特殊平行四边形综合练习题 2

合集下载

特殊平行四边形难题综合训练(含答案)

特殊平行四边形难题综合训练(含答案)

特殊平⾏四边形难题综合训练(含答案)第五章特殊平⾏四边形难题综合训练1、正⽅形ABCD ,正⽅形BEFG 和正⽅形RKPF 的位置如图所⽰,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正⽅形BEFG 的边长为4,则△DEK 的⾯积为() A .10B .12C .14D .162、如图,在正⽅形ABCD 内有⼀折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正⽅形的边长为 .第1题第2题第3题第4题 3、如图,平⾯内4条直线l 1、l 2、l 3、l 4是⼀组平⾏线,相邻2条平⾏线的距离都是1个单位长度,正⽅形ABCD 的4个顶点A 、B 、C 、D 都在这些平⾏线上,其中点A 、C 分别在直线l 1、l 4上,该正⽅形的⾯积是平⽅单位. 4、如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形 ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是;四边形A 2013B 2013C 2013D 2013的周长是 . 5、如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为 .6、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的⾯积为8,则BE =() A .2 B .3 C .22 D .32第5题第6题第7题第8题7、如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°⾄OA ′B ′C ′的位置,则点B ′的坐标为()A 、(2,2-)B 、(2,2-)C 、(3,3-)D 、(2,2--)8、如图,正⽅形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折⾄△AFE ,延长EF 交边BC 于A .①②B .①③C .②③D .①②③ 9、如图,在正⽅形ABCD 中,点O 为对⾓线AC 的中点,过点0作射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P .则下列结论中:(1)图形中全等的三⾓形只有两对;(2)正⽅形ABCD 的⾯积等于四边形OEBF ⾯积的4倍;(3)BE +BF =20A ;(4)AE 2+CF 2=20POB .正确的结论有()个. A .1B .2C .3D .410、如图,在矩形ABCD 中,由8个⾯积均为1的⼩正⽅形组成的L 型模板如图放置,则矩形ABCD 的周长为 .11、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N .(1)如图11-1,当点M 在AB 边上时,连接BN .求证:ABN ADN △≌△;(2)如图11-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12).试问:x 为何值时,△ADN 为等腰三⾓形.12、如图所⽰,正⽅形ABCD 的边CD 在正⽅形ECGF 的边CE 上,连接BE DG ,. (1)求证:BE DG .(2)图中是否存在通过旋转能够互相重合的两个三⾓形若存在,说出旋转过程;若不存在,请说明理由. CMBNAD(图11-2)CB M AND(图11-1)13、请阅读,完成证明和填空.数学兴趣⼩组在学校的“数学长廊”中兴奋地展⽰了他们⼩组探究发现的结果,内容如下:(1)如图13-1,正三⾓形ABC 中,在AB AC 、边上分别取点M N 、,使BM AN =,连接BN CM 、,发现BN CM =,且60NOC ∠=°.请证明:60NOC ∠=°.(2)如图13-2,正⽅形ABCD 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN DM 、,那么AN = ,且DON ∠=度.(3)如图13-3,正五边形ABCDE 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN EM 、,那么AN = ,且EON ∠= 度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请⼤胆猜测,⽤⼀句话概括你的发现:. 14、ABC △是等边三⾓形,点D 是射线BC 上的⼀个动点(点D 不与点B C 、重合),ADE △是以AD 为边的等边三⾓形,过点E 作BC 的平⾏线,分别交射线AB AC 、于点F G 、,连接BE . (1)如图(a )所⽰,当点D 在线段BC 上时.A A A BBB CCC DDO OOM M M NNN E图13-1图13-2图13-3…(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形并说明理由.15、如图,ABC △中,点O 是边AC 上⼀个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外⾓平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗若是,请证明,若不是,则说明理由; (3)当点O 运动到何处,且ABC △满⾜什么条件时,四边形AECF 是正⽅形16、如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G、都在x 轴上,且点G 与点B 重合.(1)求ABC △的⾯积;AG CD BF E 图(a )ADCBFEG图(b )AF N DC B M EO17、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转⾓α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系并证明你的结论; (2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由18、在菱形ABCD 中,对⾓线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E .(1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.ADBECF 1AADBECF 1A 1C19、如图,在平⾯直⾓坐标系中,矩形AOBC在第⼀象限内,E是边OB上的动点(不包括端点),作∠AEF = 90,使EF交矩形的外⾓平分线BF于点F,设C(m,n).(1)若m = n时,如图,求证:EF = AE;(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE若存在,请求出点E的坐标;若不存在,请说明理由.(3)若m = tn(t>1)时,试探究点E在边OB 的何处时,使得EF =(t + 1)AE成⽴并求出点E的坐标.20、如图,将正⽅形沿图中虚线(其中x<y)剪成①②③④四块图形,⽤这四块图形恰.能拼成⼀个.....矩形(⾮正⽅形).(1)画出拼成的矩形的简图;(2)求x的值.A Q DEB P COxO E BAyCFxO E BAyCFO E BAyCF21、如图所⽰,在矩形ABCD 中,1220AB AC ==,,两条对⾓线相交于点O .以OB 、OC 为邻边作第1个平⾏四边形1OBBC ;对⾓线相交于点1A ;再以11A B 、1A C 为邻边作第2个平⾏四边形111A B C C ,对⾓线相交于点1O ;再以11O B 、11O C 为邻边作第3个平⾏四边形1121O B B C ……依次类推. (1)求矩形ABCD 的⾯积;(2)求第1个平⾏四边形11OBB C 、第2个平⾏四边形111A B C C 和第6个平⾏四边形的⾯积.22、如图(22),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平⾏于直线l 的直线m 从原点O 出发,沿x 轴的正⽅形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)⽤含t 的代数式表⽰MON △的⾯积1S ;A 1 A 2B 2C 2C 1 B 1O 1 DABC O①当2t ≤4时,试探究2S 与t 之间的函数关系式;②在直线m 的运动过程中,当t 为何值时,2S 为OAB △⾯积的51623、如图15,在四边形ABCD 中,E 为AB 上⼀点,△ADE 和△BCE 都是等边三⾓形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论. OMAP N y l mx BO MAP N y l mxBE PF 图2224、数学课上,张⽼师出⽰了问题:如图1,四边形ABCD 是正⽅形,点E 是边BC 的中点.90AEF ∠=,且EF交正⽅形外⾓DCG ∠的平⾏线CF 于点F ,求证:AE =EF .经过思考,⼩明展⽰了⼀种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意⼀点”,其它条件不变,那么结论“AE =EF ”仍然成⽴,你认为⼩颖的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由;(2)⼩华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意⼀点,其他条件不变,结论“AE =EF ”仍然成⽴.你认为⼩华的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由.25、如图,ABCD 是正⽅形,点G 是BC 上的任意⼀点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+. ADF CGE B图1 ADF C GE B 图2 ADFC GE B图3DCBA EF G参考答案1、D2、1043、5或94、2010052355 5、15 6、C 7、A 8、B 9、C 10、5811、(1)证明:∵四边形ABCD 是菱形∴AB = AD ,∠1 =∠2⼜∵AN = AN ∴△ABN ≌△ADN (2)解:∵∠ABC =90°,∴菱形ABCD 是正⽅形此时,∠CAD =45°.下⾯分三种情形:Ⅰ)若ND =NA ,则∠ADN =∠NAD =45°.此时,点M 恰好与点B 重合,得x =6;∴∠3=∠4,从⽽CM =CN ,易求AC =62,∴CM =CN =AC -AN =62-6,故x = 12-CM =12-(62-6)=18-62综上所述:当x = 6或12 或18-62时,△ADN 是等腰三⾓形12、(1)因为ABCD 是正⽅形,所以BC =CD 。

人教版八年级下册:18.2特殊的平行四边形同步练习卷 含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷  含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷一.选择题(共10小题)1.下列性质中,矩形不一定具有的是()A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角2.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°3.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.4.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 5.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD6.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.157.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.49.已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④10.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A.∠DAN=15°B.∠CMN=45°C.AM=MN D.MN=NC二.填空题(共8小题)11.工人师傅在测量一个门框是否是矩形时,只需要用到一个直角尺,则他用到的判定方法是.12.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.13.矩形ABCD中,要使矩形ABCD成为正方形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.如图,已知菱形ABCD的面积为6cm2,BD的长为4cm,则AC的长为cm.15.如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为.16.如图,Rt△ABC中,∠ACB=90°,∠A=28°,D是AB的中点,则∠DCB=度.17.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B为顶点的四边形是矩形,则点D的坐标为.18.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN,若AB=9,BE=6,则MN 的长为.三.解答题(共8小题)19.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.20.如图,正方形ABCD的对角线AC与BD交于点O,过点C作CE∥BD,过点D作DE ∥AC,CE与DE交于点E.求证:四边形OCED是正方形.21.如图.在平行四边形ABCD中,E、F分别为AB、CD的中点,连结DE、DB、BF.(1)求证:DE=BF;(2)若∠ADB=90°,证明:四边形BFDE是菱形.22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.25.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.26.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.参考答案一.选择题(共10小题)1.【解答】解:∵矩形的对角线互相平分且相等,故选项A、B不合题意;∵矩形的四个角都是直角,故选项C不合题意;∵矩形的一条对角线不一定平分一组对角;故D符合题意;故选:D.2.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.3.【解答】解:如图,在△ABC中,AD是BC边上的中线,则BD=CD=BC,故选项A、B、D不符合题意.若∠BAC=90°时,AD=BC才成立,否则不成立.故选项C符合题意.故选:C.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.6.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.7.【解答】解:∵BE=DB,∴∠BDE=∠E,∵∠DBA=∠BDE+∠BED=45°∴∠BDE=×45°=22.5°.故选:A.8.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.9.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.10.【解答】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB∥MG∥CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°﹣75°=15°,∠CMN=180°﹣75°﹣60°=45°,故A,B,C正确,故选:D.二.填空题(共8小题)11.【解答】解:用直角尺测量门框的三个角是否都是直角,如果都是直角,则四边形是矩形.故答案为:三个角是直角的四边形为矩形12.【解答】解:过点A作AE⊥BC于E,AF⊥CD于F,如图,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;故答案为:菱形.13.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).14.【解答】解:∵菱形ABCD的面积为6cm2,BD的长为4cm,∴×4×AC=6,解得:AC=3,故答案为:3.15.【解答】解:如图,∵四边形ABCD是矩形,AC,BD交于点O,BD=8∴BD=2BO,即2BO=8.∴BO=4.又∵M、N分别为BC、OC的中点,∴MN是△CBO的中位线,∴MN=BO=2.故答案是:2.16.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=AD,∴∠ACD=∠A=28°,∴∠DCB=90°﹣28°=62°,故答案为:62.17.【解答】解:如图,当AB为对角线时,观察图象可知D(5,3).当AB为矩形的边时,观察图象可知D2(﹣3,2),∴直线AD2的解析式为y=x+,∴C1(0,),∵AC1=BD1,∴D1(3,),综上所述,满足条件的点D的坐标为(5,3)或(﹣3,2)或(3,).故答案为(5,3)或(﹣3,2)或(3,).18.【解答】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=9,BE=6,∴GF=GB=6,BC=9,∴GC=GB+BC=6+9=15,∴CF===3.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.三.解答题(共8小题)19.【解答】证明;∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.20.【解答】证明:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵正方形ABCD的对角线AC与BD交于点O,∴OD=OC,∠DOC=90°,∴四边形CODE是正方形.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC=AB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=BE,∴四边形DEFB是平行四边形,∴DE=BF;(2)证明:由(1)得,四边形DEBF是平行四边形,∴DC=AB,CD∥AB,∴DF∥EB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=EB,∴四边形DEBF是平行四边形,∵∠ADB=90°,∴DE=AB,∴DE=EB,∴四边形DEBF是菱形.22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△AOD和△EOC中,,∴△AOD≌△EOC(AAS);(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.23.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.25.【解答】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.26.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.。

