行政院原子能委员会委托研究计画研究报告

合集下载

国家国防科工局、财政部关于印发《核技术研发科研项目管理办法》的通知

国家国防科工局、财政部关于印发《核技术研发科研项目管理办法》的通知

国家国防科工局、财政部关于印发《核技术研发科研项目管理办法》的通知文章属性•【制定机关】国家国防科技工业局,财政部•【公布日期】2024.07.05•【文号】•【施行日期】2024.07.05•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】核能及核工业正文国家国防科工局财政部关于印发《核技术研发科研项目管理办法》的通知教育部、中国科学院,有关地方国防科技工业管理部门,中国核工业集团公司、中国广核集团有限公司、国家电力投资集团有限公司、中国华能集团有限公司,中国工程物理研究院:现将《核技术研发科研项目管理办法》印发给你们,请遵照执行。

该办法自发布之日起实施,原《核能开发科研项目管理办法》(科工二司〔2010〕592号)、《核能开发科研项目事前立项事后补助管理实施细则》(科工二司〔2017〕1542号)同时废止。

国家国防科工局财政部2024年7月5日核技术研发科研项目管理办法第一章总则第一条为规范核技术研发科研项目管理,提升科研项目绩效,根据国家科研和预算管理有关规定,制定本办法。

第二条本办法所称核技术研发科研项目,是指全部或部分使用中央财政科研经费,由核技术研发科研计划安排的,与核科技发展相关的研究与开发活动。

包括反应堆及核动力、核燃料循环、核安全与辐射防护、核技术应用及相关支撑技术等专业领域。

第三条核技术研发科研项目模式包括审批立项资助、事前立项事后补助和奖励性后补助。

事前立项事后补助项目是指按照本办法规定的程序立项后,项目单位先行投入资金开展研究开发活动,取得成果并获得项目验收批复后,根据评定等次,由中央财政给予相应资金补助的项目,一般用于技术成熟度高且具有量化考核指标的项目。

奖励性后补助项目是指项目单位根据国家战略和产业发展需求,及自身发展需要先行投入资金组织开展研究开发活动,取得的成果在核工业发展中发挥了基础性、前瞻性、示范性和支撑性作用,经成果征集、审查评估和公示后,由中央财政给予相应资金补助的项目。

行政院原子能委员会会议规则

行政院原子能委员会会议规则

【法规名称】行政院原子能委员会会议规则【颁布部门】【颁布时间】 2001-03-28【效力属性】已修正【正文】行政院原子能委员会会议规则第 1 条本规则依行政院原子能委员会 (以下简称本会) 组织条例第十九条规定订定之。

第 2 条本会委员会议 (以下简称委员会议) 由主任委员、副主任委员及委员组成之。

委员会议以主任委员为主席,主任委员因故不能出席时,指定由副主任委员一人代理。

主任委员、副主任委员均不能出席时,由委员互推一人为主席。

第 3 条委员会议每月举行一次,必要时得召开临时会议。

第 4 条委员会议讨论事项如左:一关于原子能科技发展方针及政策之审议事项。

二关于原子能科技年度施政计划之审议及考核事项。

三关于本会主管法律制定、修正及废止之审议事项。

四关于委员提案之审议事项。

五其他经主任委员核定应提委员会议决议事项。

第 5 条委员会议之决议,应有全体委员过半数之出席,及出席委员过半数之同意行之。

可否同数时,取决于主席。

前项所称全体委员,包括主任委员及副主任委员。

第 6 条委员对于会议决议有不同意见时,得要求将不同意见载入会议纪录,以备查考。

第 7 条委员应亲自出席委员会议。

但由机关代表兼任之委员,如因故不能亲自出席时,得指派其职务代理人代表出席。

前项指派之代表列入委员出席人数,并参与会议发言及表决。

第 8 条委员因故不能出席委员会议时,应先期通知幕僚作业单位或有关人员。

委员对于审议事件有利害关系者,应行回避。

第 9 条委员会议列席人员如左:一本会主任秘书、各业务处主管及所属机关首长。

二其他经主任委员指定或邀请之人员。

第 10 条委员会议议程,依左列次序编列之:一报告事项。

二讨论事项。

第 11 条议程应于开会前分送各出、列席人员。

但具有时效性之议案,不及编入议程者,经主席核定后,得并列入临时议程,并于开会时分送之。

第 12 条各项议案经委员会议决议后,交由本会各有关承办单位执行及管制考核。

第 13 条委员会议纪录,应分别载明左列事项:一会议次别。

原子能法

原子能法

【法规名称】原子能法【颁布部门】【颁布时间】 1971-12-24【效力属性】已修正【正文】原子能法第 1 条为促进原子能科学与技术之研究发展,资源之开发与和平使用,特制定本法。

