植物生理学2_植物的水分生理
植物生理学2_植物的水分生理
(2)薄膜型抗蒸腾剂 能在叶面形成薄层,阻碍水分散失,如硅酮、胶 乳、聚乙烯蜡、丁二烯丙烯酸等。
(3)反射型抗蒸腾剂 增加叶面对光的反射,降低叶温,减少蒸腾量, 如高岭土。
Ψw =Ψs + Ψp + Ψm + Ψg
Ψs为渗透势, Ψp为压力势, Ψm为衬质势, Ψg为重力势
2、压力势:由于压力的存在而使体系水势 改变的数值,用ψp表示。
原生质吸水膨胀,对细胞壁产生压力,而
细胞壁对原生质会产生一个反作用力,这就
是细胞的压力势。
一般情况下,压力势为正值
渗透势(Ψπ) 一般叶组织 旱生植物叶片 -1.0~ -2.0 MPa -10.0 MPa
Ψs = - 1.4 Mpa
Ψs = - 1.2 Mpa
Ψp = + 0.8 Mpa
Ψw = - 0.6 Mpa X
Ψp = + 0.4 Mpa
Ψw = - 0.8 Mpa Y
两个相邻的细胞之间的水分移动方向是由二者的水势差 决定;多个细胞相连时,水分从水势高的一端流向水势低 的一端。
第三节根系吸水和水分向上运输
(三)影响气孔运动的因素
1、光照:光照—张开 黑暗—关闭
景天科植物例外
2、温度:上升—气孔开度增大
10℃以下小,30℃最大,35℃以上变小
3、CO2
:低浓度—促进张开
高浓度—迅速关闭 4、水分:水分胁迫—气孔开度减小或关闭 5、植物激素(CTK、ABA)
小结
水势是指每偏摩尔体积水的化学势差。植物细胞的水
Free Water
第二章 植物的水分生理
水是生命的源泉,生命不仅发生于水的环境,而且生命过程必须在 水的环境中进行。 水是原生质的最主要成分,原生质的含水量大约在70-90%。在细胞 中物质的代谢、运输及生物体中细胞间的信号传递、物质运输都是 在水溶液中进行的。 水不仅是细胞内代谢反应的基质,而且直接参加了许多生物化学反 应。 细胞的含水量与其生理活动强弱常常是密切相关的。
植物体在一生中需要不断的吸收和散失水分。 水分吸收是其生命活动的需要,而水分散失也是植物必须的。 如,水分可以维持其适宜的体温,夏季炎热干燥的环境,叶片每小 时散失的水分相当于自身所含的全部水分,通过蒸发,将光照带来 的多余的热量散失掉,避免了温度升高的危害。在典型情况下,叶 片吸收的光能有约一半被这种方式消耗掉; 又如水分散失产生的蒸腾拉力,可将根系吸收的矿质元素带到地上 部。
维持导管水流的连续性。
水的内聚力 水分子间的氢键使水分子间存在很大的引力。
粘附力
液固相间引力,如水分子与导管壁表面分子之间存在粘附力。
4. 良好溶剂
水分子体积小、具有极性,是许多电解质和极性分子的良好溶剂, 是已知的溶解范围最宽的溶剂。 水分子可以在离子或极性大分子表面形成水合层,降低溶质分子间 的作用,促进溶解。
分生组织:通过细胞壁的果胶、纤维素,胞内蛋白质亲水胶体对水的 吸附力吸收水分,ψm是也是细胞水势的主要组分。
3. 降压吸水(negative pressure absorption of water)
指因ψp的降低而引发的细胞吸水。 ψp<0,细胞水势更低,吸水力更强。
(三)细胞吸水过程中水势组分的变化
是指液体中成群的原子或分子(例如组成水溶液的各种物质的分子)在压 力梯度(要受两端压力势差控制。
植物生理学名词解释 (2)
第一章植物的水分生理名词解释水势water potential:水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商。
渗透势osmotic potential:由于溶质颗粒的存在,降低了水的自由能因而其水势低于纯水的水势。
压力势pressure potential:细胞的原生质体吸水膨胀,对细胞壁产生一种作用,与此同时引起富有弹性的细胞壁产生一种原生质体膨胀的反作用力。
质外体apoplast:由细胞壁及细胞间隙等空间组成的体系。
