵向磁场触头:杯状、线圈式、马蹄铁式、R 触头、球形触头排气台工艺 Nhomakorabea真
空
灭
弧 室
真空灭弧室切断交流真空电弧成功与否,与触头之间弧区电流过零前的金 属蒸汽浓度密切相关。当电流过零前弧区的金属蒸汽浓度很小时,电弧在电 流过零时不足以维持便熄灭;反之当电流过零前弧区的金属蒸汽浓度很大, 在电流过零时仍足以维持,电弧便不会熄灭。金属蒸汽来自触头的电弧斑点 ,电弧斑点和金属蒸汽都随着电弧电流瞬时值的增减而变化。电弧电流过零 点前一小段时间里,触头间金属蒸汽浓度降低的速度取决于电弧斑点的冷却 时间常数。
扩散型真空电弧: 当真空电弧电流不大时,对于铜电极来说一般不超过 7~8KA,阴极斑点
将不停地运动,通常是由电极中心向边缘运动。当阴极斑点到达边缘,就会 突然熄灭,在电极中心又会继续不断地产生新的阴极斑点。如果电流保持不 变,阴极表面存在的阴极斑点数基本上维持不变。当电弧电流增大或减小时 ,阴极斑点也随之增加或减少。这种存在许多阴极斑点的真空电弧,随着阴 极斑点的运动不断地向四周扩散,所以叫扩散型真空电弧。见图
真空电弧的熄弧条件:
真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电 弧必须将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄 灭。在交流情况下,真空电弧电流有很多个过零的时刻,这就给出了熄弧的 条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧电流有 一个过零的机会,以创造一个同样的熄弧条件。
真空灭弧室的基本结构和工作原理
真空灭弧室的基本结构和工作原理真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。
具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。
真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。
我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。
其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。
1、 气密绝缘系统由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。
为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。
不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。
2 、导电系统定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室的导电系统。
其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空1.排气管保护罩2.排气管密封刀口3.环氧树脂填料4.定端盖版5.定导电杆6.屏蔽筒7.玻壳(或陶瓷壳)8.定触头座9.定触头10.动触头11.动触头座12.动导电杆13.波纹管14.均压罩15.动端盖版16.导向套灭弧室组装成的真空断路器,真空负荷开关和真空接触器合闸时,操动机构通过动导电杆的运动,使两触头闭合,完成了电路的接通。
真空灭弧室基本知识
1.3.3真空电弧的形态
➢ 集聚型真空电弧 当真空电弧电流很大时,如对铜电极而
言,当电弧电流超过10KA时,电弧的外形将突然发生 变化,阴极斑点不再向四周作扩散运动,而是相互吸 引,结果所有的阴极斑点都聚集成一个斑点团,阴极 斑点团的直径可达1~2CM。此时阳极上出现了阳极斑 点,阴极表面和阳极表面均有强烈的光柱,阴极光柱 与阳极光柱自由地向电极的四周扩散成为数条连续的 闪光,有时偶尔也与电极平行。真空电弧一旦聚集, 阴极斑点与阳极斑点便不再移动或以很缓慢的速度运 动,阳极和阴极表面被局部强烈加热,导致严重熔化, 这种真空电弧叫做集聚型真空电弧。见图一