【3套】特殊平行四边形习题(含答案)

【3套】特殊平行四边形习题(含答案)

特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

2022-2023学年九年级数学特殊的平行四边形综合练习题(含答案,教师版)

2022-2023学年九年级数学特殊的平行四边形综合练习题(含答案,教师版)

特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B.C.D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C5.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E(0,-1),当EP +BP 最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=1,在运动过程中,点D到点O8.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A′处.在EF上任取一点G,连接GC,GA′,CA′,则△CGA′周长的最小值为79.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE ⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,则四边形BDFG的周长为20.证明:∵∠ABC=90°,BD为AC的中线,∴BD=12 AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF. ∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC.(1)求证:AE =DC ;(2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°.∵EF ⊥EC ,∴∠FEC =90°.∴∠AEF +∠CED =90°.∴∠EFA =∠CED.在△AEF 和△DCE 中,⎩⎪⎨⎪⎧∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F.(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC.∴∠ABE =∠CDF.∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF.(2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD . 12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC ⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD. ∵BC =12AD ,∴AE =BC. ∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE.∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.∵点F 是AE 的中点,∴AF =12AE =2. ∴当PA +PF 最小时,△PAF 的周长最小,即点P 为CF 与BE 的交点时,△PAF 的周长最小.此时△PAF 的周长为PA +PF +AF =CF +AF.∵CE =DE ,∴∠ECD =∠D =30°,∠ACE =90°-30°=60°.∴△ACE 是等边三角形.∴AC =AE =CE =4.∵AF =EF ,∴CF ⊥AE.∴CF =AC 2-AF 2=2 3.△PAF 周长的最小值为CF +AF =23+2. 13.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,垂足为F ,交直线MN 于点E ,连接CD ,BE.(1)求证:CE =AD ;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵D为AB的中点,∴AD=BD.∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC ≌△EPC.∴BE =PE.∴∠EBP =∠EPB.∵E 为AB 的中点,∴BE =AE.∴AE =PE.∴∠EPA =∠EAP .∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°.∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE.∵四边形ABCD 是矩形,∴AE ∥CF.∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MN DN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM.∵四边形ABCD 是矩形,∴AD ∥BC.∴∠ANM =∠CMN.∴∠CMN =∠CNM.∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形, ∴HC =DN ,NH =DC.∵S △CMN S △CDN =12MC ·NH 12ND ·NH =MC ND =3, ∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x.∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x.∴MN DN =23x x =2 3.16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°.∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF.∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°.∴∠DGA +∠AFH =180°.∵∠AFH +∠EFD =180°, ∴∠DGA =∠EFD =∠DEC.在△DAG 和△DCE 中,⎩⎪⎨⎪⎧∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP .(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°.∵QO ⊥BD ,∴∠BOQ =90°.∴∠BQO =∠CBD =45°.∴OB =OQ.∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,⎩⎪⎨⎪⎧OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ.∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°.∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)一.选择题1.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分D.对角线互相垂直2.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的纵坐标是()A.1B.C.D.﹣13.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.184.关于平行四边形ABCD的叙述,正确的是()A.若AB⊥BC,则平行四边形ABCD是菱形B.若AC⊥BD,则平行四边形ABCD是正方形C.若AC=BD,则平行四边形ABCD是矩形D.若AB=AD,则平行四边形ABCD是正方形5.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.46.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.96cm2B.48cm2C.24cm2D.12cm27.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长等于()A.5B.C.D.8.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36B.30C.24D.209.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192 C.20 D.以上答案都不对10.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD中点,若AB=6,BC=8,则△AEF的周长为()A.6B.8C.9D.1011.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3B.4C.5D.6二.填空题12.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.13.如图,四边形ABCD是平行四边形,补充一个条件使其成为菱形,你补充条件是(只需填一个即可).14.如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=15.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是度.16.已知正方形的对角线长为2,则它的面积.17.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为.18.如图,P为菱形ABCD的对角线上一点,PF⊥AD于F,PF=3cm,点E为AB边上一动点,则PE的最小值为cm.三.解答题19.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.22.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?23.如图,已知正方形ABCD,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN.24.如图所示,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是36,求DP的长.25.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)写出线段AE、DF的数量和位置关系,并说明理由.参考答案一.选择题1.解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.2.解:如图,连接EF,延长BA,使得AM=CE,∵OA=OC,∠OCE=∠AOM,∴△OCE≌△OAM(SAS).∴OE=OM,∠COE=∠MOA,∵∠EOF=45°,∴∠COE+∠AOF=45°,∴∠MOA+∠AOF=45°,∴∠EOF=∠MOF,在△OFE和△OFM中,,∴△OFE≌△FOM(SAS),∴EF=FM=AF+AM=AF+CE,设AF=x,∵CE===2,∴EF=2+x,EB=2,FB=4﹣x,∴(2+x)2=22+(4﹣x)2,∴x=,∴点F的纵坐标为,故选:B.3.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.4.解:A、错误.若AB⊥BC,则平行四边形ABCD是矩形;B、错误.若AC⊥BD,则平行四边形ABCD是菱形;C、正确.D、错误.若AB=AD,则平行四边形ABCD是菱形;故选:C.5.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.6.解:设菱形的对角线分别为3a,4a,∵菱形的周长为40,∴菱形的边长为10,∴()2+(2a)2=102,∴a2=16,∴菱形的面积=×3a×4a=6a2=96.故选:A.7.解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.8.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=20.故选:D.9.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选:B.10.解:∵四边形ABCD是矩形,∴AD=BC=8,∠BAD=90°,OB=OD=OA=OC,在Rt△BAD中,∵BD===10,∴OD=OA=OB=5,∵E.F分别是AO.AD中点,∴EF=OD=,AE=,AF=4,∴△AEF的周长为9,故选:C.11.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.二.填空题12.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.13.解:∵AB=BC,且四边形ABCD为平行四边形∴四边形ABCD是菱形故答案为:AB=BC(答案不唯一)14.解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°15.解:在正方形ABCD中,AC平分∠BAD,∴∠BAE=45°而AB=AE∴∠ABE=∠AEB==67.5°又∵∠AEB+∠BEC=180°∴∠BEC=180°﹣67.5°=112.5°故答案为112.5.16.解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为417.解:阴影部分的面积=18.解:∵四边形ABCD是菱形∴AC为∠DAB的角平分线∵PF⊥AD于点F,PF=3cm.∴PE最短时PE=PF=3cm.故答案为3.三.解答题19.解:菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE的长为cm.20.证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.21.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.22.解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴∠BFE=90°,∠BGE=90°.又∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.23.解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∵PM=PN,∴四边形PMAN是正方形;(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN.24.解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=36,∴DP=6.25.解:(1)∵四边形ABCD是正方形,∴DA=AB,∠DAF=∠ABE=90°,∵AF=BE,∴△DAF≌△ABE(SAS);(2)AE=DF,AE⊥DF,理由如下:由(1)得:△DAF≌△ABE,∴DF=AE,∠ADF=∠BEA,∵∠DAO+∠EAB=∠DAF=90°,∴∠DAO+∠ADF=90°,∴∠DOA=90°,∴AE⊥DF.。

2022年八年级数学下册周周卷二特殊的平行四边形习题课件新版新人教版

2022年八年级数学下册周周卷二特殊的平行四边形习题课件新版新人教版

(2)若AE=6,BF=8,CE=3,求四边形 A解:B过C点DF作的FG面⊥B积C于点. G.
∵四边形ABEF是菱形,AE=6,BF=8,AE⊥BF,
∴OE= 1 AE=3,OB= 1 BF=4,
2
2
∴BE= OB2 + OE2 =5,∴BC=BE+CE=8.
∵S菱形ABEF=
1 2
AE·BF=BE·FG,即 1
– C.75°
– D.80°
7.如图,已知O是矩形ABCD的对角线的交 点,∠AOB=60°,DE∥AC,CE∥BD, DE,CE相交于点E.若四边形OCED的周长
B
是–2A0.5,则BC的长是 ( – B.5 )
3
– C.10
– D.10
3
8.如图,在四边形ABCD中,E是AB上的一 点,△ADE和△BCE都是等边三角形,CP, Q–,A.M等腰,梯N形分别为AB,BC,CD,DA的中点, 则–四B.矩边形形MNPQ是( )
13.如图,O是矩形ABCD的对角线AC的中 点,菱形2 3ABEO的边长为2,则BC的长为
________.
14.如图,在正方形ABCD中,点P在边AB
上,AE⊥DP于点E,3 CF⊥DP于点F.若AE =4,CF=7,则EF=________.
15.如图,将两条宽度都为3的纸片重叠在 一起,使∠6A3BC=60°,则四边形ABCD 的面积为________.
附加题(20分)
如图,在矩形ABCD中,AD=6,DC=7,菱形EFGH的
三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上
,AH=2,连接CF.
2
(1)当四边形EFGH为正方形时,6 DG的长为________;

《特殊平行四边形》单元练习题(含答案)