第 2 条本法中之专用名词,其意义如左:一原子能:谓原子核发生变化所放出之一切能量。

二核子原料:谓铀矿物、钍矿物及其他经行政院指定为核子原料之物料。

三原子燃料:谓能由原子核分裂之自续连锁反应而产生能量之物料,及其他经行政院指定为核子燃料之物料。

四游离辐射:谓直接或间接使物质产生游离作用之电磁辐射或粒子辐射。

五核子反应器:谓具有适当安排之核子燃料,而能发生原子核分裂之自续连锁反应之任何装置。

六放射性物质:谓产生自发性核变化,而放出一种或数种游离辐射之物质。

第 3 条原子能主管机关为原子能委员会,隶属行政院,其组织以法律定之。

第 4 条原子能委员会为推进原子能科学与技术之研究发展,开发原子能资源,扩大原子能在农业、工业、医疗上之应用,得设立研究机构。

第 5 条原子能委员会为推广原子能和平用途,得报请行政院令有关部会设立原子能事业机构。

私人设立原子能研究及事业机构时,均须经原子能委员会核准。

第 6 条原子能委员会对外得代表政府,从事国际合作事宜。

第 7 条关于原子能科学与技术之研究发展,应由原子能委员会筹拨专款,延聘专家,订定计划,统筹进行。

第 8 条原子能委员会应辅导国内各大学与研究所,增设有关原子科学学系,充实设备,发展原子科学教育。

第 9 条原子能委员会应会同教育行政主管机关及国内各科学研究机构,统筹选送科学人才,出国进修原子科学。

第 10 条原子能委员会得报请行政院,于有关科学研究机构,设立原子能科学与技术研究发展部门。

第 11 条国内各科学研究机构,对于原子能科学及其应用之研究,应依据本法第七条所定计划,互助合作,使研究人员及设备作有效之运用。

第 12 条国内各大学及有关原子能科学研究机构,与友邦及国际有关组织订立研究合作协定时,应申报原子能委员会核准。

行政院国家科学委员会专题研究计划成果报告

行政院国家科学委员会专题研究计划成果报告

¦æ¬F°|°ê®a¬ì¾Ç©e-û·|±MÃD¬ã¨s-p¹º¦¨ªG³ø§i¥xÆW¨ÅÀù¯f²z¦¨¦]¤§¬ã¨s-§íÀù°ò¦]¦b¨ÅÀù§Î¦¨¤¤¤§-«-n©Ê (²Ä¤T¦~)-p¹º½s¸¹: NSC 88-2314-B-002-365°õ¦æ¦~--: 87¦~08¤ë1¤é¦Ü88¦~7¤ë31¤é¥D«ù¤H : ³\ª÷¥É¥x¤jÂå¾Ç°|¥Í¤Æ©Ò¤¤¤åºK-nÃöÁäµü¡G¨ÅÀù/§íÀù°ò¦]p53,TSG101³\¦hªº¬ã¨s³ø§iÅã¥Ü¦b¨ÅÀù²Ó-M¤¤¦³«Ü°ª¤ñ¨Òªº¬V¦âÅé11p15¤§LOH(Loss of Heterozygosity )Åܲ§¡A Åã¥Ü¦¹°Ï°ì¤§°ò¦]Åܲ§»P¨ÅÀù¤§§Î¦¨¦³Ãö¡F¦ÓTSG101¬O 1997¦~¤~µo ²{¤§§íÀù°ò¦]¡A ¦¹°ò¦]´N ¦ì©ó11p15¡A¦Ó¥B³Ìªñªº³ø¾É«ü¥X ¡A¨ÅÀù²Ó-M¤¤½T¹ê·|§t¦³¦¹°ò¦]¤£¥¿±`ªºmRNA ªí²{¡A ¦]¦¹¦b³o-Ó-pµeùØ¡A §Ú-̥ΨӦۥx¤jÂå°|ªº¤@§å¨ÅÀùÀËÅé°µTSG101ªº¤ÀªR (Table 1)¡A¤S¥Ñ©ó³o§åÀËÅé¡A§Ú-̤w¸g¤ÀªR¹L¨äER¡A erbB2(HER2/neu)¤Îp53ªºªí²{±¡§Î(Table2, 3)¡A±N¨Ó§Ú-Ì¥i¥H¦P®É©Î¤À¶}¨Ó¤ÀªR TSG101¤Î³o¨Ç°ò¦]»PÁ{§É¯fª¬ªº¬ÛÃö©Ê¡A³o±N´£¨Ñ¤@-Ó§ó-ѯS²§©Êªºgenetic markers ¨ÓÀ°§U¤F¸Ñ¦¹Àù¯g¥i¯àªº-P¯f¾÷Âà¡A ¦Ó¥B¥i¥H´£¨Ñ±N¨Ó¬ã¨s T SG101ªº¥Í²z ¥\¯àªº¤è¦V ¡A ¥H¤Î³o ¨Ç°ò¦]¬Û¤¬¶¡ªº§@¥Î¡C -^¤åºK-nKeywords¡G Tumor Suppressor Gene p53 and TSG101/Breast CancerLoss of heterozygosity (LOH) on chromosome 11p15 occurs frequently in breast cancer indicating that this region may have a role in the pathogenesis of breast cancer. TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3fibroblasts.The human homologue of this gene was then isolated and mapped to 11p15.Moreover, abnormalities of TSG101transcripts in human breast cancer and prostate cancer from western country have been reported recently. To determine whether abnormal TSG101 expression has correlation with unique characteristics of breast cancer from Taiwan, TSG101 gene status of breast cancer specimens from National Taiwan University Hospital (NTUH) and several breast cancer cell lines have been studied by reverse transcription-polymerase chain reaction (RT-PCR ) and directly sequencing the cDNA of this gene (Table 1). We haveaccomplished the study about variants ofestrogen receptor (ER), over expression of erbB2(HER2/neu) and the mutation of p53 in same pool of breast cancer specimens mentioned above for the past two years.Those genetic alterations do provide someclues about breast carcinogenesis (Table 2, 3).More genetic analysis will help to developeffective genetic markers for this cancer’sprogression. Therefore, our specific aims ofthis proposed study are the following.Screening a large pool of breast cancer samples with known clinical stages for mutation in the TSG101 gene. The status of ER, erbB2(HER2/neu), p53 and TSG101 in the tumor samples will be correlated with their clinical stages. Moreover, any positivecorrelation between phenotype and mutation would provide scientifically importantdirection to explore inter-relationshipbetween these genes.Background TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3 fibroblasts. The human homologous of this gene was then isolated and mapped to 11P15(6,8). Some previous reports indicate that the major function of TSG101 is the following. TSG101 proteins of putative DNA-binding and transcriptional activation domains, it has suggested that the 43kD TSG101 protein may act to control gene expression and regulate the cell cycle.On the other hand, the coiled-coil domain of TSG101 can interact with stathmin. This finding suggests that this gene may control cell growth and differentiation (4,9,12,14,15,16). Other reports indicate thatTSG101 transcripts are frequently abnormal in human cancer cell, including breast cancer (1,2,3,13,17), prostate cancer (11), and leukemia (5). The major type of abnormality of TSG101 is aberrant splicing but not mutations (7,10). The relaxation of RNA splicing fidelity of TSG101 may be an oncodevelopment marker in cancer. We,therefore, plan to screen the status of TSG101 in a large pool of breast cancer samples that has been analyzed for ER,erbB2(HER2/neu) and p53 alterations in my laboratory. Clinical data including the pathologic stage, histologic type and follow-up will be collected. Then, the statistical analysis will be use to clarity the association between genetic alterations of ER,erbB2(HER2/neu), p53 as well as TSG101and clinical outcome.ResultTo detect the aberrant transcripts of TSG101 gene in breast cancer as well as the normal counterpart.According to the structure of TSG101 gene,two pairs of primer (p1/p2 and p3/p4) have been used to analyze any of the TSG101truncated transcripts by RT-PCR. Further restriction enzyme mapping or sequencing of RT-PCR products have been performed to dissect those truncated transcripts as well.The results were listed in table 3.DiscussionIn this preliminary study the abnormal TSG101 transcripts have been detected in tissues of breast cancers but not normal counterparts. These abnormalities of TSG101may play some role in carcinogenesis of breast. Therefore , clinical data including the pathologic stage, histologic type and fellow-up will be collected. Then, the statistical analysis will be used to clearify the associations between genetic alterations of ER, neu, p53 as well as TSG101 and clinical outcome.Table 1:HER-2/neu Row-P=0.018P53+Column Total56.3%43.7%100% HER-2/neuRow -P=0.031PR+Column Total 56.4%43.6%100%p53Row-P=0.004ER+Column Total74.2%25.8%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G¡Ï¡÷ point mutation¡Ð¡÷ wild-typeTable 2:p53 Row-P=0.00193Systemic recurrence+Column Total74.1%25.9%100%HER-2/neuRow -P=0.5617Systemic recurrence +Column Total 56.1%43.9%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G + ¡÷ point mutatation¡Ð¡÷ wild-typeSystemic recurrence¡G¡Ï¡÷three year’s follow-up¡Ð¡÷no recurrence on follow-up dateREFERENCES1. Benard J. Ahomadegbe JC. TSG101 and breast ca Ali, I.U., Lidereau, R., Theillet, C. & Callahan, R. Reduction to homozygosity of genes on ncer: a correctly named tumor-suppressor gene? Bulletin du Cancer. 84(12):1141-2, 1997Dec.2. Driouch K. Briffod M. Bieche I. Champeme MH. Lidereau R. Location of several putative genes possibly involved in human breast cancer progression. Cancer Research. 58(10):2081-6, 1998 May 15.3. Hofferbert S. Brohm M. Weber BH. Search for TSG101 germ-line mutations in BRCA1/BRCA2-negative breast/ovarian cancer families Cancer Genetics & Cytogenetics. 102(1):86-7, 1998 Apr 1.4. Koonin EV. Abagyan RA. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators Nature Genetics. 16(4):330-1, 1997 Aug.5. Lin PM. Liu TC. Chang JG. Chen TP. Lin SF. Aberrant TSG101 transcripts in acute myeloid leukaemia. British Journal of Haematology. 102(3):753-8, 1998Aug.6. Lee MP. Feinberg AP. Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Research. 57(15):3131-4, 1997 Aug 1.7. Li L. Li X. Francke U. Cohen SN. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell.88(1):143-54, 1997.8. Li L. Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell.85(3):319-29, 1996 May 3.9. Ponting CP. Cai YD. Bork P. The breast cancer gene product TSG101: a regulator of ubiquitination?. Journal of Molecular Medicine. 75(7):467-9, 1997 Jul.10. Steiner P. Barnes DM. Harris WH. Weinberg RA. Absence of rearrangements in the tumour susceptibility gene TSG101 in human breast cancer Nature Genetics. 16(4):332-3, 1997 Aug.11. Sun Z. Pan J. Bubley G. Balk SP.Frequent abnormalities of TSG101 transcripts in human prostate cancer. Oncogene. 15(25):3121-5, 1997 Dec 18.12. Thomson TM. Khalid H. Lozano JJ. Sancho E. Arino J. Role of UEV-1A, a homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Letters. 423(1):49-52, 1998 Feb 13. 13. Wang Q. Driouch K. Courtois S. Champeme MH. Bieche I. Treilleux I. Briffod M.Rimokh R. Magaud JP. Curmi P. Lidereau R. Puisieux A. Low frequency of TSG101/CC2 gene alterations in invasive human breast cancers. Oncogene. 16(5):677-9, 1998Feb 5.14. Watanabe M. Yanagi Y. Masuhiro Y. Yano T. Yoshikawa H. Yanagisawa J. Kato S. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochemical & Biophysical Research Communications.245(3):900-5, 1998 Apr 28.15. Xie W. Li L. Cohen SN. Cell cycle-dependent subcellular localization of the TSG101protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proceedings of the National Academy of Sciences of the United States of America.95(4):1595-600, 1998 Feb 17.16. Zhong Q. Chen Y. Jones D. Lee WH. Perturbation of TSG101 protein affects cell cycle progression. [Journal Article] Cancer Research. 58(13):2699-702, 1998 Jul 1.17. Zhong Q. Chen CF. Chen Y. Chen PL. Lee WH. Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Research.57(19):4225-8, 1997 Oct 1.Table 3 Truncated transcripts of TSG101 in pair specimens4。