真空灭弧室基本知识介绍
内部培训资料
大纲
1. 真空灭弧室的基本概念及工作原理 2. 真空灭弧室的基本结构及主要零件的作用 3. 真空灭弧室的触头结构 4. 真空灭弧室的封排方式 5. 真空灭弧室主要技术参数介绍 6. 真空断路器主要机械特性对真空灭弧室性能的影响 7. 真空断路器型式试验的主要项目介绍
导致发热温度迅速提高,致使触头表面金属产生蒸发。 同时微小的触头距离下也会形成极高的电场强度,造 成强烈的场致发射,间隙击穿,继而形成真空电弧。 真空电弧一旦形成,就会出现电流密度在104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔 化和蒸发,以维持真空电弧。在电弧熄灭后,电极之 间与电极周围的金属蒸气迅速扩散,密度快速下降直 到零,触头间恢复高真空绝缘状态。
1.3.4真空灭弧室的灭弧原理 ----小电流真空电弧的熄弧原理
➢ 真空灭弧室切断交流真空电弧成功与否,与触头之间 弧区电流过零前的金属蒸汽浓度密切相关。当电流过 零前弧区的金属蒸汽浓度很小时,电弧在电流过零时 不足以维持便熄灭;反之当电流过零前弧区的金属蒸 汽浓度很大,在电流过零时仍足以维持,电弧便不会 熄灭。金属蒸汽来自触头的电弧斑点,电弧斑点和金 属蒸汽都随着电弧电流瞬时值的增减而变化。电弧电 流过零点前一小段时间里,触头间金属蒸汽浓度降低 的速度取决于电弧斑点的冷却时间常数。
真空灭弧室基本知识
真空灭弧室基本知识一、真空的基本概念真空技术中,“真空”泛指在给定的空间内,气体压强低于一个大气压的气体状态,也就是说,同正常的大气压相比,是较为稀薄的一种气体状态。
真空度是对气体稀薄程度的一种客观量度。
根据真空技术的理论,真空度的高低通常都用气体的压强来表示。
在国际单位制中,压强是以帕(Pa)为单位1Pa=1N/m2。
另外常用的单位还有托(Torr)、毫米汞柱(mmHg)、毫巴 (mbar)、工程大气压(公斤/厘米2)等。
真空区域的划分没有统一规定,我国通常是这样划分的:粗真空:(760~10)托低真空:(10~10-3)托高真空:(10-3~10-8)托超高真空:(10-8~10-12)托极高真空:10-12托托和帕的关系:1 托=1 毫米汞柱(mmHg)=133.322Pa,1 帕=7.5×10-3 托。
真空区域的特点不同其应用也不同,例如吸尘器工作于粗真空区域,暖瓶、灯泡等工作于低真空区域,而真空开关管和其它一些电真空器件则是工作在高真空区域。
二、真空间隙的绝缘特性真空中放置一对电极,加上高压时,在一定的电压下也会产生电极之间的电击穿。
它的击穿与空气中的电击穿有很大不同。
空气中的击穿是由于气体中的少量自由电子在电场作用下高速度运动,与气体分子碰撞产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子。
这种雪崩式的电离过程,在电极间形成了放电通道,产生了电弧。
而真空中,由于压强较低,气体分子极少,在这样的环境中,即使电极间隙中存在着电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞。
因而不可能有电子和气体分子碰撞造成雪崩式的电击穿。
正是因为气体分子十分稀少,真空间隙电击穿需要在非常高的电压下出现场致发射等其它现象时才有可能形成。
从理论上推测,电场强度需达到108V/cm以上时才会造成电击穿,实际上真空间隙的绝缘强度由于一系列不利因素例如电极表面粗糙度、洁净度等的影响,将低于理论计算值几个数量级。
真空灭弧室工作原理
真空灭弧室工作原理
嘿,朋友们!今天咱们来聊聊真空灭弧室的工作原理。