共质体symplast:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体。
渗透作用osmosis:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
根压root pressure:靠根部水势梯度使水沿导管上升的动力。
蒸腾作用transpiration:指水分以气体状态通过植物体外表从体内散失到体外的现象。
蒸腾速率transpiration rate:植物在一定时间内单位面积蒸腾的水量。
蒸腾比率transpiration ratio〔TR〕:蒸腾作用丧失水分与光合作用同化CO2物质的量比值。
水分利用率water use efficiency〔WUE〕:TR的倒数。
内聚力学说cohesion theory:以水分具有较大的内聚力是以抵抗张力,保证由叶至根水柱不断来解释水分上升的学说。
水分临界期critical period of water:植物在生命周期中,对水最敏感、最易受伤害的时期。
简答1、从植物生理学角度分析“有收无收在于水〞。
①水是细胞质主要成分②代谢作用过程的反响物质③植物对物质吸收和运输的溶剂④保持植物固有形态第二章植物的矿质营养名词解释矿质营养mineral nutrition:植物对矿物质的吸收、转运和同化。
大量元素macroelement:植物对某些元素需要量相对较大〔大于10mmol/kg干重〕,C、H、O、N、P、S、K、Ca、Mg微量元素microelement:植物需要量极微〔小于10mmol/kg干重〕,稍多即发生毒害,Cl、Fe、B、Mn、Zn、Cu、Ni、Mo溶液培养solution culture:在含有全部或局部营养元素的溶液中栽培植物。
植物生理学名词解释
植物生理学名词解释第一章植物的水分生理1.水势:(water potential)水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。
2.渗透势:(osmotic potential)亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。
3.压力势:(pressure potential)指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
4.质外体途径:(apoplast pathway)指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。
5.共质体途径:(symplast pathway)指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
6.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
7.根压:(root pressure)由于水势梯度引起水分进入中柱后产生的压力。
8.蒸腾作用:(transpiration)指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。
9.蒸腾速率:(transpiration rate)植物在一定时间内单位叶面积蒸腾的水量。
10.蒸腾比率:(transpiration ratio)光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。
11.水分利用率:(water use efficiency)指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。
12.内聚力学说:(cohesion theory)以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。