原子能动力设备项目可行性研究报告

原子能动力设备项目可行性研究报告

原子能动力设备项目可行性研究报告核心提示:原子能动力设备项目投资环境分析,原子能动力设备项目背景和发展概况,原子能动力设备项目建设的必要性,原子能动力设备行业竞争格局分析,原子能动力设备行业财务指标分析参考,原子能动力设备行业市场分析与建设规模,原子能动力设备项目建设条件与选址方案,原子能动力设备项目不确定性及风险分析,原子能动力设备行业发展趋势分析提供国家发改委甲级资质专业编写:原子能动力设备项目建议书原子能动力设备项目申请报告原子能动力设备项目环评报告原子能动力设备项目商业计划书原子能动力设备项目资金申请报告原子能动力设备项目节能评估报告原子能动力设备项目规划设计咨询原子能动力设备项目可行性研究报告【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】原子能动力设备项目可行性研究报告、申请报告【交付方式】特快专递、E-mail【交付时间】2-3个工作日【报告格式】Word格式;PDF格式【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。

【报告说明】本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。

可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。

可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。

对整个可行性研究提出综合分析评价,指出优缺点和建议。

为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。

澄清行政院停建核四决策文核能专业资讯错误

澄清行政院停建核四决策文核能专业资讯错误

澄清行政院停建核四決策文核能專業資訊錯誤我們要對教育良心、專業知識、與歷史負責陳總統在電視媒體發言說,廢核四是道德問題,呂副總統在召開首次總統府科技諮詢委員會時說,廢核是良心與真理問題,並呼籲國人依據科技、良心、以及道德討論核四興建問題。

行政院張院長十月二十七日正式宣佈停止興建核四電廠,決策文『打造非核家園唯一的選擇』(附件一)在隔日各大報紙正式公佈。

我們是一群長期從事核能專業教育工作的大學教授,本著教育良心、專業知識、以及對台灣核電發展歷史負責的態度,對於行政院停建核四決策文(以下簡稱廢核四決策文)中,引用核能專業資訊錯誤以及對核能專業知識嚴重扭曲,正式提出澄清:一、廢核四決策文引言一開始,張院長引用愛因斯坦的話『人類悲慘的命運,就是製造出最具威力的毀滅方法,原子能的釋放,改變了一切,卻改變不了我們的思考模式,因此才會走向前所未見的大災難。

』決策文的結尾語,張院長再度引用愛因斯坦的話『我的一生犯了一個最大的錯誤,就是簽署那一封支持製造原子彈的信給羅斯福總統。

』我們的澄清:核能電廠不等於原子彈。

愛因斯坦對於原子能被濫用做成原子彈感到非常沈痛,因此才會講出那一段懊悔的話。

愛因斯坦1955年過世時世界尚未有核能發電。

原子彈是原子能的軍事應用,愛好和平的人都厭惡、摒棄原子彈;核能發電是原子能的和平應用,用來提供民生用電造福人類,就像原子能科技在各大醫院用來診斷及治療重大疾病一樣,是原子能的民生應用。

原子能本身是一項文明科技產品,是中性的,用在原子彈做為殺人工具,是恐怖的,用於核電及醫、農、工和其他科技研究做為和平用途,則是造福人類的。

聯合國設有國際原子能總署(IAEA),其目的在於協助世界各國,一方面防止核子武器擴散,另一方面則促進包括核能發電在內的原子能和平用途。

核能發電是一項一般民眾感到陌生的複雜科技產品,因受原子彈之累,在世界上包括我國在內32個使用核能發電的國家,向來就是一項引起部份民眾爭議的對象,各國反核運動也所在多有,只是程度上有輕重差異而已。

行政院国家科学委员会补助专题研究计划作业要点

行政院国家科学委员会补助专题研究计划作业要点

行政院国家科学委员会补助专题研究计划作业要点状态:有效发布日期:2005-05-18生效日期:2005-05-18发布部门:台湾发布文号:台会综二字第0940036292号一、行政院国家科学委员会(以下简称本会)为补助大专院校及学术研究机构执行科学技术研究工作,以提升我国科技研发水准,特订定本要点。

二、申请机构(即执行机构):(一)公私立大专院校及公立研究机构。

(二)经本会认可之财团法人学术研究机构。

三、计划主持人(申请人)及共同主持人之资格:(一)申请机构编制内按月支给待遇之专任教学、研究人员,具有专门学识与研究经验,且有具体研究成绩,并具备下列资格之一者:1.助理教授级以上人员。

2.具博士学位之专任教学或研究人员。

3.担任讲师职务四年以上,并有著作发表于国内外著名学术期刊或专利技术报告专书者。

4.研究机构副研究员、技正或相当副研究员资格以上人员。

5.于教学医院担任主治医师二年以上或获硕士学位从事研究工作四年以上,并有著作发表于国内外著名学术期刊之医药相关人员。

具有前项计划主持人资格,且依相关规定被借调之人员,得由原任职机构提出申请。

(二)已退休之教学、研究人员,如为中央研究院院士、曾获得教育部国家讲座或学术奖、本会特约研究人员或杰出研究奖三次以上、财团法人杰出人才发展基金会杰出人才讲座、或其它相当奖项经本会认可者,且其原任职机构于申请研究计划函内叙明愿意提供相关设备供其进行研究并负责一切行政作业者,得申请一般型研究计划补助。