想象一下,真空灭弧室就像是一个特别厉害的“电力小卫士”。
在这个小卫士的身体里,有两个触头,就像两个小伙伴手牵手。
当电流通过的时候,它们就开始工作啦。
正常情况下,这两个触头好好地接触着,电流就可以顺畅地通过。
但是呢,要是遇到需要断开电路的情况,比如说发生故障啦,这时候真空灭弧室就大显身手了。
它会迅速地把这两个触头分开,就好像两个小伙伴突然松开了手。
而因为是在真空环境里呀,没有了空气这个捣乱分子,电弧就很难持续燃烧啦。
这样一来,就能快速、安全地切断电路,保护我们的电器设备不受到损害。
可以说真空灭弧室就像是一个默默守护我们电力世界的小英雄,虽然它平时不太起眼,但关键时刻可少不了它呢!是不是很神奇呀?哈哈!。
见过这么全的真空灭弧室的基础知识吗
见过这么全的真空灭弧室的基础知识吗?1、什么是真空真空是指在给定的空间内,远低于一个环境大气压的气体状态。
真空状态下气体的稀薄程度通常用真空度来描述,以压强值来表示。
1大气压= 760×133.3=1.013×105(帕斯卡)或0.1013压强越高则真空度越低;压强越低则真空度越高。
真空灭弧室中,真空度很高,一般为10-3~10-4。
2、什么是真空灭弧室真空灭弧室也叫真空开关管或真空泡,是真空开关的核心器件。
它是用一对密封在真空中的电极(触头)和其它零件,借助真空优良的绝缘和熄弧性能,实现电路的关合或分断,在切断电源后能迅速熄弧并抑止电流的真空器件。
3、真空灭弧室的分类按外壳分:玻璃真空灭弧室、陶瓷真空灭弧室。
按用途分:断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器真空灭弧室、分段器用真空灭弧室及其它特殊用途真空灭弧室。
40.5/2500-31.5 T 陶瓷外壳 D 断路器用 40.5为电压等级单位2500为额定电流单位A 31.5为短路开断电流单位为12/3150-40 B 玻璃外壳 D断路器用 12 3150A额定电流 40短路开断电流12为 T陶瓷外壳 F 负荷开关用12为 T陶瓷外壳接触器用4、真空灭弧室的基本结构真空灭弧室主要由气密绝缘系统、导电系统、屏蔽系统、触头系统几部分组成。
4.1 绝缘外壳材料:绝缘外壳的材料有玻璃、陶瓷、微晶玻璃三种。
微晶玻璃价格昂贵,因而没有得到过实际应用;玻璃结构强度较差,使用量已逐渐减少;陶瓷综合性能最好,因而应用最广泛。
主要作用:绝缘外壳主要是起绝缘支撑作用,并参与组成气密绝缘系统。
4.2 波纹管材料:波纹管主要由厚度为0.1~0.2的不锈钢制成。
主要作用:波纹管主要担负动电极在一定范围内运动、及高真空密封的功能。
真空灭室要求波纹管具有很高的机械寿命。
4.3 屏蔽筒材料:屏蔽筒可由无氧铜、不锈钢、电工纯铁或铜铬合金等材料制成。
真空灭弧室原理
真空灭弧室原理一、引言真空灭弧室是一种用于高压开关设备中的重要装置,其主要作用是在开关操作过程中,有效地灭除电弧并保证电气设备的安全运行。
本文将介绍真空灭弧室的原理和工作过程。
二、真空灭弧室的原理真空灭弧室的原理基于真空状态下电弧无法维持的特性。
在真空中,由于缺乏气体分子进行离子化和电子的再组合,电弧无法持续存在,从而实现了有效的灭弧。
三、真空灭弧室的结构真空灭弧室通常由灭弧室主体、灭弧室触头和灭弧室导电触头等组成。
灭弧室主体是一个密封的容器,内部充满高真空。
灭弧室触头和导电触头则是用于断开和接通电路的关键部件。
四、真空灭弧室的工作过程1. 断开过程:当开关需要断开电路时,灭弧室触头会迅速分离,电流在触点间形成电弧。
在真空环境下,电弧无法得到维持,随着触点间距的增大,电弧被迅速熄灭。
2. 熄灭过程:当电弧熄灭后,灭弧室主体内部的真空环境能够迅速吸收和散热电弧释放的能量,确保电弧不会重新点燃。
同时,灭弧室导电触头会保持导电状态,以确保电路的正常通断。
3. 接通过程:当需要接通电路时,灭弧室触头会迅速闭合,以确保电流能够正常流动。
在闭合过程中,灭弧室的导电触头能够保持稳定的导电状态,确保电路通畅。