《特殊平行四边形》单元练习题(含答案)

第一章《特殊平行四边形》单元练习题一.选择题(共10小题)1.若菱形的两条对角线分别长8、6,则菱形的面积为( B)A.48B.24C.14D.122.菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为( C)A.4.5cm B.4cm C.D.3.已知菱形OABC在下面直角坐标系中的位置如图所示,点(4,0)A,60∠=︒,则点BCOA的坐标为( D)A.(4+,2)B.(6,2)C.(4+,D.(6,4.在四边形ABCD中,//=,添加下列条件不能推得四边形ABCD为菱形AB CD,AB AD的是( A)A.AB CD==D.AB BC =B.//AD BC C.BC CD5.矩形的边长是4cm,一条对角线的长是,则矩形的面积是( C)A.232cm B.2C.2D.26.下列说法正确的有( A)(1)一组对边相等的四边形是矩形;(2)两条对角线相等的四边形是矩形;(3)四条边都相等且对角线互相垂直的四边形是正方形;(4)四条边都相等的四边形是菱形.A.1B.2C.3D.47.平行四边形的四个内角的平分线,如果能围成一个四边形,那么这个四边形一定是( A) A.矩形B.菱形C.正方形D.等腰梯形8.将一个正方形纸片放在平面直角坐标系中,已知(1,0)DA-,(1,1)C,若绕点(0,0)B-,(0,1)顺时针旋转这个正方形,旋转角为135︒,则旋转后点B的坐标B'为( C)A.(1,1)B.(2,0)C.,0)D.(1,1)-9.如图,以Rt ABC∆的斜边BC为一边在ABC∆的同侧作正方形BCEF,设正方形的中心为AB=,AO=,那么AC的长等于( A)O,连接AO,如果3A.5B..6C.7D.810.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线a b,则点P绕点E顺时针旋转90︒AC与BD相交于点E,P为BC上一点,点P坐标为(,)得到的对应点P'的坐标是( D)A.(,)-D.(,0)ba bb a C.(,0)a b a-B.(,)二.填空题(共8小题)11.如图,ABCD的对角线AC,BD相交于点O,点E,F,G,H分别是OA,OB,=或OC,OD的中点,若要使四边形EFGH成为菱形,则ABCD应满足的条件是AB AD ⊥(写出一种即可).AC BD12.如图,边长为5的菱形ABCD中,对角线AC长为6,菱形的面积为24.13.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,1AB =,45ABE ∠=︒,则BC14.如图,在ABCD 中,再添加一个条件 AC BD = (写出一个即可),ABCD 是矩形(图形中不再添加辅助线)15.顺次连接对角线互相垂直的四边形各边中点所得的四边形一定是 矩形 .16.如图,在Rt ABC ∆中,90C ∠=︒,5BC =,12AC =,M 为斜边AB 上一动点,过M 作MD AC ⊥,过M 作ME CB ⊥于点E ,则线段DE 的最小为13.17.如图所示,直线经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF a ⊥于点F ,DE a ⊥于点E .若5DE =,3BF =,则EF 的长为 8 .18.如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,4),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为(12,8).三.解答题(共8小题)19.如图,在菱形ABCD中,DE AB⊥,垂足为点E,且E为边AB的中点.(1)求A∠的度数;(2)如果4AB=,求对角线AC的长.解:连接AC,BD(1)四边形ABCD是菱形AD AB∴=E是AB中点,DE AB⊥AD DB∴=AD DB AB∴==ADB∴∆是等边三角形60A∴∠=︒(2)四边形ABCD是菱形AC BD ∴⊥,1302DAC DAB∠=∠=︒,AO CO=,DO BO=4==AD BA∴=,AO=DO2AC∴=20.如图,矩形ABCD中,对角线AC、BD相交于点O,过点C作//BD AB,并交AB的延长线相交于点E,则ACE∆是等腰三角形吗?请说明理由.解:ACE∆是等腰三角形,理由如下:四边形ABCD是矩形,CD AB,∴=,//AC BD即//DC BE,BD CE,//∴四边形DCEB是平行四边形,∴=,BD CE∴=,AC CE∴∆是等腰三角形.ACE21.如图1,ABD∆和BDC∆都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将BDC ∆沿射线BD 方向平移到△111B D C 的位置,则四边形11ABC D 是平行四边形吗?为什么?(3)在BDC ∆移动过程中,四边形11ABC D 有可能是矩形吗?如果是,请求出点B 移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用). 解:(1)四边形ABCD 是菱形; 理由如下:ABD ∆和BDC ∆都是边长为1的等边三角形. AB AD CD BC DB ∴====, AB AD CD BC ∴===, ∴四边形ABCD 是菱形;(2)四边形11ABC D 是平行四边形. 理由:11160ABD C D B ∠=∠=︒ 11//AB C D ∴,又11AB C D =,∴四边形11ABC D 是平行四边形(一组对边平行且相等的四边形是平行四边形). (3)四边形11ABC D 有可能是矩形.此时,1130D BC ∠=︒,1190D C B ∠=︒,111C D = 12BD ∴=,又111B D =, 11BB ∴=,即点B 移动的距离是1.22.在ABC ∆中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .(1)如图1,求证:四边形ADCF 是矩形;(2)如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形)ADCF .(1)证明://AF BC ,AFE EDC ∴∠=∠,E 是AC 中点, AE EC ∴=,在AEF ∆和CED ∆中, AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF CED ∴∆≅∆,EF DE ∴=,AE EC =,∴四边形ADCF 是平行四边形,AD BC ⊥, 90ADC ∴∠=︒, ∴四边形ADCF 是矩形.(2)线段DG 、线段GE 、线段DE 都是ABC ∆的中位线,又//AF BC , //AB DE ∴,//DG AC ,//EG BC ,∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.23.已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若CAD DBC ∠=∠. (1)求证:四边形ABCD 是正方形.(2)E 是OB 上一点,DH CE ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OE OF =.(1)证明:四边形ABCD 是菱形,//AD BC ∴,2BAD DAC ∠=∠,2ABC DBC ∠=∠, 180BAD ABC ∴∠+∠=︒, CAD DBC ∠=∠, BAD ABC ∴∠=∠,2180BAD ∴∠=︒,90BAD ∴∠=︒, ∴四边形ABCD 是正方形;(2)证明:四边形ABCD 是正方形, AC BD ∴⊥,AC BD =,12CO AC =,12DO BO =, 90COB DOC ∴∠=∠=︒,CO DO =, DH CE ⊥,垂足为H ,90DHE ∴∠=︒,90EDH DEH ∠+∠=︒, 90ECO DEH ∠+∠=︒, ECO EDH ∴∠=∠,在ECO ∆和FDO ∆中,90ECO EDHCO DO COE DHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ECO FDO ASA ∴∆≅∆, OE OF ∴=.24.如图,点M 是正方形ABCD 的边BC 上一点,连接AM ,点E 是线段AM 上一点,CDE ∠的平分线交AM 延长线于点F .(1)如图1,若点E 为线段AM 的中点,:1:2BM CM =,BE =AB 的长;(2)如图2,若DA DE =,求证:BF DF +=.解:(1)设BM x =,则2CM x =,3BC x =, BA BC =,3BA x ∴=.在Rt ABM ∆中,E 为斜边AM 中点,2AM BE ∴==.由勾股定理可得222AM MB AB =+, 即22409x x =+,解得2x =. 36AB x ∴==.(2)延长FD 交过点A 作垂直于AF 的直线于H 点,过点D 作DP AF ⊥于P 点. DF 平分CDE ∠, 12∴∠=∠.DE DA =,DP AF ⊥ 34∴∠=∠.123490∠+∠+∠+∠=︒, 2345∴∠+∠=︒. 904545DFP ∴∠=︒-︒=︒.AH AF ∴=.90BAF DAF ∠+∠=︒,90HAD DAF ∠+∠=︒,BAF DAH ∴∠=∠.又AB AD =,()ABF ADH SAS ∴∆≅∆.AF AH ∴=,BF DH =. Rt FAH ∆是等腰直角三角形,∴=.HF AF=+=+,HF DH DF BF DF∴+=.BF DF。

平行四边形及特殊的平行四边形测试题

平行四边形及特殊的平行四边形测试题

四边形综合练习题一. 选择题(每小题2分,共12分)1.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为 ( ) A.︒30 B. ︒45 C.︒60 D.︒752.在Rt ⊿ABC 中,∠ACB =︒90,∠A =︒30,AC =cm 3,则AB 边上的中线为( )A.cm 1 B .cm 2 C.cm 5.1 D.cm 33.等边三角形一边上高线长为cm 32,那么这个等边三角形的中位线长为 ( )A. cm 3 B.cm 5.2 C .cm 2 D.cm 4 4.下列判定正确的是 ( ) A 对角线互相垂直的四边形是菱形 B 两角相等的四边形是梯形 C 四边相等且有一个角是直角的四边形是正方形 D 两条对角线相等且互相垂直的四边形是正方形5.顺次连结等腰梯形各边中点得到的四边形是( ) A 矩形 B.菱形 C.正方形 D .平行四边形6.直角梯形的两个直角顶点到对腰中点的距离 ( ) A .相等 B. 不相等 C.可能相等也可能不相等 D .互相垂直 二.填空题:(每小题3分,共24分)7.已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积为 ;8.如图:EF 过平行四边形ABCD 的对角线交点O ,交AD 于E ,交BC 于F ,已知AB =4,BC =5,OE =5.1,那么四边形EFCD 的周长为 ; 9.已知,如图:平行四边形ABCD 中,AB =12,AB 边上的高为3,BC 边上的高为6,则平行四边形ABCD 的周长为 ; 10.⊿ABC 中,AB = AC =13,∠BAC 的平分线AD 交BC 于D ,则D 点到AB 的距离为 ;11.如图,在Rt ⊿ABC 中,∠C =︒90,AC = BC ,AB =30矩形DEFG 的一边在AB 上,顶点G 、F 分别在AC 、BC D 、E 在AB 上,若DG :GF =1:4,则矩形DEFG 的面积 为 ; 12.在⊿ABC 和⊿ADC 中:下列论断:①AB = AD ; ②∠BAC =∠DAC ;③BC = DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题是: ;13.如图,在⊿ABC 中,∠C =︒90,∠B =︒15,AB的垂直平分线交AB 于D ,交BC 于D ,DB =10,那么AC = ; 14.在⊿ABC 中,∠C =︒90,周长为cm )325(+,斜边上的中线CD =cm 2,则Rt ⊿ABC 的面积为 ; 三.(6分)15.作图题:已知三个村庄的位置如图,三村联合打一口井,向三个村庄供水,使水井到三个村庄的距离相等,水井的位置设在何处?请用尺规画出水井位置,不写作法,保留痕迹。