(三)实施校务基金制度之学校,于校务基金自筹经费范围内,依国立大学校院进用项目计划教学人员、研究人员暨工作人员实施原则聘任之专任教学、研究人员,按月支给待遇,经学校各级教评会审议通过遴聘,符合第(一)项计划主持人资格者,得申请专题研究计划补助。

(四)公立大专校院依公立大专校院稀少性科技人员遴用资格办法遴用具博士学位之核能、信息及航天等三类稀少性科技人员,得申请专题研究计划补助。

行政院国家科学委员会专题研究计画期中进度报告

行政院国家科学委员会专题研究计画期中进度报告

Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2,I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond (UNCD) films were grown on bias-enhaned nucleation substrate to improve the of growth behavior.Keywords: UNCD, high speed growth, BEN, MPECVDSubmission of this paper has been approved by the co-authors.Corresponding author: Prof. I-Nan Line-mail: inanlin@.twTel. 886-2-26268907; Fax. 886-2-26207717Department of physics, Tamkang University;151 Yin-Chuan Rd. Tamsui, Taipei, Taiwan 251, R. O. C.Estimated word count: 3571words1Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2, I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond films were grown on bias-enhaned nucleation substrate to improve the growth.Keywords: UNCD, high speed growth, BEN, MPECVD2I. IntroductionThe unique combination of the physical and chemical properties of diamond film save drawn more attention among researcher to use diamond in many applications. However, the high roughness of microcrystalline diamond films made them inapplicable in specific applications. In the recent past, very smooth ultra nano-crystalline diamond (UNCD) films deposited by CH4/Ar mixture has been established. The detail mechanism for the formation of UNCD from CH4/Ar plasma has been reported[1, 2]. Recent application of nano-diamond films in bio-sensors[3], filed emission[4, 5] and bio-medical application[6] have shown the promising future of this nano-material. Even so, no detailed study has been performed on the growth rate and formation of nucleation sites by biased enhanced nucleation (BEN) method to grow uniform UNCD film on the silicon surface. Therefore, it is significant to understand more precisely on the deposition rate and deposition conditions influencing growth process of UNCD film.The substrate pretreatment strongly affects the nucleation and growth process of diamond films determining the initial deposition rate, crystal quality and surface roughness. High deposition rate is primarily important to grow thick diamond films normally required for application like SAW devices[7]. Moreover, a smooth surface of diamond film is another important requirement. Thus, suitable conditions need to be established to grow ultrananocrystalline diamond grains to directly obtain a smoother film. One of the most effective methods of diamond nucleation is bias enhanced nucleation (BEN) method[8, 9]. The formation of nano-diamond phase on silicon acts as nucleation center for the growth of either nano-crystalline or microcrystalline diamond depending on the deposition parameters used.One of the main objectives of the present work was to systematically investigate the nucleation behavior of UNCD on silicon surface using a BEN technique. As BEN method does not involve any scratching by diamond abrasives, it avoids the confusion of presence of any residual diamond particle on the substrate. Another objective of current study is to find a suitable deposition condition for the high and uniform growth of UNCD. The effect of microwave power, substrate temperature, CH4 to Ar ratio and total pressure on the growth rate is reported in this article.3II. ExperimentalThe bias enhanced nucleation (BEN) diamond films were grown in a 2.45 GHz ASTeX microwave plasma enhanced chemical vapor deposition (PECVD) system on N-type mirror polished Si (100) substrates. A microwave power of 1.5 kW (ASTeX 5400), total pressure of 55 torr and 300 sccm H2 flow rate were used during biased treatment. Different substrates were biased treated for different time intervals (0 to 15 minutes) at constant biased voltage (-125 V) and the resulted bias current – time relationship was measured. Silicon substrates after BEN process were used for the deposition of UNCD in an IPLAS MPCVD system. Table I presents the detail experimental deposition conditions used for UNCD growth. In Series - P, C, T and MW, chamber pressure, CH4/Ar ratio, temperature and microwave power was varied respectively, keeping rest of the parameters constant.Surface morphology of samples was examined with a field emission scanning electron microscope (JEOL 6010). Crystal quality of UNCD films was investigated by Raman Spectroscopy using 514 nm argon laser beam (Renishaw). Surface topography and roughness was measured with atomic force microscopy (PARK).III. Results and discussion(a) Nucleation processThe formation of nanodiamond phase for the nucleation of diamond growth during BEN is known for last few years. Therefore BEN time is crucial to create uniform nucleation center on the silicon. Figure 1 shows the nucleation of nano-diamond films deposited after different BEN time intervals. The SEM images show uniform island growth at the beginning after 5 minutes of BEN (Fig 1a) and subsequent increase of coverage in nano-diamond grains clusters on the surface after 7 minutes (Fig 1b). After 8 minutes of BEN, the whole silicon surface is covered by cluster of nano-diamond crystals. The average size of nano-diamond cluster is around 150 nm and size of each diamond grain in the clusters is ~ 20 nm (Fig 1c). A saturation of nano-diamond growth occurs after 8 minutes of BEN, covering whole area of silicon substrate. At 10 min of BEN, cluster size of nano-diamond is decreased but diamond grain of size 50 nm started to appear (Fig 1d). The surface morphology is almost same after 10 minutes BEN. This4establishes the minimum time (8 minutes) required for the creation of high nucleation centers and uniform nano-diamond layer on silicon. The grain size is also found to be smallest (~20 nm) after 8 minutes of BEN. The thickness was about 250 nm.The measurement of bias current during BEN in our study indicates direct correlation in the formation of nano-diamond phase on silicon, which is shown in fig. 2 for the trend of bias current versus time at a constant negative bias voltage of 125 V. When there is no methane flow, bias current is about -52 mA. This current starts to decrease in the first 3 minutes, which may be due to methane content increases and changes plasma condition. The subsequent increase of bias current which has been attributed to the enhancement in electron emission from the highly emissive diamond formed on silicon substrate surface and the bias current become saturated after 10 minutes indicating no more nano-diamond coverage increase in surface.(b) Growth processFigure 3 shows the effect of various parameters on the deposition rate of UNCD. The deposition rate of diamond film is found to depend significantly on the temperature and the ratio of CH4 to Ar in the reactant gas compared to microwave power and total pressure. The effect of chamber pressure in the deposition rate is linearly increases from 100 torr to 150 torr. There is no much effect of pressure on the deposition rate. However, there is a striking increase in deposition rate when CH4/Ar ratio was increased from 0.5 % to 2.0 %. The substrate temperature is another important parameter for increasing deposition rate. The deposition rate is found to increase around 4 times with increase in temperature from 400o C to 600o C while all other parameters were held constant. The deposition rate of UNCD increases with microwave power from 600 W to 750 W. However, deposition rate comes down and become almost constant in the microwave power range of 900 W to 1200 W. We have grown a UNCD film having highest deposition rate of ~1 µm/hr at 750 W with combination of parameters: 150 torr pressure, 600 o C temperature and 1 % methane.Figure 4 shows typical SEM images of UNCD film. Diamond grains of size less than 10 nm have been grown under above described deposition conditions. Unlike the agglomeration observed after bias enhanced nuclation, UNCD film shows a uniform and5smooth surface having numerical diamond crystallites density of as high as 1012 /cm2. This high nucleation density was due to formation of high nucleation centers during BEN and the growth in CH4/Ar plasma. The inset shows a cross-sectional image of UNCD film. The surface roughness of the diamond films is strongly affected by deposition method. AFM analysis shows that the surface roughness of the BEN film using CH4/H2 source gas under continuous bias (-125 V) in 8 minutes period was about 13.2 nm. This surface roughness reduces to 10 nm after deposition of UNCD using CH4/Ar source gas. The decrease of surface roughness is well matched with decrease of diamond grain size measured by SEM. Size of diamond grains were less than 10 nm after UNCD deposition on a 20 nm diamond crystallites film formed during negative biasing.Raman technique is one of the important non-destructive characterization techniques to study the properties of any type of carbon forms. There are four main peaks normally observed at around 1140 cm-1, 1330 cm-1, 1470 cm-1 and 1560 cm-1 in visible Raman spectrum of UNCD films[10, 11]. Figure 5 shows the Raman spectra of UNCD films deposited on silicon at different experimental conditions. These Raman spectra are found to be very similar to as reported in literature[10, 11]. The broad peak at 1330 cm-1 and 1560 cm-1 are commonly termed as D-band and G band respectively. The peaks at 1140 cm-1 and 1470 cm-1 are sometimes assigned to nano-crystalline diamond films[12, 13].However, there is certain ambiguity in these two peaks. Ferrari et. al.[14] and Kuzmany et. al.[15] have assigned these two peaks at 1140 cm-1 and 1470 cm-1 to trans-polyacetylene segments present at the grain boundaries and surfaces of diamond films. However, these two peaks are most commonly observed in UNCD or NCD film[10, 11]. Since the sp2-bonded carbon is highly sensitive to visible Raman spectroscopy than sp3-bonded carbon, sharp peak at 1332 cm-1 is not observed. In our study, the peak height of 1140 cm-1 and 1470 cm-1 suggests the increase in trans-polyacetylne percentage with substrate temperature. Raman spectra of series –P, -C and -MW samples are almost same indicating not much change in crystallinity of UNCD films by varying pressure, CH4/Ar ratio and microwave power.6IV. ConclusionUNCD film of diamond grain less than 10 nm was grown on BEN treated silicon surface. Nucleation density of ~1012 grains/cm2 was obtained in the growth process. Silicon substrate was biased for different time interval to study the formation of nucleation center. Our study has shown that a minimum 8-minute of bias enhanced nucleation was needed for uniform growth of UNCD film. Agglomeration of diamond crystallites obtained in BEN diamond growth was not observed after the growth of UNCD in a CH4-Ar medium. AFM study depicted the improvement in smoothness of UNCD film to 6.83 nm from 10.83 nm obtained by BEN NCD film. Raman spectra have shown the peak at respective positions that normally observed in UNCD films.V. AcknowledgmentThe authors would like to thank National Science Council, R.O.C. for the support of this research through the project No. NSC 93-2112-M-032-010.VI. References[1] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, J. Appl. Phys.83 (1998) 540.[2] D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211.[3] A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Sreinmuller, M. Stutzmann, Nature Materials, 3 (2004) 736.[4] W. Zhu, G.P. Kochanski, S. Jin, Science282 (1998) 1471.[5] K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, J. Appl. Phys.88 (2000) 2967.[6] M. D. Fries, Y.K. Vohra, Diam. Rel. Mater. 13 (2004) 1740.[7] F. Benedic, M.B. Assouar, F. Mohasseb, O. Elmazria , P. Alnot , A. Gicquel, Diam. Rel. Mater. 13 (2004) 347.[8] S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.[9] Q. Chen, Z. Lin, J. Appl. Phys. 80 (1996) 797.[10] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232.[11] Y. Hayashi, T. Soga, Tribology International 37 (2004) 965.[12] W.A. Yarbrough, R. Messier, Science 247 (1990) 688.7[13] R.J. Nemanich, J.T. Glass, G. Lucovsky, R.E. Shroder, J. Vac. Sci. Technol. A 6 (1988) 1783.[14] A.C. Ferrari, J. Robertson, Phys. Rev. B, 63 (2001) 121405.[15] H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, Carbon 42 (2004) 911.89Table I: Experimental deposition conditions for UNCD growth on BEN silicon surface. Materials Pressure(Torr)CH 4/Ar Ratio (%) Temperature (o C) MW Power (W) Series-P100~150 1 % 400 1200 Series-C150 0.5 ~ 2 % 4001200 Series-T150 1 % 400 ~ 600 750 Series-MW150 1 % 600 600 ~ 1200Figure captionsFig 1. SEM images of diamond films grown on silicon surface after different BEN time intervals, (a) 5 min., (b) 7 min., (c) 8 min. and (d) 10 min of BEN.Fig. 2. Bias current from the electrode to the substrate holder during the bias enhanced nucleation as a function of time.Fig. 3. Effect of pressure, CH4 to Ar ratio, substrate temperature and microwave power on the deposition rate of UNCDFig. 4. FE-SEM image of UNCD grown under deposition condition of 750 W microwave power, 150 torr total pressure, total flow of 200 sccm Ar-CH4 (CH4-1 %) andsubstrate temperature 600 o C in 3 hr deposition period. Inset shows a cross-sectional view.Fig. 5. Visible Raman spectra UNCD films obtained under different experimental conditions.。