五、真空灭弧室的优势相比其他灭弧装置,真空灭弧室具有以下优势:1. 高灭弧能力:真空环境下,电弧能够迅速熄灭,确保电气设备的安全运行。
2. 高绝缘性能:真空灭弧室可以提供较高的绝缘水平,有效预防绝缘击穿。
3. 长寿命:真空灭弧室的主要部件采用高品质材料制造,具有较长的使用寿命。
4. 低维护成本:真空灭弧室无需额外的维护和保养,降低了使用成本。
六、真空灭弧室的应用真空灭弧室广泛应用于高压开关设备中,如变压器、断路器和隔离开关等。
其可靠的灭弧性能和高绝缘水平保证了电气设备的安全运行。
七、总结真空灭弧室利用真空环境下电弧无法维持的原理,通过迅速熄灭电弧保证了电气设备的安全运行。
其优势包括高灭弧能力、高绝缘性能、长寿命和低维护成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
见过这么全的真空灭弧室的基础知识吗?1、什么是真空真空是指在给定的空间内,远低于一个环境大气压的气体状态。
真空状态下气体的稀薄程度通常用真空度来描述,以压强值来表示。
1大气压= 760×133.3=1.013×105(帕斯卡)或0.1013压强越高则真空度越低;压强越低则真空度越高。
真空灭弧室中,真空度很高,一般为10-3~10-4。
2、什么是真空灭弧室真空灭弧室也叫真空开关管或真空泡,是真空开关的核心器件。
它是用一对密封在真空中的电极(触头)和其它零件,借助真空优良的绝缘和熄弧性能,实现电路的关合或分断,在切断电源后能迅速熄弧并抑止电流的真空器件。
3、真空灭弧室的分类按外壳分:玻璃真空灭弧室、陶瓷真空灭弧室。
按用途分:断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器真空灭弧室、分段器用真空灭弧室与其它特殊用途真空灭弧室。
40.5/2500-31.5 T 陶瓷外壳 D 断路器用40.5为电压等级单位2500为额定电流单位A 31.5为短路开断电流单位为12/3150-40 B 玻璃外壳D断路器用12 3150A额定电流40短路开断电流12为T陶瓷外壳F 负荷开关用12为T陶瓷外壳接触器用4、真空灭弧室的基本结构真空灭弧室主要由气密绝缘系统、导电系统、屏蔽系统、触头系统几部分组成。
4.1 绝缘外壳材料:绝缘外壳的材料有玻璃、陶瓷、微晶玻璃三种。
微晶玻璃价格昂贵,因而没有得到过实际应用;玻璃结构强度较差,使用量已逐渐减少;陶瓷综合性能最好,因而应用最广泛。
主要作用:绝缘外壳主要是起绝缘支撑作用,并参与组成气密绝缘系统。
4.2 波纹管材料:波纹管主要由厚度为0.1~0.2的不锈钢制成。
主要作用:波纹管主要担负动电极在一定范围内运动、与高真空密封的功能。
真空灭室要求波纹管具有很高的机械寿命。
4.3 屏蔽筒材料:屏蔽筒可由无氧铜、不锈钢、电工纯铁或铜铬合金等材料制成。
主要作用:1)减轻触头在燃弧过程中产生的金属蒸汽和液滴喷溅对绝缘外壳内壁的污染程度,从而避免造成真空灭弧室外壳的绝缘强度下降或产生闪络。
2)改善真空灭弧室内部的电场分布,有利于真空灭弧室绝缘外壳的小型化,尤其是对高电压等级真空灭弧室的小型化有显著效果。
3)冷凝电弧生成物。
特别是真空灭弧室在开断短路电流时,电弧所产生的热能大部分被屏蔽系统所吸收,有利于提高触头间的介质恢复强度。
屏蔽筒冷凝电弧生成物的量越大,吸收的能量也越大,越能改善真空灭弧室的开断能力。
4.4 触头系统4.4.1 触头结构触头结构的作用主要是在真空灭弧室分断短路电流时,在触头间形成横向磁场或纵向磁场,从而限制触头表面阳极斑点的形成,提高灭弧室的分断能力。
触头结构形成所需磁场的方式主要有两种:一是通过改变电流方向形成所需的磁场;二是通过设置磁性材料聚拢磁力线形成所需方向的磁场。
4.4.2触头触头是导电产生电弧、熄灭电弧的部位,对材料的要求很高。
触头材料主要有铜铋合金、铜铬合金、铜钨合金等几种,目前断路器用真空灭弧室大量使用的主要是铜铬合金。