特殊平行四边形综合题(培优)

特殊平行四边形综合题(培优)

特殊平行四边形综合题(培优)一.选择题(共9小题)1.如图.任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点,且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点,四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点,四边形EFGH不可能是菱形2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14B.12C.24D.483.依次连接四边形ABCD的四边中点得到的图形是正方形,则四边形ABCD的对角线需满足()A.AC=BD B.AC⊥BDC.AC=BD且AC⊥BD D.AC⊥BD且AC与BD互相平分4.顺次连接正方形各边中点所成的四边形的面积与原正方形的面积之比为()A.1:B.1:C.1:3D.1:25.如图,正方形ABCD中,AE=BF,下列说法中,正确的有()①AF=DE;②AF⊥DE;③AO=OF;④S△AOD=S四边形BEOF.A.1个B.2个C.3个D.4个6.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直B.对角线相等C.对角线垂直D.一条对角线平分另一条对角线7.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=35°,那么∠AOB的度数为()A.35°B.45°C.70°D.110°8.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形9.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=6,则OC=()A.12B.C.6D.3二.填空题(共21小题)10.如图,点A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在无数个中点四边形MNPQ是正方形.所有正确结论的序号是.11.如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.12.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.14.小明作生成“中点四边形”的数学游戏,具体步骤如下:(1)任画两条线段AB、CD,且AB与CD交于点O,O与A、B、C、D任意一点均不重合.连接AC、BC、BD、AD,得到四边形ACBD;(2)分别作出AC、CB、BD、DA的中点A1,B1,C1,D1,这样就得到一个“中点四边形”.①若AB⊥CD,则四边形A1B1C1D1的形状一定是,这样作图的依据是.②请你再给出一个AB与CD之间的关系,并写出在该条件下得到的“中点四边形”A1B1C1D1的形状.15.如图,矩形ABCD中,AD=a,AB=b,依次连接它的各边中点得到第一个四边形E1F1G1H1,再依次连接四边形E1F1G1H1的各边中点得到第二个四边形E2F2G2H2,按此方法继续下去,得到的第n个四边形E n F n G n H n的面积等于.16.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有个;第2014个图形中直角三角形的个数有个.17.已知:四边形ABCD的面积为1.如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.18.梯形的高为4cm,中位线长为5cm,则梯形的面积为cm2.19.如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边,其中正确结论的序号是.形DEOF20.若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为cm.21.已知一个梯形的面积为22cm2,高为2cm,则该梯形的中位线的长等于cm.22.如图,正方形ABCD中,O是AC的中点,E是AD上一点,连接BE,交AC于点H,作CF⊥BE于点F,AG⊥BE于点G,连接OF,则下列结论中,①AG=BF;②OF平分∠CFG;⑤CF﹣BF=EF;④GF=OF,正确的有.(填序号)23.如图,点E是正方形ABCD的对角线BD上一点.EF⊥BC,EG⊥CD,垂足分别是F,G,GF=5,则AE=.24.如图,平行四边形ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,AC=6,BD=10,则OE的长为.25.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=2,BC=5,则DE =.26.如图,菱形ABCD的边长为2,∠BAD=60°,点E是AD边上一动点(不与A,D重合),点F是CD边上一动点,DE+DF=2,则∠EBF=°,△BEF面积的最小值为.27.在平面直角坐标系xOy中,菱形ABCD的四个顶点都在坐标轴上.若A(﹣4,0),B (0,﹣3),则菱形ABCD的面积是.28.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,使得点D落在点D'处,则FC=.29.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.30.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”.(说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据如图完成这个数学问题的证明过程.证明:证明:S筝形ABCD=S△AOB+S△AOD+S△COB+S△COD.易知,S△AOD=S△BEA,S△COD=S△BFC,由等量代换可得:S筝形ABCD=S△AOB++S△COB+=S矩形EFCA=AE•AC=•.三.解答题(共30小题)31.在正方形ABCD中,P是边BC上一动点(不与点B、C重合),E是AP的中点,过点E作MN⊥AP,分别交AB、CD于点M,N.(1)判定线段MN与AP的数量关系,并证明;(2)连接BD交MN于点F.①根据题意补全图形;②用等式表示线段ME,EF,FN之间的数量关系,直接写出结论.32.如图,已知在四边形中,AC⊥BD交于点O,E、F、G、H分别是四边上的中点,求证:四边形EFGH是矩形.33.我们规定:一组邻边相等且对角互补的四边形叫做“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在一条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.34.如图,在等边△ABC中,作∠ACD=∠ABD=45°,边CD、BD交于点D,连接AD.(1)请直接写出∠CDB的度数;(2)求∠ADC的度数;(3)用等式表示线段AD、BD、CD三者之间的数量关系,并证明.35.如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.36.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.(1)依题意补充图形;(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF 的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB =BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证F A=FG即可.想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC =AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.…请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)37.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.38.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;(3)如图3,在(2)的条件下,连接GF、HD.求证:①FG+BE≥BF;②∠HGF=∠HDF.39.已知:如图,梯形ABCD中,AD∥BC,AD+BC=10,M是AB的中点,MD⊥DC,D 是垂足,sin∠C=,求梯形ABCD的面积.40.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:.41.如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.(1)请再写出图中另外一对相等的角;(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.42.已知:如图,梯形ABCD中,AB∥CD,中位线EF长为20,AC与EF交于点G,GF ﹣GE=5.求AB、CD的长.43.已知:在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=a,BC=b.(1)如果点E、F分别为AB、DC的中点,如图.求证:EF∥BC,且EF=;(2)如果,如图,判断EF和BC是否平行,并用a、b、m、n的代数式表示EF.请证明你的结论.44.如图,在正方形ABCD中,点E在线段CB的延长线上,连接AE,并将线段AE绕点E 顺时针旋转90°,得到线段FE,连接AF,BD,CF,线段AF与线段BD相交于点M.(1)请写出∠ECF的度数,并给出证明;(2)求证:点M是线段AF的中点;(3)直接写出线段CF,BM和AD的数量关系.45.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,CE=CD,连接DE,过点B作BF⊥DE交DE的延长线于点F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.46.在正方形ABCD中,P是射线CB上的一个动点,过点C作CE⊥AP于点E,射线CE 交直线AB于点F,连接BE.(1)如图1,当点P在线段CB上时(不与端点B,C重合).①求证:∠BCF=∠BAP;②求证:EA=EC+EB;(2)如图2,当点P在线段CB的延长线上时(BP<BA),依题意补全图2并用等式表示线段EA,EC,EB之间的数量关系.47.如图,在正方形ABCD中,点E是直线AC上任意一点(不与点A,C重合),过点E 作EF⊥BE交直线CD于点F,过点F作FG⊥AC交直线AC于点G.(1)如图1,当点E在线段AC上时,猜想EG与AB的数量关系;(2)如图2,当点E在线段AC的延长线上时,补全图形,并判断(1)中EG与AB的数量关系是否仍然成立.如果成立,请证明;如果不成立,请说明理由.48.已知正方形ABCD,点E是直线BC上一点(不与B,C重合),∠AEF=90°,EF交正方形外角的平分线CF所在的直线于点F.(1)如图1,当点E在线段BC上时,①请补全图形,并直接写出AE,EF满足的数量关系;②用等式表示CD,CE,CF满足的数量关系,并证明.(2)当点E在直线BC上,用等式表示线段CD,CE,CF之间的数量关系(直接写出即可).49.如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB',FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是.(2)请你结合图1写出一条完美筝形的性质.(3)当图3中的∠BCD=120°时,∠AEB′=.(4)当图2中的四边形AECF为菱形时,对应图③中的“完美筝形”有(写出筝形的名称:例筝形ABCD).50.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明:CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.51.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF.(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并判断四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG,请在图2中补全图形,猜想线段EG,AG,BG之间的数量关系,并证明你的结论;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),直接写出线段EG,AG,BG之间的数量关系(用含α的式子表示).52.如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文根据筝形的定义得到筝形边的性质是;(2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.证明:(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)53.如果一个四边形ABCD满足AB=AD且BC=CD,则称四边形ABCD为筝形.(1)如图1,连接筝形ABCD的对角线AC、BD交于点H,求证:AC⊥BD.(2)求证:筝形ABCD的面积S=AC•BD.(3)如图2,在筝形ABCD中,AB=AD=5,BC=CD,BD=8,过点B作BF⊥CD于点,交AC于点E,过点F作FM⊥AB于点M,若四边形ABED是菱形,求FM的长.54.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)55.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠P AB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.56.在菱形ABCD中,∠ABC=60°,点P在对角线BD上,点Q在直线AD上,且∠CPQ =120°.(1)如图1,若点P为菱形ABCD的对角线的交点.①依题意补全图1;②猜想PC与PQ的数量关系并加以证明;(2)如图2,若∠CPD=80°,连接CQ,写出求∠PQD度数的思路.57.在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:.58.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC =AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.59.请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及数量关系.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及的值;(2)如图2,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC,探究PG与PC的位置关系及数量关系;(3)将图2中的正方形BEFG绕点B顺时针旋转,原问题中的其他条件不变(如图3),你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.60.在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=.。

特殊的平行四边形专项练习(含答案)

特殊的平行四边形专项练习(含答案)