行政院原子能委员会办事细则

行政院原子能委员会办事细则

【法规名称】行政院原子能委员会办事细则【颁布部门】【颁布时间】 2000-04-17【效力属性】已修正【正文】行政院原子能委员会办事细则第 1 条本细则依行政院原子能委员会 (以下简称本会) 组织条例第十九条规定订定之。

第 2 条本会业务之处理,除法令另有规定外,依本细则办理。

第 3 条主任委员综理会务,并指挥、监督所属机关及职员;副主任委员襄助主任委员处理会务。

第 4 条本会各处、室依业务需要得分科办事,其员额视业务繁简配置之。

第 5 条综合计划处分设六科,各科掌理事项如左:一计划科:(一) 原子能科技发展政策及方案之规划、研拟、协调及推动事项。

(二) 原子能科技发展中长程计划之规划、汇整、推行及建档事项。

(三) 年度施政计划之规划、编审、联系及推行事项。

(四) 国内有关原子能科学机构科技合作之规划、协调及联系事项。

(五) 原子能研究机构设置之规划及原子能业务财团法人设立许可之审查、监督、协调及联系事项。

(七) 电脑资讯业务之规划、推行等统筹事项。

(八) 有关两岸原子能事务交流之研办事项。

(九) 其他本会计划相关事项。

二管考科:(一) 原子能科技发展中长程计划、年度施政计划之管制考核事项。

(二) 行政院院会决定、决议及院长指示有关本会原子能科技之追踪、管制事项。

(三) 本会原子能科技重要方案、计划、会议结论、出国报告及列管案件之追踪、管制事项。

(四) 本会原子能科技管制考核制度之研究发展事项。

(五) 本会原子能科技年度工作之考成事项。

(六) 本会原子能科技业务报告、列管案件进度报告之编印事项。

(七) 其他本会管考相关事项。

三国际事务科:(一) 与国外有关原子能科学机构科技合作之规划、协调及联系事项。

(二) 国际原子能资料之搜集事项。

(三) 与原子能有关国际人士访问之统筹联络事项。

(四) 国内原子能学者专家出国考察、受训及参加会议之联系及安排事项。

(五) 与驻外相关单位及本会驻外人员业务之协调及联系事项。

行政院原子能委员会核能研究所(报告编号EMRAL-TR-95086)