4.5 导电杆真空灭弧室的动静导电杆均由无氧铜制成,它们是主要的导电回路,主要起导通电流的作用。
4.6导向套导向套一般用绝缘材料制成。
它主要起导向作用,保证真空灭弧室的动导电杆在分合闸运动过程中能沿着真空灭弧室的轴线做直线运动。
同时,它还能防止导电回路的电流分流到波纹管上,从而影响真空灭弧室的寿命。
5、真空灭弧室的触头结构真空灭弧室的触头结构一般有以下几种:5.1 圆柱形触头:最简单的触头结构,分断电流不大,一般不超过7~8。
5.2 横向磁场触头:典型的有螺旋槽横磁、杯状横磁、万字槽横磁。
5.3 纵向磁场触头:典型的有开斜槽式纵磁、线圈式纵磁、马蹄铁式纵磁。
5.4 R型触头:触头结构与触头集成化制造,磁场方向为交替式纵磁。
6、什么是横向磁场触头?什么是纵向磁场触头?它们对熄灭交流电弧分别有什么作用?6.1 横向磁场触头是指真空灭弧室在分断短路电流时,在其电极间产生的与电极轴线垂直的磁场。
在足够的横向磁场的作用下,真空电弧沿着触头表面不断地高速运动,从而避免了触头表面的严重熔化,在电流过零后能迅速恢复绝缘强度,有利于电弧的熄灭。
6.2 纵向磁场触头是指真空灭弧室在分断短路电流时,在其电极间产生的与电极轴线方向一致的磁场。
采用纵向磁场提高真空开关的分断能力与采用横向磁场的情况截然不同,纵向磁场的加入可以提高由扩散性电弧转变到收缩型电弧的转换电流值。
在足够的的纵向磁场的作用下,电弧斑点在电极触头表面均匀分布,触头表面不会产生局部严重熔化,并具有电弧电压低、电弧能量小的优良特征,这对于弧后绝缘强度恢复,提高分断能力是十分有益的。
目前,大容量的真空灭弧室多采用纵向磁场触头,这是因为纵向磁场触头具有电磨损小,使用寿命长和分断能力强等优点。
7、真空灭弧室的原理7.1 电弧电弧或弧光放电是气体放电的一种形式。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够强的电场时,就可以引起电流通过气体,这种现象称为放电。
放电现象与气体的种类和压强、电极的材料和几何形状、两极间的距离以与加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加电压到一定程度时,空气中游离的电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子。
新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,使气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
放电:绝缘介质中流通电流的各种形式,称为放电;击穿:绝缘介质上电压达到一定的数值后,流过的电流急剧增加,绝缘介质失去绝缘能绝缘状态转变为导体状态的过程称为击穿。
7.2 真空电弧(金属蒸汽电弧)力,这种由在真空环境中,气体非常稀薄,真空度高于1.33x10-2时气体分子极少。
在1.33x10-2的真空中,每立方厘米空间中含有的气体分子数仅为标准大气压环境下的千万分之一。
在这样稀薄的气体中即使真空间隙中存在电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞造成真空间隙的电击穿。
真空中电极间电弧是这样产生的:当触头行将分离前,触头上原先施加的接触压力开始减弱,动静触头间的接触电阻开始增大,由于负荷电流的作用,发热量增加。
在触头刚要分离瞬间,动静触头之间仅靠几个尖峰联系着,此时负荷电流将密集收缩到这几个尖峰桥上,接触电阻急剧增大,同时电流密度又剧增,导致发热温度迅速提高,致使触头表面金属产生蒸发。
同时微小的触头距离下也会形成极高的电场强度,造成强烈的场致发射,间隙击穿,继而形成真空电弧。
真空电弧一旦形成,就会出现电流密度在1042以上的阴极斑点,使阴极表面局部区域的金属不断熔化和蒸发,以维持真空电弧。