特殊的平行四边形(含答案)一、选择题(本大题共49小题,共147.0分)1.一个菱形的周长是20cm,两条对角线长的比是4︰3,则这个菱形的面积是()A. 12cm2B. 96cm2C. 48cm2D. 24cm22.若菱形的周长为8,高为1,则菱形两邻角的度数之比是()A. 3:1B. 4:1C. 5:1D. 6:13.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD.则结论正确的个数为()A. 4B. 3C. 2D. 14.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A. 仅甲正确B. 仅乙正确C. 甲、乙均正确D. 甲、乙均错误5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A. 25°B. 35°C. 50°D. 65°6.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A. 5cmB. 4.8cmC. 4.6cmD. 4cm7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A. 36°B. 27°C. 18°D. 9°8.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A. 4B. 5C. 245D. 4859.菱形具有而一般平行四边形不具有的性质是()A. 两组对边分别相等B. 两条对角线相等C. 四个内角都是直角D. 每一条对角线平分一组对角10.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A. 60°B. 50°C. 30°D. 20°11.如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为().A. 16cm2B. 8√3cm2C. 16√3cm2D. 32cm212.如图,正方形ABCD中,BE=FC,CF=2FD,AE,BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=43GE;④S四边形CEGF=S▵ABG.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个13.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE//AC,DF//AB,分别交AB,AC于E、F两点,下列说法错误的是()A. 四边形AEDF是平行四边形B. 若AB⊥AC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是正方形D. 若AD平分∠BAC,则四边形AEDF是菱形14.如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中的矩形共有()A. 5个B. 8个C. 9个D. 11个15.如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A. 邻边相等的矩形是正方形B. 对角线相等的菱形是正方形C. 两个全等的直角三角形构成正方形D. 轴对称图形是正方形16.平行四边形、矩形、菱形、正方形都具有的性质是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直平分且相等17.如图,在菱形ABCD中,E,F,G,H分别是菱形四条边的中点,连结EG与FH,交点为O,则图中的菱形共有()A. 4个B. 5个C. 6个D. 7个18.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60∘,则花坛对角线AC的长等于()A. 6√3米B. 6米C. 3√3米D. 3米19.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个20.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B面积的()A. 12B. 14C. 16D. 1821.如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A. 甲正确,乙错误B. 甲、乙均正确C. 乙正确,甲错误D. 甲、乙均错误22.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB︰AD的比为()时,四边形MENF是正方形.A. 1︰1B. 1︰2C. 2︰3D. 1︰423.如图,在菱形ABCD中,∠ADC=72∘,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A. 108∘B. 72∘C. 90∘D. 100∘24.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A. 小青B. 小何C. 小夏D. 小雨25.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A. (√3,−1)B. (2,−1)C. (1,−√3)D. (−1,√3)26.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A. 1和1B. 1和2C. 2和1D. 2和227.四边形ABCD的对角线AC,BD,下面给出的三个条件中,选取两个,能使四边形ABCD是矩形,①AC,BD互相平分;②AC⊥BD;③AC=BD,则正确的选法是()A. ①②B. ①③C. ②③D. 以上都可以28.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A. 2.5B. 3C. 4D. 529.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=3.6.其中结论正确的个数是()A. 1B. 2C. 3D. 430.在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD的面积是()A. 12B. 16C. 24D. 3231.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A. 1B. 12C. √22D. √3232.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A. 8B. 12C. 16D. 3233.矩形OABC在平面直角坐标系中的位置如图所示,已知B(2√3,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2√3;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(2√33,0).其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个34.如图,矩形ABCD中,点E在BC边上,DF⊥AE于F,若EF=CE=1,AB=3,则线段AF的长为()A. 2√5B. 4C. √10D. 3√235.如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为()A. 2√5B. 3√3C. 3√5D. 6√336.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A. 13B. 10C. 12D. 537.下列说法正确的是()A. 一组对边平行另一组对边相等的四边形是平行四边形B. 对角线互相垂直平分的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形38.如图,在菱形ABCD中,∠BCD=60°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是()A. 130°B. 120°C. 110°D. 100°39.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A. 4:1B. 5:1C. 6:1D. 7:140.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A. OA=OC,OB=ODB. 当AB=CD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD且AC⊥BD时,四边形ABCD是正方形41.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②42.菱形不具备的性质是()A. 是轴对称图形B. 是中心对称图形C. 对角线互相垂直D. 对角线一定相等43.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 12544.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A. 1个B. 2个C. 3个D. 4个45.在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A. 4B. 6C. 8D. 1046.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A. 2√2−2B. √3−1C. 2−√2D. √2−147.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A. 125B. 52C. 3D. 548.如图所示,点O是矩形ABCD对角线AC的中点,OE//AB交AD于点E.若OE=3,BC=8,则OB的长为()A. 4B. 5C. √342D. √3449.菱形的对角线不一定具有的性质是()A. 互相平分B. 互相垂直C. 每一条对角线平分一组对角D. 相等二、填空题(本大题共21小题,共63.0分)50.如图,将两条宽度都为6的纸片重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.51.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为边AD的中点,菱形ABCD的周长为28,则OH的长等于________.52.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是______.53.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.54.菱形的面积是24,一条对角线长是6,则菱形的边长是______.55.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为______.56.如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB边由A向B匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为______.57.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为______.58.已知矩形ABCD,对角线AC、BD相交于点O,点E为BD上一点,OE=1,连接AE,∠AOB=60°,AB=2,则AE的长为______.59.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3√3,则AP的长为______.60.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是______.61.如图,将菱形ABCD折叠,使点B落在AD边的点F处,折痕为CE.若∠D=70°,则∠AEF=______.62.如图,已知点P(2,0),Q(8,0),A是x轴正半轴上一动点,以OA为一边在第一象限内作正方形OABC,当PB+BQ取最小值时,点B的坐标是______.63.已知正方形ABCD,以∠BAE为顶角,边AB为腰作等腰△ABE,连接DE,则∠DEB=______.64.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ cm2.65.菱形有一个内角为60°,较短的对角线长为6,则它的面积为______.66.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.67.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2019的坐标为______.68.如图,在Rt△ABC中,∠A=90°,AB=6,BC=10,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,求EF的最小值是______.69.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为______.70.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为______.三、解答题(本大题共19小题,共152.0分)71.如图,在▵ABCD中,E,F分别为边AB,CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,请证明四边形BEDF是菱形.72.如图,在△ABC中,D,E分别是AB,AC的中点,连接DE并延长DE至点F,使EF=DE,连接CF.(1)求证:四边形DBCF是平行四边形;(2)探究:当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.73.如图1,直角梯形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=______,AP=______.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值;(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=______.74.如图,在长方形纸片ABCD中,AD//BC,将长方形纸片折叠,使点D与点B重合,点C落在点C′处,折痕为EF.(1)求证:BE=BF.(2)若∠ABE=18°,求∠BFE的度数.(3)若AB=4,AD=8,求AE的长.75.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由.(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论.(3)四边形ACEF有可能是正方形吗?为什么?76.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.77.如图,长方形纸片ABCD中,AB=8cm,把长方形纸片沿直线AC折叠,点B落在点E处,AE交cm,求AD.DC于点F,AF=25478.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.CE.79.如图,AE=AC,点B是CE的中点,且AD//CE,AD=12(1)若AE=25,CE=14,求△ACE的面积;(2)求证:四边形ABCD是矩形.80.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)在点M移动过程中:①当四边形AMDN成矩形时,求此时AM的长;②当四边形AMDN成菱形时,求此时AM的长.81.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.82.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.83.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.84.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.85.如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.已知,OA=2,OC=4,点D为x轴上一动点,以BD为一边在BD右侧作正方形BDEF.(1)若点D与点A重合,请直接写出点E的坐标;(2)若点D在OA的延长线上,且EA=EB,求点E的坐标;(3)若OE=2√17,求点E的坐标.86.如图,BD是△ABC的角平分线,过点D作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.87.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;QC是否存在最小值?若存在,求岀(4)若点Q为线段OC上的一动点,问:AQ+12这个最小值;若不存在,请说明理由.88.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.89.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若AB=2,DE=1,求四边形AODE的面积.答案和解析1.【答案】D【解析】【分析】此题主要考查菱形的性质,根据菱形的对角线互相垂直平分,利用勾股定理求解.【解答】解:设菱形的对角线长分别为8x cm和6x cm,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线长分别为8cm和6cm,×8×6=24(cm2).所以菱形的面积为122.【答案】C【解析】【分析】本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.【解答】解:如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=1AB,2∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1;故选C.3.【答案】B【解析】【分析】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,等腰三角形的判定与性质,三角形的面积,设出AE、OG,然后用a表示出相关的边更容易理解,根据直角三角形斜边上的中线等于斜边的一半可得OG= AG=GE=12AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出③正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出①正确,②错误;再根据三角形的面积和矩形的面积列式求出判断出④正确.【解答】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°−∠AOG=90°−30°=60°,∴△OGE是等边三角形,故③正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=√AE2−OE2=√(2a)2−a2=√3a,∵O为AC中点,∴AC=2AO=2√3a,∴BC=12AC=12×2√3a=√3a,在Rt△ABC中,由勾股定理得,AB=√(2√3a)2−(√3a)2=3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故①正确;∵OG=a,12BC=√32a,∴OG≠12BC,故②错误;∵S△AOE=12a⋅√3a=√32a2,S ABCD=3a⋅√3a=3√3a2,∴S△AOE=16S ABCD,故④正确;综上所述,结论正确是①③④共3个.故选B.4.【答案】C【解析】【分析】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,{∠EAO =∠FCO AO =CO ∠AOE =∠COF, ∴△AOE≌△COF(ASA),∴AE =CF ,又∵AE//CF ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形;乙的作法正确;∵AD//BC ,∴∠1=∠2,∠6=∠7,∵BF 平分∠ABC ,AE 平分∠BAD ,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB =AF ,AB =BE ,∴AF =BE∵AF//BE ,且AF =BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴平行四边形ABEF 是菱形;故选C .5.【答案】A【解析】【试题解析】【分析】此题主要考查了菱形的性质,正确应用菱形的性质是解题关键.直接利用菱形的性质得出∠ABC 的度数,进而得出∠DBC 的度数.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠ABC=180°−130°=50°,∴∠DBC=12∠ABC=25°.故选:A.6.【答案】A【解析】【分析】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR= AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD//BC,AB//CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR⋅BC=AS⋅CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=12AC=3cm,OB=12BD=4cm,∴AB=√OA2+OB2=√32+42=5cm.故选A.7.【答案】C【解析】【分析】本题考查了矩形的性质、等腰三角形的判定与性质、角的互余关系,熟练掌握矩形的性质,并能进行推理计算是解决问题的关键,解答此题由矩形的性质得出OC=OD,得出∠ODC=∠OCD,求出∠EDC=36°,再由角的互余关系求出∠ODC,即可得出∠BDE的度数.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,OC=12AC,OD=12BD,AC=BD,∴OC=OD,∴∠ODC=∠OCD,∵∠ADE:∠EDC=3:2,∴∠EDC=25×90°=36°,∵DE⊥AC,∴∠DEC=90°,∴∠ODC=∠OCD=90°−36°=54°,∴∠BDE=∠ODC−∠EDC=54°−36°=18°.故选C.8.【答案】D【解析】【分析】本题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AH,即可得出AH的长度.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=12AC=6,BO=12BD=8,CO⊥BO,∴BC=√BO2+CO2=√62+82=10,∴S菱形ABCD =12AC⋅BD=12×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH=9610=485.故选D.9.【答案】D【解析】【分析】此题主要考查了菱形的性质和平行四边形的性质,关键是根据菱形对角线垂直及平行四边形对角线平分的性质的理解.根据菱形的特殊性质可知对角线互相垂直.【解答】解:A.两组对角分别相等,两者均有此性质,故此选项不正确;B.两条对角线相等,两者均没有此性质,故此选项不正确;C.四个内角都是直角,两者均不具有此性质,故此选项不正确;D.每一条对角线平分一组对角,菱形具有而一般平行四边形不具有此性质,故此选项正确.故选D.10.【答案】C【解析】【分析】本题考查了三角形外角的性质,全等三角形性质和判定,线段垂直平分线性质,菱形的性质的应用,注意:菱形的四条边相等,菱形的对角线互相平分、垂直,且每一条对角线平分一组对角.连接BF,根据菱形性质得出AD=AB,∠DCB=100°,∠DCA= 50°,∠DAC=∠BAC=50°,根据线段垂直平分线得出AF=BF,求出∠FAB=∠FBA= 50°,求出∠AFB=80°,证△DAF≌△BAF,求出∠DFA=∠BFA=80°,根据三角形外角性质求出即可.【解答】解:如图,连接BF.∵在菱形ABCD中,∠BAD=100°,∴∠DAC=∠BAC=50°,∠ADC=∠ABC=180°−100°=80°.∵EF是线段AB的垂直平分线,∴AF=BF.∴∠ABF=∠CAB=50°.在△ADF与△ABF中,∵{AD=AB,∠DAF=∠BAF, AF=AF,∴△ADF≌△ABF(SAS),∴∠ADF=∠ABF=50°,∴∠CDF=∠ADC−∠ADF=80°−50°=30°.11.【答案】C【解析】【分析】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定及性质,求出矩形的宽是解题的关键.根据直角三角形斜边上的中线等于斜边的一半求出BC,然后判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质及勾股定理求出EG,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:作EG⊥BC于G.∵F是BC中点,∠BEC=90°,∴EF=BF=FC,BC=2EF=2×4=8(cm),∵∠ECD=30°,∴∠BCE=60°,∴△CEF是等边三角形,∴CE=EF=4cm,∠CEG=30°,∴CG=12CE=2cm,则EG=√CE2−CG2=2√3(cm),∴矩形的面积=8×2√3=16√3(cm2).故选C.12.【答案】C【解析】【分析】此题考查三角形全等的判定和性质、正方形的性质和勾股定理。