行政院原子能委员会核能研究所(报告编号EMRAL-TR-95086)

行政院原子能委員會核能研究所(報告編號:EMRAL-TR-95086)
工業技術研究院(報告編號:09554C02886)
「光能量遠紅外線眼鏡」
由中日技術合作研製而成,此遠紅外線材質的眼鏡是目前全球市場唯一在眼鏡上使用FI遠紅外線的新產品,從眼鏡本身到套裝的包裝都是精心設計而成的,是一個有保養功能的眼鏡.
聖脈公司最新研發的「光能量遠外紅線眼鏡」研製遠紅外線材質眼鏡,是將波長6μm至14μm(微米)電磁波的遠紅外線放射粒子使用在眼鏡上而遠紅外線材質是由複合式無機物採取多種天然素材為基材,人體接觸該產品,遠紅外線對可達到吸收日光中對人體有益光線,同時產生對人體有益的作用。

簡言之,遠紅外線使原子和分子振動,藉著「共鳴吸收現象」,而產生熱反應,使皮膚深層的溫度上昇,微細血管擴張、促進血液循環,,一掃淤血等的代謝障害,活化組織細胞,促進酵素的生成。

由於代謝正常運作,經由汗腺將體內的〃老化廢物以及不要的有害物質,連同水分,一齊排泄出來,遠紅外線經人體實驗有改善微循環系統、提昇免疫系統功能而増加抵抗力及抗老(氧)化之功能,對於預防黑眼圈跟長時間使用眼睛引起的疲勞等有相當的幫助,因為它具有提高人體的水份子活性化機率及身體含氧量的特性,對平衡身體機能甚有幫助。

中国原子能科学研究院下属研究所

中国原子能科学研究院下属研究所

中国原子能科学研究院下属研究所中国原子能科学研究院是我国原子能科学研究的领军机构,其下属的研究所涵盖了众多领域。

本文将为您详细介绍中国原子能科学研究院下属的研究所,以便您对这些研究所的研究方向和成果有更深入的了解。

一、中国原子能科学研究院简介中国原子能科学研究院(China Institute of Atomic Energy,简称CIAE)成立于1950年,是我国原子能科学研究的权威机构,隶属于中国核工业集团公司。

研究院主要从事核科学与技术的研究与开发,研究领域包括核物理、辐射化学、核燃料循环、核能应用等,为我国核事业的发展做出了重要贡献。

二、下属研究所介绍1.核物理研究所核物理研究所主要开展核物理基础研究、核数据测量与评价、核技术应用等方面的研究。

研究方向包括:原子核结构、核反应、核数据、中子物理、放射性核素物理等。

2.辐射化学研究所辐射化学研究所致力于辐射化学、电化学、环境化学等领域的研究。

主要研究方向有:辐射化学合成、辐射化学效应、放射性废物处理与处置、环境监测与治理等。

3.核燃料循环研究所核燃料循环研究所主要从事核燃料的制备、加工、利用及乏燃料后处理等方面的研究。

研究方向包括:核燃料制备、核燃料元件、核燃料后处理、放射性废物处理等。

4.核能应用研究所核能应用研究所专注于核能技术在工业、农业、医学等领域的应用研究。

主要研究方向有:放射性同位素与辐射技术、核仪器仪表、核能综合利用等。

5.同位素研究所同位素研究所主要从事放射性同位素的制备、应用及同位素示踪技术研究。

研究方向包括:放射性同位素制备、同位素标记化合物、同位素示踪技术等。

6.辐射防护研究所辐射防护研究所致力于辐射防护、辐射安全、环境保护等领域的研究。

主要研究方向有:辐射防护技术、辐射环境监测、辐射生物效应等。

三、总结中国原子能科学研究院下属的研究所在各自领域取得了丰硕的研究成果,为我国核事业的发展做出了巨大贡献。

中国原子能科学研究院_企业报告(代理机构版)

中国原子能科学研究院_企业报告(代理机构版)

2023-03-08
10 检测平台隔离变压器
中国原子能科学研究 院
95.0
2023-05-11
*项目金额排序,最多展示前 10 记录。
(2)企业采购系统(21)
序号
项目名称
招标单位
预算金额(万元) 公告时间
本报告于 2023 年 08 月 16 日 生成
4 / 22
序号
项目名称
招标单位
预算金额(万元) 公告时间
企业基本信息
企业名称: 营业范围:
中国原子能科学研究院
主要资质:
一、代理项目
1.1 总体指标
近 1 年(2022-09~2023-08):
代理项目数(个)
487
同比增长:2463.2%
代理项目金额(万元)
(不含费率与未公示金额)
¥2831.91
同比增长:3064.1%
项目平均金额(万元)
¥40.46
中国原子能科学研究 院
100.0
2023-06-26
7 辅助工具采购结果公告
中国原子能科学研究 院
100.0
2023-06-15
8
超临界二氧化碳布雷顿循环瞬态模 中国原子能科学研究
型开发采购结果公告

99.0
2023-03-31
9
华西国际肿瘤治疗中心质子项目辐 华西国际肿瘤治疗中
射防护计算咨询等

95.0
177.0
2023-05-30
3
中子发生器系统配件加工采购结果 中国原子能科学研究
公告

140.0
2023-04-14
4
高频感应热等离子体制球模块采购 中国原子能科学研究

行政院原子能委员会组织条例

行政院原子能委员会组织条例

【法规名称】行政院原子能委员会组织条例【颁布部门】【颁布时间】 1992-11-23【效力属性】已修正【正文】行政院原子能委员会组织条例第 1 条本条例依原子能法第三条规定制定之。