13.水分临界期:(critical period of water)植物对水分不足特别敏感的时期。
第二章植物的矿质营养1.矿质营养:(mineral nutrition)植物对矿物质的吸收、转运和同化。
植物生理学整理版
植物⽣理学整理版第⼀章植物的⽔分⽣理●⽔势:⽔溶液的化学势与纯⽔的化学势之差,除以⽔的偏摩尔体积所得商。
●渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了⽔的⾃由能,因⽽其⽔势低于纯⽔⽔势的⽔势下降值。
●压⼒势:指细胞的原⽣质体吸⽔膨胀,对细胞壁产⽣⼀种作⽤⼒相互作⽤的结果,与引起富有弹性的细胞壁产⽣⼀种限制原⽣质体膨胀的反作⽤⼒。
●质外体:植物体内原⽣质以外的部分,是离⼦可⾃由扩散的区域,主要包括细胞壁、细胞间隙、导管等部分。
●共质体:指细胞膜以内的原⽣质部分,各细胞间的原⽣质通过胞间连丝互相串连着,故称共质体。
●渗透作⽤:⽔分从⽔势⾼的系统通过半透膜向⽔势低的系统移动的现象。
●根压:由于⽔势梯度引起⽔分进⼊中柱后产⽣的压⼒。
●蒸腾作⽤:指⽔分以⽓体状态,通过植物体的表⾯(主要是叶⼦),从体内散失到体外的现象。
●蒸腾速率:植物在⼀定时间内单位叶⾯积蒸腾的⽔量。
●内聚⼒学说:以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说。
●⽔分临界期:植物对⽔分不⾜特别敏感的时期。
1.将植物细胞分别放在纯⽔和1mol/L 蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2.从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:⽔分是细胞质的主要成分。
细胞质的含⽔量⼀般在70~90%使细胞质呈溶胶状态,保证了旺盛的代谢作⽤正常进⾏,如根尖、茎尖。
如果含⽔量减少,细胞质便变成凝胶状态,⽣命活动就⼤⼤减弱,如休眠种⼦。
植物生理学 2.水分代谢
原因:(F)
①根毛区有许多根毛,增大了吸收面积; ②根毛细胞壁的外部由果胶质组成,粘性强, 亲水性也强,有利于与土壤颗粒粘着和吸水;
③根毛区的输导组织发达,对水分移动的阻 力小。
二 根系吸水的途径
1、质外体途径 2、跨膜途径 3、共质体途径
三 根系吸水的动力
角质蒸腾 叶片蒸腾的方式 气孔蒸腾(主要方式)
(二)气孔蒸腾
一)气孔的形态结构及生理特点
1.气孔数目多、分布广 2.气孔的面积小,蒸腾速率高 3.保卫细胞体积小,膨压变化迅速 4.保卫细胞具有多种细胞器 5.保卫细胞具有不均匀加厚的细胞壁及微 纤丝结构 6.保卫细胞与周围细胞联系紧密
图2-6 气孔蒸腾的过程
(1)气孔的构造:(F)
由两个肾形的保卫细胞组成。
(2)保卫细胞的特点:外壁薄内壁厚;内有叶绿体;
有淀粉磷酸化酶。
(3)气孔运动:
(1)单位:巴(Pa)(帕)
1巴=0.987大气压=106达因/cm2
(10.2米水柱高)
(2)符号:Ψ (3)纯水的水势:0巴 (4)溶液的水势:为负值(小于0)(原因)
(水分的流动是由水势高处流向水势低处。)
小结:
纯水的水势定为零, 溶液的水势就成负值。 溶液越浓,水势 越低 。 水分移动需要能量。
土壤温度过高对根系吸水也不利。
原因:
①高温加速根的老化过程,吸收面积减少, 吸收速率也下降。
②温度过高使酶钝化,影响根系主动吸水。
4土壤溶液浓度
根系要从土壤中吸水,根部细胞的水势必须 低于 土壤溶液的 水势。
➢在一般情况下,土壤溶液浓度较低,水势较 高,根 系吸水;
➢盐碱土则相反
植物生理学-植物的水分生理(上课版)
气孔是植物叶片上控制水分蒸发的结构,通过气孔开闭可以调节植物体内的水分平 衡。
吸水与土壤湿度、空气湿度的关系