特殊平行四边形的典型练习题

特殊平行四边形的典型练习题

特殊平行四边形练习(1)1.矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.2.已知:如图,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.4.随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm, cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.5.(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形. ()6.(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.7.已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.8.下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.七、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.特殊平行四边形练习(2)1.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.2.随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.3.课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.4.已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.5.已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形..填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

初三特殊平行四边形练习题

初三特殊平行四边形练习题

初三特殊平行四边形练习题题一:已知平行四边形ABCD,AB=10cm,BC=8cm,BD垂直于BC,求BD的长度。

解:由于ABCD为平行四边形,所以AB ∥ CD 且 AD ∥ BC。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,BD = AC = AB = 10cm。

答案:BD的长度为10cm。

题二:已知平行四边形EFGH,EH=12cm,HF=6cm,EF垂直于HF,求EF的长度。

解:由于EFGH为平行四边形,所以EF ∥ GH 且 EG ∥ FH。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,EF = GH = HF = 6cm。

答案:EF的长度为6cm。

题三:在平行四边形IJKL中,LJ=12cm,IK=16cm,LK垂直于LJ,求LK的长度。

解:由于IJKL为平行四边形,所以IJ ∥ LK 且 IL ∥ KJ。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,LK = IJ = LK = 12cm。

答案:LK的长度为12cm。

题四:在平行四边形MNOP中,MN=8cm,NO=6cm,MP垂直于MN,求MP的长度。

解:由于MNOP为平行四边形,所以MN ∥ OP 且 MP ∥ NO。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,MP = NO = 6cm。

答案:MP的长度为6cm。

题五:已知平行四边形QRST,QT=14cm,RS=10cm,符合B呼W=QW,求QW的长度。

解:在平行四边形QRST中,根据B呼W=QW的性质可知,比例相等的边与对角线共线。

因此,BW ∥ TR 且 BQ ∥ ST。

与TR平行的边的长度为QS。

根据比例B呼W = QW,可以得到QS/QW = TR/BW= QT/QS。

解方程得到QS^2= QW^2,即QS = QW。

由QS = QT - TS 可知,QS = 14cm - 10cm = 4cm。

2023年九年级中考数学一轮专题练习 特殊平行四边形2 (3)(含解析)

2023年九年级中考数学一轮专题练习 特殊平行四边形2 (3)(含解析)