第 2 条本会对于公私立原子能教学、研究及应用机构,有监督之责。

第 3 条本会设左列各处:一综合计划处。

二核能管制处。

三辐射防护处。

四核能技术处。

五秘书处。

第 4 条综合计划处掌理左列事项:一原子能科学与技术研究发展政策、方案及计划之研拟、规划、推动及管制考核事项。

二原子能研究与应用机构设置之研究及规划事项。

三国内外有关原子能科学机构之合作及连系事项。

四核子保防业务之连系、执行、监督及核拟事项。

五原子能科学与技术人才之储备与出国进修之选送及统筹事项。

六原子能科学教育辅导与发展之研究及规划事项。

七核子事故应变计划之策划及执行事项。

八原子能资料之搜集、分析、及统筹电脑资讯业务之规划、推行等事项。

九原子能科学与技术专利权之让与及合作事项。

一○核子事故之评估、赔偿与保险等有关事项。

一一原子能刊物之编译及出版发行事项。

一二其他有关综合计划事项。

第 5 条核能管制处掌理左列事项:一核子反应器设置、废弃、转让、拆卸之审查及监督事项。

二核子反应器厂址选择之安全审查事项。

三核子反应器设计、建造、运输、运转与维护之管制及视察事项。

四核子反应器设计、建造及运转安全分析之审查事项。

五核子反应器执照之核发事项。

六核子反应器设计修改、设备变更及运转规范修正之审查事项。

七核子反应器运转人员执照之核发事项。

八核子反应器更换燃料安全分析之审查事项。

九核子反应器除役之审查、管制及监督事项。

一○核子燃料执照之核发事项。

一一核子燃料生产设施设置、废弃、转让、拆卸之审查及监督事项。

一二核子燃料使用之管制事项。

一三其他有关核能管制事项。

第 6 条辐射防护处掌理左列事项:一核子反应器辐射防护及环境辐射之管制事项。

二放射性废料贮存、处置场所辐射防护及环境辐射之管制事项。

核弹研究报告怎么写范文

核弹研究报告怎么写范文

核弹研究报告怎么写范文核弹研究报告一、引言核弹是当今世界上最具威力和破坏力的武器之一。

它具有巨大的杀伤力和毁灭性,一旦被使用,将给人类社会带来无法想象的灾难。

本报告旨在对核弹的组成、原理、历史和国际形势进行深入研究,以便更好地认识核弹的危害性和防范措施。

二、核弹的组成和原理核弹主要由两部分组成:核部分和爆炸装置。

核部分包括裂变材料和聚变材料,裂变材料可以产生大量的中子,聚变材料可以释放出巨大的能量。

核弹的爆炸装置则是控制核反应并引发核爆炸的关键部分。

核爆炸的原理是核裂变和核聚变的连锁反应。

当核弹被引爆后,先经过裂变反应,将裂变材料分裂成两个较小的原子核,并释放出大量的能量和中子。

这些中子将引发周围材料的裂变反应,形成连锁反应。

同时,高温和高压的条件会引发聚变反应,将氢同位素结合成重氢和氦。

这两种反应产生的巨大能量将被释放出来,形成核爆炸。

三、核弹的历史核弹的研发始于20世纪40年代,最早由美国在曼哈顿计划下进行。

1945年,美国在日本广岛和长崎投下了两枚核弹,造成了巨大的伤亡和破坏。

随后,苏联、英国、法国、中国和印度等国家也相继进行了核弹的研发和测试。

目前,除了这些国家之外,还有巴基斯坦、以色列和朝鲜等国也被认为拥有核弹的能力。

四、国际形势核弹作为最具威力的武器,对国际安全和和平构成了巨大的威胁。

当前,核武器扩散、核军备竞赛和核恐怖主义等问题仍然存在。

此外,有些国家甚至威胁要使用核武器来达到自己的政治目的。

这些都加剧了国际关系的不稳定性,对全球安全形势造成了重大挑战。

五、核弹的防范措施为了防止核弹的使用和扩散,国际社会采取了许多措施。

首先,国际条约和战略武器裁军协议规定了签约国限制和控制核武器的数量和运用。

其次,核不扩散条约要求各国不得非法传播核技术和材料。

另外,国际核安全峰会的召开也加强了核安全合作,提高了核设施的安全性和防护能力。

六、结论核弹的研究和应用对人类社会造成了极大的威胁和危险。

尽管国际社会采取了一系列的防范和控制措施,但核武器的存有仍然是当前国际安全面临的重要问题。

行政院原子能委员会核能专题研究所

行政院原子能委员会核能专题研究所
运用辐射源作食物保存、医疗器材灭菌、农产品改良等应用 使用放射性核种或 X 射线作钢板、管线焊缝或铸件成品照相检查 运用放射性核种制造夜光表及其她发光器具 制造放射性同位素或射源 指井中所有涉及下降及升起放射性物质和用于侦测放射性物质之度 量设施或工具之操作。本项操作之目旳为获得井及邻近区域构成之 数据,这些数据也许用于油、气、矿物、地下水或地质之探勘 用于工业应用加速器之运转 所有不属于 3A 至 3F 项目之工业应用
附表二
行政院原子能委员会核能研究所
人员辐射剂量佩章申请表
填表日期:年月日
申请机构代号(注一)
姓名
中文 英文(注二)
机构全衔 国立宜兰大学
身分证字号
出生日期 年月日
性别 男女
学历
博士研究生学士 专科高中(职)国中
科 系
医用
工 □2A 放射诊断 作 □2B 放射牙科
分 □2C 核子医学
(类

□2D 放射治疗 □2E 所有其她医用
非军事用途之飞行 煤矿探勘与采矿等 煤矿之外其她矿物之探勘与采矿等 石油与天然气之炼制与运送等工业 石油与天然气之外所有矿物与矿石之洗矿及解决等
学校及其她教育机构之员工、学生等 放射线应用于兽医领域 原能会、核能研究所、同步辐射研究中心、研究机构、辐防与侦测 等服务业及其她不属于本表所列项目者 意外事故且剂量超过剂量限度者
以往服务机构及 地址
佩章计读机构
起迄日期
全身剂量
(毫西弗)
局部剂量 体内核种
(器官) (核种名)
(注四,曾使用剂量 佩章者请详填右 边各栏,并提供证 明文献)。
曾否
深部等效剂量:
遭受意外事件及剂量(曾接受者请填右栏) 浅部等效剂量:

“行政院”

“行政院”

根据台湾当局“宪法”规定,“行政院”是台湾当局最高行政机关,院长由“总统”提名,经“立法院”同意后任命;“总统”公布法律、发布命令,须经“行政院院长”和有关部会首长的副署;“行政院副院长”、各部会首长和不管部会之政务委员,由“行政院”院长提请“总统”任命;“行政院”向“立法院”提出法律案、预算案、戒严案、大赦案、宣战案、媾和案及条约案及其他重要事项或涉及各部会共同关系事项;“行政院”对“立法院”所决议的法律案、预算案、条约案及重要政策有异议时,须经“总统”的核可,才能移送“立法院”复议,若出席“立法院”的三分之二“立法委员”表决维持原决议,“行政院长”应接受该决议或辞职。

1997年第三届“国民大会”通过的“宪法增修条文”改为“行政院长”由“总统”任命,不须经“立法院”同意;同时取消了“副署权”;“行政院”对“立法院”通过的法案不满,可以要求限期复议等。

“行政院”于1948年5月在南京成立。

根据1948年7月通过的“行政院”组织法,“行政院”设有“内政部”、“外交部”、“国防部”、“财政部”、“司法行政部”、“农林部”、“工商部”、“交通部”、“社会部”、“水利部”、“教育部”、“粮食部”、“地政部”、“卫生部”等14个部以及“侨务委员会”、“资源委员会”、“蒙藏委员会”等三个委员会。

以后又多次进行了调整、变更。

经过多次调整,“行政院”现有“内政部”、“外交部”、“国防部”、“财政部”、“经济部”、“教育部”、“法务部”、“交通部”等八个部,“侨务委员会”、“蒙藏委员会”二委员会,各部会首长均为政务委员。

另设立“中央银行”、“行政院”主计处、“人事行政局”、“新闻局”、“卫生署”、“环境保护署”、“海岸巡防署”、“故宫博物院”、“大陆委员会”、“经济建设委员会”、“国军退除役官兵辅导委员会”、“青年辅导委员会”、“原子能委员会”、“国家科学委员会”、“研究发展考核委员会”、“北美事务协调委员会”与“法规委员会”(目前视同“行政院”本部单位,并未独立在外)、“农业委员会”、“文化建设委员会”、“劳工委员会”、“公平交易委员会”、“消费者保护委员会”、“公共工程委员会”、“原住民族委员会”、“体育委员会”、“客家委员会”、“中央选举委员会”、“金融监督管理委员会”、“飞航安全调查委员会”等各种委员会。

行政院原子能委员会核能研究所办事细则

行政院原子能委员会核能研究所办事细则

【法规名称】行政院原子能委员会核能研究所办事细则【颁布部门】【颁布时间】 2003-03-26【效力属性】已修正【正文】行政院原子能委员会核能研究所办事细则第 1 条本细则依行政院原子能委员会核能研究所 (以下简称本所) 组织条例第十二条规定订定之。