01
土壤湿度是影响植物吸水的重要 因素,土壤含水量过低或过高都 会影响植物吸水。
02
空气湿度对植物吸水也有一定影 响,高空气湿度可能导致叶片表 面凝结水分,增加植物蒸腾作用 。
程提供理论支持。
通过研究植物的水分生态适应性, 可以筛选适合不同生境的植物种 类,促进受损生态系统的恢复和
重建。
植物水分生理研究有助于评估生 态系统的水分状况和生态用水需 求,为生态保护和可持续发展提
供决策依据。
植物的水分生理研究在抗旱育种中的应用
植物水分生理研究有助于深入了解植物抗旱的生理机制,为抗旱育种提 供理论指导。
通过研究植物的水分适应性,可 以培育抗旱、耐涝的作物品种, 提高作物的水分利用效率和抗逆
性。
植物水分生理研究有助于优化农 田灌溉制度,制定合理的灌溉计 划,节约水资源,降低生产成本。
植物的水分生理研究在生态恢复中的作用
植物水分生理研究有助于了解干 旱、半干旱地区的植被恢复机制, 为退耕还林、水土保持等生态工
水分利用效率与植物抗旱性的关系
水分利用效率高的植物在干旱条件下能够更好地适应和生存,而水分利用效率低的植物则 容易受到干旱的威胁。
提高水分利用效率的途径
选择高效品种
通过选择水分利用效率高的植 物品种,可以提高整个生态系
统的水分利用效率。
合理灌溉
根据植物的需求和土壤的湿度, 合理安排灌溉时间和水量,避免 过度灌溉或供水不足。
植物的产量和品质。
水分运输与植物适应环境
植物生理学02植物的水分关系
第二节 植物对水分的吸收
一、植物细胞的吸水
细胞对水分的吸收主要有渗透性吸水和吸胀吸水两种方式。
(一)细胞的渗透性吸水 水分从水势高的系统通过半透膜向水势低的系
统移动的现象,称之为渗透作用。 渗透系统的条件:半透膜及半透膜两侧有浓度差
(图)。
A
B
糖液 半透膜 纯水
图 半透膜的渗透作用 .漏斗内未加糖时,液面与烧杯中的纯水相平 .漏斗内加糖后,渗透作用使烧杯内水面下降而漏斗内液面上升
. 植物细胞的水势组成 水势(Ψ)溶质势(Ψ)压力势(Ψ) 衬质势(Ψ)
()溶质势
溶质势也称渗透势(Ψπ),是由于溶质颗粒 与水分子作用而引起细胞水势降低的数值,与溶液 中溶质颗粒的数目成反比,即溶质越多,溶质势越 小,水势越小。所以,溶液的浓度与水势成反比。 溶质势为负值。
()衬质势
衬质势是指细胞中的亲水物质(如蛋白质、淀 粉粒、纤维素、核酸等大分子)对水分子的束缚而 引起水势下降的数值,因此也为负值。已形成液泡 的细胞,其亲水胶体已被水饱和,衬质势忽略不计。
(一)根系的吸水区域
根尖是吸水的主要区域。在根尖,位于伸长区后的 根毛区表皮细胞突起,形成大量根毛,这是根系吸水的 主要部位。
在未形成液泡之前细胞靠吸胀(涨)作用吸水, 如风干种子的萌发吸水。
(三)代谢性吸水
植物细胞利用呼吸作用产生的能量使水分 经过质膜进入细胞的过程,叫做代谢性吸水。
证据
当通气良好时,细胞呼吸加强,细胞吸水增强; 相反,减小氧气或以呼吸抑制剂处理时,细胞呼吸速率 降低,细胞吸水减少。
二、植物根系的吸水
一个成熟的植物细胞就是一个完整的渗透装置
细胞壁 (全透性) 细胞膜 原 液泡膜 生
质 细胞质 层 细胞液 细胞核
植物生理学植物水分关系
2-4
3. 植物细胞的水势组成
水势(Ψw)=溶质势(Ψs)+压力势(Ψp)+ 衬 质势(Ψm)
(1)溶质势
溶质势也称渗透势(Ψπ),是由于溶质颗粒与水 分子作用而引起细胞水势降低的数值,与溶液中溶 质颗粒的数目成反比,即溶质越多,溶质势越小, 水势越小。所以,溶液的浓度与水势成反比。溶质 势为负值。
当细胞完全膨胀时,细胞不再吸水,水势达到最大, Ψw=0, 那么溶质势与压力势的绝对值必然相等。
5. 植物体内的水分运动
在植物体内相邻两个细胞的水分移动,
取决于它们的水势之差。
s= -1a
w= 0.6MPa
p= +w0.=4M-0P.a8MPa
A