2023年中考数学一轮专题练习——点、直线、圆的位置关系2(解答题部分)一、解答题(本大题共22小题)1. (辽宁省大连市2022年)AB是O的直径,C是O上一点,OD BC,垂足为D,过点A作O的切线,与DO的延长线相交于点E.(1)如图1,求证B E∠=∠;(2)如图2,连接AD,若O的半径为2,3OE=,求AD的长.2. (辽宁省抚顺本溪辽阳市2022年)如图,在Rt ABC中,90ACB∠=︒,ODEF的顶点O,D在斜边AB上,顶点E,F分别在边,BC AC上,以点O为圆心,OA长为半径的O恰好经过点D和点E.(1)求证:BC与O相切;(2)若3sin,65BAC CE∠==,求OF的长.3. (江苏省扬州市2022年)如图,AB为O的弦,OC OA⊥交AB于点P,交过点B的直线于点C,且CB CP=.(1)试判断直线BC与O的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长. 4. (湖北省荆州市2022年)如图1,在矩形ABCD 中,AB =4,AD =3,点O 是边AB 上一个动点(不与点A 重合),连接OD ,将△OAD 沿OD 折叠,得到△OED ;再以O 为圆心,OA 的长为半径作半圆,交射线AB 于G ,连接AE 并延长交射线BC 于F ,连接EG ,设OA =x .(1)求证:DE 是半圆O 的切线;(2)当点E 落在BD 上时,求x 的值;(3)当点E 落在BD 下方时,设△AGE 与△AFB 面积的比值为y ,确定y 与x 之间的函数关系式;(4)直接写出....:当半圆O 与△BCD 的边有两个交点时,x 的取值范围. 5. (湖北省恩施州2022年)如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,切点分别为A 、B ,直线PO 交⊙O 于点D 、E ,交AB 于点C .(1)求证:∠ADE =∠PAE .(2)若∠ADE =30°,求证:AE =PE .(3)若PE =4,CD =6,求CE 的长.6. (湖南省湘潭市2022年)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.7. (湖南省娄底市2022年)如图,已知BD是Rt ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的O经过点D,与OA相交于点E.(1)判定AC与O的位置关系,为什么?(2)若3BC=,32 CD=,①求sin DBC∠、sin ABC∠的值;②试用sin DBC∠和cos DBC∠表示sin ABC∠,猜测sin2α与sinα,cosα的关系,并用30α=︒给予验证.8. (湖南省郴州市2022年)如图,在ABC中,AB AC=.以AB为直径的O与线段BC交于点D,过点D作DE AC⊥,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是O的切线;(2)若O的半径为6,30P∠=︒,求CE的长.9. (湖南省衡阳市2022年)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD 交BA的延长线与点C,过点O作//OE AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若2CA=,4CD=,求DE的长.10. (四川省雅安市2022年)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O与直线AO交于点E和点D.(1)求证:AB是⊙O的切线;(2)连接CE,求证:△ACE∽△ADC;(3)若AEAC=12,⊙O的半径为6,求tan∠OAC.11. (天津市2022年)已知AB为O的直径,6AB=,C为O上一点,连接,CA CB.(1)如图①,若C为AB的中点,求CAB∠的大小和AC的长;(2)如图②,若2,AC OD=为O的半径,且OD CB⊥,垂足为E,过点D作O的切线,与AC的延长线相交于点F,求FD的长.12. (湖北省十堰市2022年)如图,ABC中,AB AC=,D为AC上一点,以CD为直⊥,垂足为G.径的O与AB相切于点E,交BC于点F,FG AB(1)求证:FG是O的切线;(2)若1BG=,3BF=,求CF的长.13. (四川省遂宁市2022年)如图,O是ABC的外接圆,点O在BC上,BAC∠的角平分线交O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是O的切线;(2)求证:ABD△∽DCP;(3)若6AC=,求点O到AD的距离.AB=,814. (四川省内江市2022年)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;AC的长;(2)若⊙O的半径为6,AF=(3)在(2)的条件下,求阴影部分的面积.15. (湖北省黄冈市、孝感市、咸宁市2022年)如图,O是ABC的外接圆,AD是O的直径,BC与过点A的切线EF平行,BC,AD相交于点G.(1)求证:AB AC=;(2)若16DG BC==,求AB的长.16. (四川省南充市2022年)如图,AB为O的直径,点C是O上一点,点D是O外一点,BCD BAC∠=∠,连接OD交BC于点E.(1)求证:CD是O的切线.(2)若4,sin5CE OA BAC=∠=,求tan CEO∠的值.17. (四川省眉山市2022年)如图,AB为O的直径,点C是O上一点,CD与O相切于点C,过点B作BD DC⊥,连接AC,BC.(1)求证:BC是ABD∠的角平分线;(2)若3BD=,4AB=,求BC的长;(3)在(2)的条件下,求阴影部分的面积.18. (四川省泸州市2022年)如图,点C在以AB为直径的O上,CD平分ACB∠交O 于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若AC=BC FD的长.19. (2022年四川省乐山市)如图,线段AC为⊙O的直径,点D、E在⊙O上,CD= DE,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,3sin5ACE∠=,延长AC至点B,使4BC=.求证:BD是⊙O的切线.20. (湖北省鄂州市2022年)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tan A=12,求△OCD的面积.21. (四川省凉山州2022年)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.22. (湖南省株洲市2022年)如图所示,ABC 的顶点A 、B 在⊙O 上,顶点C 在⊙O 外,边AC 与⊙O 相交于点D ,45BAC ∠=︒,连接OB 、OD ,已知∥OD BC .(1)求证:直线BC 是⊙O 的切线;(2)若线段OD 与线段AB 相交于点E ,连接BD .①求证:ABD DBE ∽;②若6AB BE ⋅=,求⊙O 的半径的长度.参考答案1. 【答案】(1)见解析(2)【分析】(1)证明90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,即可得出B E ∠=∠; (2)证明ODB∆OAE ∆,求出OD ,由勾股定理求出DB ,由垂径定理求出BC ,进而利用勾股定理求出AC ,AD .(1)解:∵ OD BC ,∴90ODB ∠=︒,∵ AE 是O 的切线,∴90OAE ∠=︒,在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴B E ∠=∠;(2)解:如图,连接AC .∵ O 的半径为2,∴2OA OB ==,4AB =,∵ 在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴ODB∆OAE ∆, ∴OD OB OA OE=,即223OD =, ∴43OD =, 在Rt ODB ∆中,由勾股定理得:222OD DB OB +=,∴DB ==∵ OD BC ,OD 经过O 的圆心, ∴253CD DB ,∴2BC DB ==. ∵AB 是O 的直径,C 是O 上一点,∴90ACB ∠=︒,在Rt ACB ∆中,由勾股定理得:222AC BC AB +=,∴83AC ==. 在Rt ACD ∆中,由勾股定理得:222AC CD AD +=,∴AD == 2. 【答案】(1)见解析(2)【分析】(1)连接OE ,先证明四边形AOEF 是平行四边形,得到OE AC ∥,即可证明∠OEB =∠ACB =90°,由此即可证明结论;(2)过点F 作FH OA 于点H ,先解直角△CEF 求出EF 的长,再证明四边形AOEF 是菱形,得到OA ,AF 的长,再解直角△AHF ,求出AH ,FH ,进而求出OH ,即可利用勾股定理求出OF .(1)证明:连接OE ,∵四边形ODEF 是平行四边形,∴EF OD ∥;EF OD =,∵OA OD =,∴EF OD ∥;EF OA =,∴四边形AOEF 是平行四边形,∴OE AC ∥,∴OEB ACB ∠=∠,∵90ACB ∠=︒∴90OEB ∠=︒,∴OE BC ⊥,∵OE 是O 的半径,∴BC 与O 相切;(2)解:过点F 作FH OA 于点H , ∵四边形AOEF 是平行四边形∴EF OA ∥,∴CFE CAB ∠=∠,∴3sin sin 5CFE CAB ∠=∠=, 在Rt CEF 中,90ACB ∠=︒, ∵6,sin CE CE CFE EF =∠=, ∴6103sin 5CE EF CFE ===∠, ∵四边形AOEF 是平行四边形,且OA OE =,∴AOEF 是菱形,∴10AF AO EF ===,在Rt AFH 中,90AHF ∠=︒, ∵10,sin FH AF CAB AF=∠=, ∴3sin 1065FH AF CAB =⋅∠=⨯=, ∵222AH AF FH =-,∴8AH ,∴1082OH AO AH =-=-=,在Rt OFH 中,90FHO ∠=︒,∵222OF OH FH =+,∴OF3. 【答案】(1)相切,证明见详解(2)6【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA ∠=∠,CPB CBP ∠=∠,从而求出90AOC OBC ∠=∠=︒,再根据切线的判定得出结论;(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.(1)证明:连接OB ,如图所示:CP CB OA OB ==,,∴A OBA ∠=∠,CPB CBP ∠=∠,APO CPB ∠=∠,APO CBP ∴∠=∠,OC OA ⊥,即90AOP ︒=∠,90A APO OBA CBP OBC ∴∠+∠=︒=∠+∠=∠,OB BC ∴⊥, OB 为半径,经过点O ,∴直线BC 与O 的位置关系是相切.(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,如图所示:AM BM ∴=,CP CB AO CO =⊥,,A APO PCN CPN ∴∠+∠=∠+∠,PN BN =,PCN BCN ∠=∠A PCN BCN ∴∠=∠=∠sin A =,8OA =,sin OM OP A OA AP ∴===4OM AM OP AP ∴====,2AB AM ∴==111()222PN BN PB AB AP ∴===-=⨯=sin sin BN A BCN CB ∴=∠==,6CB ∴===. 4. 【答案】(1)见详解(2)32 (3)2293(0)4362x y x x =<<+ (4)332x <≤或2548x <≤ 【分析】(1)根据切线的判定定理求解即可;(2)如图,在Rt OEB ∆,根据勾股定理列方程求解即可;(3)先证DAO AEG ∆∆∽,求出AE ,然后证明AEG ABF ∆∆∽,根据相似三角形面积比等于相似比的平方即可求解;(4)结合图形,分情况讨论即可求出x 的取值范围.(1)证明:在矩形ABCD 中,90DAB ∠=︒,△OED 是△OAD 沿OD 折叠得到的,90OED DAB ∴∠=∠=︒,即OE DE ⊥,∴ DE 是半圆O 的切线;(2)解:△OED 是△OAD 沿OD 折叠得到的,3,DE AD OA OE x ∴====,4OB AB OA x ∴=-=-,在Rt DAB ∆中,5DB ,532EB DB DE ∴=-=-=,在Rt OEB ∆中,222OE EB OB +=,()22224x x ∴+=-,解得32x =, 答:x 的值为32.(3)解:在Rt DAO ∆中,DO△OED 是△OAD 沿OD 折叠得到的,AE OD ∴⊥, AG 是O 的直径,90AEG ∴∠=︒,即AE EG ⊥,OD EG ∴∥,90DAO AEG ∠=∠=︒AOD EGA ∴∠=∠,DAO AEG ∴∆∆∽,DO DA AG AE∴= ,3,AE AE ==, 90,AEG ABC EAG BAF ∠=∠=︒∠=∠,AEG ABF ∴∆∆∽,2AGEAFB S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,即()222949x y x ==+ ⎪⎝⎭, 229436x y x ∴=+ (302x <<)(4)解:由(2)知,当E 在DB 上时, 32x =, 如图,当点E 在DC 上时, 3x = ,∴当332x <≤时,半圆O 与△BCD 的边有两个交点; 当半圆O 经过点C 时,半圆O 与△BCD 的边有两个交点,连接OC ,在Rt OBC ∆中,4,,3OB x OC x BC =-==,222OB BC OC +=,()22243x x ∴-+= ,解得258x =, ∴当2548x ≤≤时,半圆O 与△BCD 的边有两个交点;综上所述,当半圆O 与△BCD 的边有两个交点时,x 的取值范围为:332x <≤或2548x <≤. 5. 【答案】(1)见解析(2)见解析(3)CE 的长为2.【分析】(1)连接OA,根据切线的性质得到∠OAE+∠PAE=90°,根据圆周角定理得到∠OAE+∠DAO=90°,据此即可证明∠ADE=∠PAE;(2)由(1)得∠ADE=∠PAE =30°,∠AED =60°,利用三角形外角的性质得到∠APE=∠AED-∠PAE =30°,再根据等角对等边即可证明AE=PE;(3)证明Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,推出DC×CE=OC×PC,设CE=x,据此列方程求解即可.