在电弧熄灭后,电极之间与电极周围的金属蒸气迅速扩散,密度快速下降直到零,触头间恢复高真空绝缘状态。
7.3 真空电弧的熄弧条件真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电弧必须将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄灭。
在交流情况下,真空电弧电流有很多个过零的时刻,这就给出了熄弧的条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧电流有一个过零的机会,以创造一个同样的熄弧条件。
真空断路器开断电流的过程实际上是触头间真空电弧熄灭后的,逐渐增长的介质强度和触头间的恢复电压之间的竞赛,如果真空电弧的弧后介质强度恢复速度大于瞬态恢复电压上升速度,则电流被开断,反之则出现重击穿。
8、机械特性与真空灭弧室之间的关系真空开关机械特性的优劣,对真空灭弧室各项电气性能有重要的影响。
真空灭弧室的性能对衡量真空开关的性能当然十分重要,而开关本身的机械特性也同样影响真空灭弧室的使用性能。
要保证真空开关的性能,其机械特性必须满足真空灭弧室的要求。
8.1 开距触头的开距主要取决于真空开关的额定电压和耐压要求,一般额定电压低时触头开距选得小些,但开距太小会影响分断能力和耐压水平。
开距太大,虽然可以提高耐压水平,但会使真空灭弧室的波纹管寿命下降,而且触头开距过大,将会显著地降低触头间有效纵向磁场的强度,使短路开断能力下降。
设计时,一般在满足运行的耐压要求下尽量把开距选得小一些。
10真空断路器的开距通常在8~12之间,24真空断路器的则在10~16之间,35真空断路器的则在16~24之间。
8.2 触头压力在无外力作用时,动触头在大气压作用下,对真空灭弧室内腔产生一个闭合力,使其与静触头闭合,这个力称之为自闭力,其大小主要取决于波纹管的端口直径。
自闭力太小,不能保证动静触头间良好的电接触,必须施加一个外加压力。
外加压力和自闭力之和称为触头的接触压力。
接触压力的作用:1)保证动、静触头的良好接触,在一定范围内减小其接触电阻值;2)满足额定短路状态时的动稳定要求。
应使触头压力大于短路状态时的触头间的斥力,以保证在该状态下动静触头的完全闭合且不受损坏;3)抑制合闸弹跳。
使触头在闭合碰撞时得到缓冲,将碰撞的动能转为弹性势能,抑制触头的弹跳;4)改善分闸特性。
当接触压力大时,触头压簧的压缩量大、弹性势能大,因而在触头分闸时,动触头能得到较大的初始分闸力,容易拉断熔焊点,并提高分闸的初始阶段的刚分速度,减少燃弧时间,提高分断能力;8.3 接触行程(或称压缩行程)目前真空开关毫无例外地采用对接式接触方式,动触头碰上静触头之后就不能再前进了。
触头接触压力是由触头压缩弹簧(有时称作触头弹簧)提供的,在开关触头碰触开始,触头压簧施力端仍会继续运动,其继续运动的距离,即为触头弹簧的压缩行程,也称为接触行程。
接触行程有两方面作用,一是令触头弹簧受压而向对接触头提供接触压力;二是保证在运行磨合或触头烧损后仍然保持一定接触压力,使之可靠接触。
一般接触行程可取开距的20%~40%左右,10的真空断路器约为3~4。
在真空断路器具体设计时,触头压缩弹簧在分闸位置就设置了相当的预压缩量,因而在触头对接前就有了一定的预压力。
这是为了在合闸过程中,使动触头有足够的力抵抗因预击穿而产生的电动力。
并在触头碰接瞬间,接触压力陡然跃增至预压力数值,减小合闸弹跳,抵抗电动斥力,使动静触头保持良好的接触状态;随着触头压簧的进一步压缩,触头间的接触压力逐步增大,接触行程终了时,接触压力达到设计值。
接触行程不包括合闸弹簧的预压缩量程,它实际上是触头压簧的第二次受压行程。
8.4 时间-行程特性曲线时间-行程特性曲线是描述真空断路器合、分闸机械特性的重要手段,在时间-行程特性曲线中可以全程测量到断路器合、分闸期间的运动速度、合闸弹跳、分闸反弹等参数。