水势代表水分移动的趋势,水分总是从水势 高处流向水势低处。
2. 植物细胞的渗透现象
在一个成熟的细胞中,原生质层(包括原生质 膜、原生质和液泡膜)就相当于一个半透膜。如果 把此细胞置于水或溶液中,则含有多种溶质液泡液, 原生质层以及细胞外溶液三者就构成了一个渗透系 统(图2-3)。
一个成熟的植物细胞就是一个完整的渗透装置
细胞壁 (全透性) 细胞膜 原 液泡膜 生
质 细胞质 层 细胞液 细胞核
原生质层具有选择透过性,近似于半透膜 图2-3 植物细胞形态简图
植物细胞由于液泡失水而使原生质体和细胞壁分离的现 象,称为质壁分离。
如果把发生了质壁分离的细胞浸在水势较高溶液或蒸馏 水中,外界的水分子便进入细胞,液泡变大,整个原生质 体慢慢地恢复原状,这种现象叫质壁分离复原或去质壁分 离(图2-4)。
4. 细胞水势与水势各组分的变化关系
Ⅲ
Ⅱ
Ⅳ
Ⅰ
1.5
1.0
Ψp
植物生理学植物的水分生理
➢水孔蛋白(AQPs):一种存在于生物膜上的、分子量为28,000 、具有通透水分功能的内在蛋白。也称之为水通道蛋白。 (图)
第一章 植物的水分生理
植物对水分的吸收、运输、利用和散失的过程,
称为植物的水分代谢(water metabolism)。
植物从环境中不断吸取水分,以满足正常生命活动的需要。 但是,植物又不可避免地要丢失大量的水分到环境中去。这样就形 成了植物水分代谢的三个过程:植物通过根系吸收水分、水分在植 物体内的运输、植物通过气孔排出水分。(图)
➢ 导管上部呈开放状态,不产生压力,于是水柱就在指向上方 的压力下向上移动。
这样就形成了根压
有人指出:根压是由于根内外皮层存在水势梯度而产生的一种 现象,它可作为根产生水势差的一个量度,但不是一种动力,因 为水流的真正动力是水势差.
2. 被动吸水
动力――蒸腾拉力
➢ 蒸腾拉力(transpirational pull):指因为叶片蒸腾作用而产 生的使导管中水分上升的力量。(图)
ψw=ψs+ψp
Ⅱ.植物细胞吸水达到紧张状态 ψw=0,ψs = -ψp 体积最大 , 细胞吸水能力最小。
Ⅲ.植物细胞初始质壁分离状态 ψw =ψs,ψp=0 体积最小,细胞吸水能力最大。
Ⅳ.植物细胞水为蒸汽状态 ψp<0, ψw≤ψs+ψp
三、相邻细胞间水分的运转
相邻细胞的水分移动方向决定于两细胞间的水势差异,
或边缘的水孔向外溢 出液滴的现象。
✓吐水现象可作为根 系活动的生理指标, 并能用以判断植物苗 长势的强弱。 ★
植物生理学水分生理
水孔蛋白的单体是中间狭窄的四聚体, 呈“滴漏”模型,每个亚单位的内部 形成狭窄的水通道。水孔蛋白的蛋白
相对微小,只有25-30kDa。
水孔蛋白:是一类具有选择性、
能高效转运水分的跨膜通道蛋白,
它只允许水分通过,不允许离子
和代谢物通过。
因为水通道的半径大于0.15nm(水分 子半径),但小于0.2nm(最小的溶
1帕斯卡相当于每平方米一牛顿 兆帕斯卡(megapascal,Mpa) 兆帕,1MPa=106Pa=10bar=
9.87atm 。 巴(bar) 压强单位,1 bar =0.987atm =106达因/厘米2,
1毫巴等于0.75毫米水银柱的压力,由于bar不是法定的计量单位,已废弃不用。 纯水的自由能最大,水势也最高,但是水势的绝对值不易测得。因此,在
照和交换气体。同时,也使花朵张开,有利于传粉。
第二节 植物细胞对水分的吸收
(Asorption of water by plant cells)
植物细胞吸水主要有3种方式:扩散,集流和渗透作用
一、扩散(diffusion)
扩散(diffusion)是一种自发过程,是由于分子的随机热运动 所造成的物质从浓度高的区域向浓度低的区域移动,
根据热力学原理,系统中物质的总能量:U总能量≡Q束缚能+A自由能
束缚能是不能用于作功的能量,而自由能是在温度恒定的条件下可用于作