第 2 条本所研究发展及各级人员执行职务,除法令另有规定外,悉依本细则办理。

第 3 条所长综理所务,并指挥、监督所属单位及人员。

副所长襄助所长处理所务。

其他各级主管人员各就主管业务或奉命办理事项,指挥、督导所属人员。

第 4 条本所设综合计划组、核子工程组、核子燃料及材料组、同位素应用组、物理组、化学组、化学工程组、核能仪器组、工程技术及设施运转组、保健物理组、分析组、秘书室、人事室、会计室、政风室,并得分科办事。

第 5 条综合计划组设四科,各科分别掌理下列事项:一第一科(一) 有关本所中、长程科技研究发展计划之规划、推动及管考。

(二) 年度施政计划先期作业与施政计划草案编审及联系。

(三) 年度施政计划之管制、选项报会 (院) 列管计划之审定作业及执行进度提报。

(四) 年度施政计划之年终考成作业、年度及结案报告编审、联系及提报。

(五) 本所相关科技人才储备、国内外进修及研究奖助之统筹及规划。

(六) 人员国外公差审查作业与报告审查、汇办及核转。

(七) 计划管理之研究。

(八) 本所相关科技论着之审查与管理。

(九) 史政资料之汇整及典藏。

(一○) 其他计划管考相关事项。

二第二科(一) 资讯业务之规划与执行。

(二) 管理资讯系统之规划、开发与维护。

(三) 资讯网路建置、维护与应用发展。

(四) 资讯教育规划及执行。

(五) 资讯软硬体审核管理。

(六) 本所资讯网站维护发展。

(七) 图书业务之规划、资料搜集及电子化工作之推动。

(八) 图书、期刊与研究资料之采购、编目及管理。

(九) 其他资讯图书相关事项。

三第三科(一) 与国内外科技学术研究机构进行科技合作之联系、协调及规划。

原子研究报告英文

原子研究报告英文

原子研究报告英文Atomic Research ReportIntroductionAtomic research is the scientific study of atoms, the smallest unit of matter. In this research report, we will explore the different aspects of atomic research, including its history, applications, and future directions.HistoryAtomic research began in the late 19th century with the discovery of the electron by J.J. Thomson. This groundbreaking discovery led to further investigations into the structure of the atom and the discovery of the nucleus by Ernst Rutherford. Subsequent experiments by Niels Bohr led to the development of the Bohr model of the atom, which explained the distribution of electrons in different energy levels. The development of quantum mechanics in the 20th century further expanded our understanding of the atom. ApplicationsAtomic research has numerous practical applications in various fields. In medicine, atomic research is used in positron emission tomography (PET) scans, which help in the diagnosis and monitoring of diseases such as cancer. Atomic research is also utilized in the development of nuclear energy and weapons. It has further applications in materials science, where it helps in the characterization and design of new materials with specific properties. Atomic research has also contributed to advancements in electronics and telecommunications.Current ResearchModern atomic research is focused on understanding the behavior of atoms at the quantum level. Scientists are investigating phenomena such as quantum entanglement and superposition, which have the potential to revolutionize computing and communication. Additionally, there is ongoing research on atomic-scale manipulation and control, which could lead to the development of new technologies in nanotechnology and quantum computing.Future DirectionsThe future of atomic research looks promising, with significant advancements expected in the coming years. Researchers are exploring the possibilities of using atomic particles as qubits in quantum computers, which could solve complex problems exponentially faster than classical computers. There is also research being conducted on developing new materials with tailored atomic structures, which could have applications in various industries, including electronics, energy storage, and medicine.ConclusionAtomic research has come a long way since its inception and has revolutionized our understanding of the fundamental building blocks of matter. It has applications in various fields, from medicine to materials science, and continues to drive technological advancements. With ongoing research and future developments, atomic research has the potential to shape the future of science and technology.。

日本国会决定缩减原子能委员会的职能

日本国会决定缩减原子能委员会的职能

日本国会决定缩减原子能委员会的职能
伍浩松;张焰
【期刊名称】《国外核新闻》
【年(卷),期】2014(000)007
【摘要】【美国核能协会网站2014年6月26日报道】日本国会已决定将日本原子能委员会(AEC)的职能缩减至监督钚以及就放射性废物政策提供咨询意见。

国会下院和上院已分别于2014年6月3日和6月20日通过了这一决议。

原子能委员会最初组建于1956年,当时是日本核能政策的最高制定者。

但到2001年,该委员会转型为一个咨询机构。

根据国会的最新决定,
【总页数】1页(P10-10)
【作者】伍浩松;张焰
【作者单位】不详
【正文语种】中文
【中图分类】TK01
【相关文献】
1.议院内阁制·政权更替·国会运营——围绕日本国会审议、决定程序的诸问题 [J], 岡田信弘;于宪会
2.日本原研向原子能委员会提交高温气冷堆产氢计划 [J], 张翼
3.日本原子能委员会委员长否定了"放弃核燃料后处理"的主张 [J], 李(韦华)
4.日本原子能委员会修改核信息政策 [J], 张炎
5.日本原子能委员会发布《核能白皮书》 [J], 蔡莉
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ortrol Rod Drive Run-in FMCRD Run-in
ii
ABSTRACT Modern Instrumentation and Control (I&C) Systems of Nuclear Power Plant (NPP) are moving into complete digitalization. However, digitalization for I&C could induce new failure modes, and impact the diversity and defense-in-depth D3 design characteristic which
952001INER005
PCTRAN-ABWR (ECCS)
(ECCS) (RCIC) (RHR) (ECCS) (ECCS) (ECCS) / (ECCS) (5) (4) (RHR) (1) (2) (Interlock) (3) (HPCF)
i
[1]
LOCA
[2]
ECCS
Alternate Rod Insertion
are also developed to reinforce the abilities
of PCTRAN-ABWR. Some brief introductions and basic efforts are also included in this report.
iv
and Residual Heat Removal
. The approaches are as followings:
(1) Three indepandant divisions of ECCS are builded. (2) The essential operation modes and interlock logics are builded. (3) The Thermal-Hydraulic relationships among the ECCS, the reactor core model and the containment are clarified.
iii
(4) The process flow models for ECCS are improved. (5) The heat exchanger of RHR is improved. The data like the process flow diagrams[1] and the LOCA Analysis[2] of GE are utilized as benchmarks for the modified simulation of the ECCS system. The advanced discussions, like the failure of the ECCS by division, on the case of loss of all feedwater flow can be an example of extended analysis in the future. By the way, the Alternate Rod Insertion Run-in FMCRD Run-in ARI and Fine Motion Cortrol Rod Drive
nuclear power plants rely on. The redundancy characteristic can be defeated by software common mode failure. The complexity of software could possess some paths which can interrupt or bypass defense-in-depth design. Therefore, the regulation requests that the new digitalized I&C NPP designs shall be performed defense-in-depth analysis to understand whether the defense-in-depth design is capable to resist the software design defects. In various defense-in-depth analysis methods, computer simulation for digital I&C systems of NPP is a crucial item. By simulating various case studies for defense-in-depth failure, the research people can understand and realize the event sequence, and can also derive various possible events to search the residual design vulnerability. We focus on the improvements and modifications of the Emergency Core Cooling system(ECCS) of the PCTran-ABWR. Basing on the original structure, we modify three subsystems of the ECCS system, which includes of Reactor Core Isolation Cooling System Pressure Core Flooder System System RHR HPCF RCIC , High
相关文档
最新文档