功的能量。1mol物质的自由能就是该物质的化学势(chemical potential),
可衡量物质反应或作功所用的能量。同样道理,衡量水分反应或作功能量的
高低,可用水势表示。在植物生理学上,水势(water potential)就是每0 偏
植物生理学 第二章水分代谢
植物置于浓溶液中,由于细胞壁的伸缩性有限,而原 生质层的伸缩性较大,当细胞继续失水时,原生质层便和
细胞壁慢慢分离开来,这种现象被称为质壁分离。
洋葱上表皮细胞的质壁分离
刚开始发生质壁分离
明显发生质壁分离
把发生了质壁分离的细胞浸在水势较高的稀溶液或清
第二节 植物细胞对水分的吸收
一、扩散(diffusion) 物质分子从高浓度(高化学势)区域向低浓
度(低化学势)区域转移,直到均匀分布的现象。 扩散速度与物质的浓度梯度成正比。 扩散适合水分的短距离移动。
水的蒸发、叶片的蒸腾作用都是水分子扩散现象。
二、集流(mass flow)
液体中成群的原子或分子在压力梯度作用下共 同移动的现象。
AQPs(水孔蛋白)调节水分子运转的机理
1.基因水平: 通过调节水孔蛋白基因的表达而影响其丰度及分布,
从而影响水分代谢。 干旱、蓝光、ABA、GA和BR可诱导水孔蛋白基因的
表达。 2.蛋白水平:
通过改变水孔蛋白的活性,可以在很大程度上快速而 灵活的调节水分子的跨膜运转。
水孔蛋白的磷酸化可使其活性提高,而HgCl2等则可 抑制水孔蛋白的活性。
况下,混合体系中1mol该物质所占的有效体积。
单位:水势=水的化学势/水的偏摩尔体积
=J • mol-1/m3 • mol-1 = N • m • mol-1/m 3• mol-1 =N • m-2 =Pa
纯水 Ψow=零
零值并不是没有水势,就好比定海平面为海拔高度为0 一样,作为一个参比值。
溶液: ➢溶液的水势为负值,浓度越大,水势越低。
4、5、6),形成5个 环(图中标为A、B、 C、D、E),其中B 环和E环最为重要。
植物水分生理
植物生理学水分生理水是生命的源泉,是植物重要的生存条件之一。
水分对植物的生命活动有极其重要的生理和生态作用。
植物通过不断的从环境中吸取水分,保持其正常的含水量,参与各项生理代谢活动。
而植物吸收的绝大多数水分主要通过蒸腾作用散失至大气,就是通过蒸腾作用产生的“蒸腾拉力”以及根系主动吸水所产生的“根压”发挥其生物学功能,来促进植物对土壤矿质元素的吸收和运输,促进体内有机物运输。
植物正常的生命活动就是建立在对水分不断地吸收、运输、利用和散失的过程中。
水分在植物体内有自由水和束缚水两种存在形式,两种水分存在形式不是固定不变的。
自由水起到溶剂的作用,直接参与植物的生理过程和生化反应;束缚水则是被植物细胞的胶体颗粒或渗透物质亲水基团所吸引而不能自由移动。
因此,自由水/束缚水比值较高时,植物代谢活跃生长较快,抗逆性较差;反之则代谢活性低生长缓慢,抗逆性较强。
植物水势是偏摩尔体积的水在一个系统中的化学式与纯水在相同温度、压力下的化学式之间的差。
植物细胞和土壤溶液水势的组分均由溶质势(Ψs)、衬质势(Ψm)、压力势(Ψp)和重力势(Ψg)组成,即:Ψw=Ψm+Ψs+Ψp+Ψg。
其中,溶质势恒为负值、衬质势趋于零、压力势一般为正值、重力势为正值但可忽略不计,所以水势可表示为Ψw=Ψs+Ψp。
相同点:(1)土壤中构成溶质势的成分主要是无机离子,而细胞中构成溶质势的成分除无机离子外,还有有机溶质;(2)土壤衬质势主要是由土壤胶体对水分的吸附所引起的,而细胞衬质势则主要是由细胞中蛋白质、淀粉、纤维素等亲水胶体物质对水分的吸附而所引起的;(3)土壤溶液是个开放体系中,土壤的压力势易受外界压力的影响,而细胞是个封闭体系,细胞的压力势主要受细胞壁结构和松驰情况的影响。
如将一个植物细胞放在纯水中,因纯水水势永远大于植物细胞水势故植物细胞吸水植物细胞水势升高,有植物细胞壁的存在植物细胞不会吸水涨破,水势升高到一阶段遍不再变化。
在一个成熟的细胞中,原生质层相当于一个半透膜。
植物生理学——植物的水分生理
二、集流(P11图1-1)
集流:指液体中成群的原子或分子在压力梯度下共同移动。
水孔蛋白:具有选择性,高效运转水分的膜通道蛋白。单体 是中间狭窄的四聚体呈“呈滴漏”模型。活性由磷酸化调节 (如丝氨酸残基磷酸化)
三、渗透作用
(一)、自由能和水势 根据热力学原理:系统中物质的总能=束缚能(bound energy )+自由能(freeenergy)。 (1)、自由能——在温度恒定条件下用于做功的能量。 (2)、束缚能——在温度恒定条件下不能用于做功的能量。 (3)、化学势(chemical potential)——1mol物质的自由 能。用来描述体系中各组分参与化学反应的本领及转移的潜 在趋势(或所需的能量)。衡量水反应或转移能量的高低可用水 的化学势(水势)表示。 (4)、水势(water potential)——就是每偏mol体积水的化 学势。就是说水溶液的化学势与同温同压同一系统中的纯水 的化学的化学势之差,除以水的偏mol体积所得的商。
图1-1亲水胶体与水层示意
量); 2.水是代谢过程的反应物;光合、呼吸、有机物 的分解合成都有水的参与 3.水是生命活动的的介质;水是植物对矿质吸收 和运输溶剂。 4.水能保持植物固有姿态; 5.水可以调节植物体温。 水的比热、汽化热高,环境温度剧烈变化时, 植物体温变化不大; 植物的蒸腾作用还会散发大量 的热,因此,植物在烈日下不会被灼伤。
(1) 渗透理论: 内皮层的作用: 根系主动吸收的无机离子进入共质体达中柱内 的活细胞。这样导管周围的活细胞在代谢过程 中不断向导管分泌有机离子和有机物,使其水 势下降,而附近细胞的水势较高。因而水分就 不断通过渗透作用进入导管,依次向地上部分 运输。这样就产生一种静水压力,即根压。 (2)代谢理论:认为呼吸作用所产生的能量 参与根系的主动吸水过程。当外界温度降低时、 氧分压下降、呼吸作用抑制剂存在时根压、伤 流或吐水会降低或停顿。
植物生理学名词解释(全)
植物生理学名词解释(全)一、绪论1.植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。
二、植物的水分生理1. 水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。
3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
6.质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。
7.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
8.根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
9.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。
11.蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。
12.气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。
13.气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。
14.保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体和水分的量。
形成气孔和水孔的一对细胞。
双子叶植物的保卫细胞通常是肾形的细胞,但禾本科的气孔则呈哑铃形。
气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。
2 第2章 植物的水分生理--复习材料+自测题
第 2 章 植物的水分生理一、 教学大纲基本要求了解水的物理化学性质和水分在植物生命活动中的作用;了解水的化学势、水势的基本概念、植物生理学中引入 水势的意义;了解植物细胞的水势的组成、溶质势、衬质势、压力势等的概念及其在植物细胞水势组成中的作用,了 解并初步学会植物组织水势的测定方法;了解植物根系对水分吸收的部位、途径、吸水的机理以及影响根系吸水的土 壤条件;了解植物的蒸腾作用的生理意义和气孔蒸腾是蒸腾的主要方式、蒸腾作用的指标、测定方法以及适当降低蒸 腾速率的途径;了解植物体内水分从地下向地上部分运输的途径和速度、水分沿导管上升的机制;作物的需水规律、 合理灌溉指标及灌溉方法以及发展节水农业促进水资源持续利用的重要性。
二、本章知识要点水是生命的“先天”环境,没有水就没有植物。
水是植物体的主要组成成分。
水除了直接或间接地参与生理生化 反应之外,还调节植物的生态环境。
植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度 和抗逆性强弱有着密切关系。
每偏摩尔水的自由能就是水的化学势。
每偏摩尔体积水的化学势差就是水势。
植物细胞的水势由渗透势 (溶质势)、 压力势和衬质势组成,Ψw=Ψs+Ψp+Ψm。
水势单位采用压力单位(MPa)。
水分从水势高处通过半透膜移向水势低 处,就是渗透作用。
细胞吸水有渗透吸水、吸胀吸水之分。
具有液泡的植物细胞以渗透吸水为主,未形成液泡的嫩细 胞和干燥种子的吸水主要靠吸胀吸水。
细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处 流向水势低处,直至两处水势差为零。
土壤中只有可利用水才能被植物根系吸收。
根系吸收水分最活跃的部位是根毛区。
根系吸水可分为主动吸水和被 动吸水,通常被动吸水是主要的。
凡是影响根压形成和影响蒸腾速率的内外条件,都影响根的吸水。
蒸腾作用在植物生活中具有重要的作用。
气孔蒸腾是蒸腾作用的主要方式。
气孔关闭机理可以用无机离子吸收学 说和苹果酸生成学说来解释。
第二章-植物生理学 水分生理2
问题?
气孔开闭机制 气孔保卫细胞的信号转导
2.气孔运动机理 ( mechanisms of stomatal
movement)
渗透调节机理
气孔运动是保卫细胞水势的变化引起的,保卫细胞通过调 节其渗透势的变化来实现水分出入的调节。
(1)淀粉-糖转化学说
(2)无机离子泵学说,又称K+学说 (inorganic ion pump theory)
一水分在植物体内运输的途径二水分在植物体内运输的方向三水分在植物体内运输的动力土壤根毛皮层内皮层中柱鞘根的导管或管胞茎的导管叶柄导管叶脉导管叶肉细胞叶细胞间隙气孔下腔气孔大气土壤根导管茎导管叶柄导管气孔植物体内水分向地上部的运输植物体内水分向地上部的运输从高水势区向低水势区水分的迁移是顺水势梯度三水分在植物体内运输的动力水分沿导管上升的机制植物体内水分向地上部的运输动力有两方面
动 力的吸水过程. 的大气中,从而导致叶片细胞水势下降,这样就
吸 水
蒸腾拉力可高达 十几个MPa.
产生了一系列细胞间的水分运输,并造成根冠间 导管中的压力梯度,结果造成根部细胞水分亏缺, 水势降低,从而使根部细胞从周围土壤中吸水。
主动吸水和被动吸水
主动吸水和被动吸水在植物吸水的过程中所占的比重,因 植物生长状况和蒸腾速率而异。通常正在蒸腾着的植株, 尤其是高大的树木,其吸水的主要方式为被动吸水。只有 春季叶片未展开或树木落叶后,以及蒸腾速率很底的夜晚, 主动吸水才是主要的吸水方式。
根部吸水的共质体途径和质外体途径
凯氏带
木栓化,膜与壁紧贴 在一起。水、溶质不 能自由通过。
外部质外体
内皮层外,包括根毛、 皮层的胞间层、细胞 壁和细胞间隙
内部质外体