(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA,即∠OAP=90°,∴∠OAE+∠PAE=90°,∵DE为⊙O的直径,∴∠DAE=90°,即∠OAE+∠DAO=90°,∴∠DAO=∠PAE,∵OA=OD,∴∠DAO=∠ADE,∴∠ADE=∠PAE;(2)证明:∵∠ADE=30°,由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,∴∠APE=∠AED-∠PAE =30°,∴∠APE=∠PAE =30°,∴AE=PE;(3)解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.∴AB⊥PD,∵∠DAE=90°,∠OAP=90°,∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,∴∠CAE=∠D,∠PAC=∠AOC,∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,∴AC2=DC×CE,AC2=OC×PC,即DC ×CE =OC ×PC ,设CE =x ,则DE =6+x ,OE =3+2x ,OC =3+2x -x =3-2x ,PC =4+x , ∴6x =(3-2x )( 4+x ), 整理得:x 2+10x -24=0,解得:x =2(负值已舍).∴CE 的长为2.6. 【答案】(1)14449y x= (2)1322y x =-+ 【分析】(1)根据,A B 的坐标,可得直线AB 的解析式,根据题意点P 为y x =与AB 的交点,求得交点P 的坐标,即可求解;(2)设()0,N n ,04n ≤≤,根据题意求得5AB =,根据轴对称的性质结合图形求得,,BM MN BN ,在Rt BMN △中,222BN BM NM =+即可求得n 的值,进而待定系数法求解析式即可求解.(1)()3,0A 、()0,4B设直线AB 的解析式为y kx b =+,则304k b b +=⎧⎨=⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, 则直线AB 的解析式为443y x =-+, 以点P 为圆心的圆与两条坐标轴都相切,则P P x y =,∴点P 为y x =与AB 的交点,443y x y x⎧=-+⎪∴⎨⎪=⎩, 解得127127x y ⎧=⎪⎪⎨⎪=⎪⎩, 则1212,77P ⎛⎫ ⎪⎝⎭, 设点P 的反比例函数表达式为2k y x =,则214449k =,∴14449y x=; (2) 设()0,N n ,04n ≤≤将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,ON OM ∴=,OA AM =()3,0A 、()0,4B3,4OA OB ∴==Rt AOB △中,5AB2BM AB AM AB AO ∴=-=-=,MN ON n ==,4BN n =-在Rt BMN △中,222BN BM NM =+即()22242n n -=+ 解得32n = 则30,2N ⎛⎫ ⎪⎝⎭设直线AN 的解析式为y sx t =+ 则3032s t t +=⎧⎪⎨=⎪⎩ 解得1232s t ⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线AN 的解析式为1322y x =-+. 7. 【答案】(1)相切,原因见解析(2)①sin DBC ∠=4sin 5ABC ∠=;②sin 22sin cos ααα=,验证见解析 【分析】(1)连接OD ,根据角之间的关系可推断出//OD BC ,即可求得ODA ∠的角度,故可求出圆与边的位置关系为相切;(2)①构造直角三角形,根据角之间的关系以及边长可求出sin DBC ∠,sin ABC ∠的值;②先表示出来sin DBC ∠、cos DBC ∠和sin ABC ∠的关系,进而猜测sin 2α与sin α,cos α的关系,然后将30α=︒代入进去加以验证. (1)解:连接OD ,如图所示∵BD 为ABC ∠的角平分线∴ABD CBD ∠=∠又∵O 过点B 、D ,设O 半径为r∴OB =OD =r∴ODB OBD CBD ∠=∠=∠∴//OD BC (内错角相等,两直线平行)∵OD AC ⊥∴AC 与O 的位置关系为相切.(2)①∵BC =3,32CD =∴BD ==∴sin CD DBC BD ∠== 过点D 作DF AB ⊥交于一点F ,如图所示∴CD =DF (角平分线的性质定理)∴BF =BC =3∴OF =BF -OB =3-r ,32OF CD == ∴222OD OF DF =+即2223(3)()2r r =-+ ∴158r = ∵//OD BC∴ABC FOD ∠=∠∴4sin sin 5DF ABC FOD OD ∠=∠==∴4sin 5DBC ABC ∠=∠=;②cos CB DBC BD ∠==∴2sin cos 5DBC DBC ∠⨯∠== ∴sin 2sin cos ABC DBC DBC ∠=∠⨯∠猜测sin 22sin cos ααα=当30α=︒时260α=︒∴sin 2sin 60α=︒=1sin sin 302α=︒=cos cos30α=︒=∴1sin 22sin cos 2sin 22αααα==⨯== ∴sin 22sin cos ααα=.8. 【答案】(1)见解析(2)3【分析】(1)连接AD 、OD ,根据等腰三角形的性质可证得2C ∠=∠,根据平行线的判定与性质可证得PE OD ⊥,然后根据切线的判定即可证得结论;(2)根据含30°角的直角三角形的性质求得CD 、CE 即可.(1)证明:连接AD 、OD ,记1ABD ∠=∠,2ODB ∠=∠,∵DE AC ⊥,∴90CED ∠=︒.∵AB AC =,∴1C ∠=∠.∵OB OD =,∴12∠=∠,∴2C ∠=∠,∴OD AC ∥,∴90ODE CED ∠=∠=︒,∴PE OD ⊥,又∵OD 是⊙O 的半径,∴直线PE 是⊙O 的切线.(2)连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴AD BC ⊥.又∵AB AC =, ∴12CD BC =, ∵30P ∠=︒,90PEA ∠=︒,∴60PAE ∠=︒,又∵AB AC =,∴ABC 为等边三角形,∴60C ∠=°,12==BC AB , ∴126CD BC ==, 在Rt CDE △中,∵cos CE C CD =, ∴1cos60632CE CD =︒=⨯=.9. 【答案】(1)相切,见解析(2)6DE =【分析】(1)先证得:90ODC ODE ∠=∠=︒,再证ODE OBE ≌,得到90OBE ODE ∠=∠=︒,即可求出答案;(2)设半径为r ;则:2224(2)r r +=+,即可求得半径,再在直角三角形CBE 中,利用勾股定理222BC BE CE +=,求解即可.(1)证明:连接OD .∵CD 为O 切线,∴90ODC ODE ∠=∠=︒,又∵OE AD ∥,∴DAO EOB ∠=∠,ADO EOD ∠=∠,且ADO DAO ∠=∠,∴EOD EOB ∠=∠,在ODE 与OBE △中;∵OD OB EOD EOB OE OE =⎧⎪∠=∠⎨⎪=⎩,∴ODE OBE ≌,∴90OBE ODE ∠=∠=︒,∴直线BE 与O 相切.(2)设半径为r ;则:2224(2)r r +=+,得3r =;在直角三角形CBE 中,222BC BE CE +=,222(233)(4)DE DE +++=+,解得6DE = 10. 【答案】(1)证明见解析(2)证明见解析(3)tan ∠OAC 34=【分析】(1)如图,过O 作OH AB ⊥于,H 证明,OC OH 即可得到结论;(2)证明,ACE OCD ODC 再结合,CAE DAC 从而可得结论;(3)由相似三角形的性质可得1,2AE AC AC AD == 设,AE x = 则2,4,AC x AD x 而12,ADAE DE x 从而建立方程求解x ,从而可得答案.(1) 证明:如图,过O 作OH AB ⊥于,H∠ACB =90°,AO 是△ABC 的角平分线,,OC OHO 为圆心,OC 为半径,AB ∴是⊙O 的切线.(2)如图,连结CE ,DE 为O 的直径,90,DCE DCO OCE 90,ACB ACE BCE ,DCO ACE ,OD OC =,ODC OCD ∴∠=∠,ACE ADC ,CAE DAC .ACE ADC ∽(3) ,ACE ADC ∽1,2AE AC =1,2AE AC AC AD 设,AE x = 则2,4,AC x AD x 而12,AD AE DE x412,x x 解得4,x =4,8,16,AE AC AD∴ tan ∠OAC 63=.84OCAC11. 【答案】(1)45CAB ∠=︒,AC =(2)FD =【分析】(1)由圆周角定理得90ACB ∠=︒,由C 为AB 的中点,得AC BC =,从而AC BC =,即可求得CAB ∠的度数,通过勾股定理即可求得AC 的长度; (2)证明四边形ECFD 为矩形,FD =CE =12CB ,由勾股定理求得BC 的长,即可得出答案.(1)∵AB 为O 的直径,∴90ACB ∠=︒,由C 为AB 的中点,得AC BC =,∴AC BC =,得ABC CAB ∠=∠,在Rt ABC 中,90ABC CAB ∠+∠=︒,∴45CAB ∠=︒;根据勾股定理,有222AC BC AB +=,又6AB =,得2236AC =,∴AC =(2)∵FD 是O 的切线,∴OD FD ⊥,即90ODF ∠=︒, ∵OD CB ⊥,垂足为E ,∴190,2CED CE CB ∠=︒=,同(1)可得90ACB ∠=︒,有90FCE ∠=︒,∴90FCE CED ODF ∠=∠=∠=︒,∴四边形ECFD 为矩形,∴FD CE =,于是12FD CB =,在Rt ABC 中,由6,2AB AC ==,得CB =,∴FD =12. 【答案】(1)见解析(2) 【分析】(1)连接,DF OF ,设ODF OFD ∠=∠β=,OFC α∠=,根据已知条件以及直径所对的圆周角相等,证明90αβ+=︒,进而求得,DFG DFO αβ∠=∠=,即可证明FG 是O 的切线;(2)根据已知条件结合(1)的结论可得四边形GEOF 是正方形,进而求得DC 的长,根据BFG FDC β∠=∠=,sin GB FC BF DCβ==,即可求解. (1)如图,连接,DF OF , OF OD =,则ODF OFD ∠=∠,设ODF OFD ∠=∠β=,OFC α∠=,OF OC =,OFC OCF α∴∠=∠=, DC 为O 的直径,90DFC ∴∠=︒,90DFO OFC DFC ∴∠+=∠=︒,即90αβ+=︒,AB AC =,B ACB α∴∠=∠=,FG AB ⊥,9090GFB B αβ∴∠=︒-∠=︒-=,90DFB DFC ∠=∠=︒,9090DFG GFB βα∴∠=︒-∠=︒-=,90GFO GFD DFO αβ∴∠=+=+=︒, OF 为O 的半径,FG ∴是O 的切线; (2)如图,连接OE ,AB 是O 的切线,则OE AB ⊥,又,OF FG FG AB ⊥⊥,∴四边形GEOF 是矩形,OE OF =,∴四边形GEOF 是正方形,12GF OF DC ∴==, 在Rt GFB △中,1BG =,3BF =,FG ∴DC ∴=由(1)可得BFG FDC β∠=∠=,,FG AB DF FC ⊥⊥,sin GB FC BF DC β∴==, ∴13解得FC =. 13. 【答案】(1)见解析(2)见解析(3)点O 到AD 的距离为【分析】(1)连接OD ,证明OD BC ,则OD DP ⊥,即可得证;(2)由BC DP ∥,ACB ADB ∠=∠,可得P ADB ∠=∠,根据四边形ABDC 为圆内接四边形,又180∠+∠=︒DCP ACD ,可得ABD DCP ∠=∠,即可证明ABD △∽DCP ;(3)过点O 作OE AD ⊥于点E ,由ABD △∽DCP ,根据相似三角形的性质可求得CP ,证明BAD ∽DAP ,继而求得,AD ED ,在Rt OED 中,利用勾股定理即可求解.(1)证明:连接OD ,∵AD 平分BAC ∠,∴BAD DAC =∠,∴BD DC =.又∵BC 为直径,∴O 为BC 中点,∴OD BC .∵BC DP ∥,∴OD DP ⊥.又∵OD 为半径,∴PD 是O 的切线; (2)证明:∵BC DP ∥,∴ACB P ∠=∠.∵ACB ADB ∠=∠,∴P ADB ∠=∠.∵四边形ABDC 为圆内接四边形,∴180ABD ACD ∠+∠=︒.又∵180∠+∠=︒DCP ACD ,∴ABD DCP ∠=∠,∴ABD △∽DCP .(3)过点O 作OE AD ⊥于点E ,∵BC 为直径,∴90BAC ∠=︒.∵6AB =,8AC =,∴10BC =.又∵BD DC =,∴22222BD DC BD BC +==,∴BD DC ==由(2)知ABD △∽DCP , ∴AB BD DC CP=, ∴502563BD DC CP AB ⋅===, ∴2549833AP AC CP =+=+=. 又∵ADB ACB P ∠=∠=∠,BAD DAP ∠=∠,∴BAD ∽DAP , ∴AB AD AD AP=, ∴298AD AB AP =⋅=,∴AD =∵OE AD ⊥,∴12ED AD ==.在Rt OED 中,OE =,∴点O 到AD 的距离为.14. 【答案】(1)直线AF 与⊙O 相切.理由见解析(2)66π.【分析】(1)连接OC ,证明△AOF ≌△COF (SAS ),由全等三角形的判定与性质得出∠OAF =∠OCF =90°,由切线的判定可得出结论;(2)由直角三角形的性质求出∠AOF =30°,可得出AE =12OA =3,则可求出答案;(3)证明△AOC 是等边三角形,求出∠AOC =60°,OC =6,由三角形面积公式和扇形的面积公式可得出答案.(1)直线AF 与⊙O 相切.理由如下:连接OC ,∵PC 为圆O 切线,∴CP ⊥OC ,∴∠OCP =90°,∵OF ∥BC ,∴∠AOF =∠B ,∠COF =∠OCB ,∵OC =OB ,∴∠OCB =∠B ,∴∠AOF =∠COF ,∵在△AOF 和△COF 中,OA OC AOF COF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△COF (SAS ),∴∠OAF =∠OCF =90°,∴AF ⊥OA ,又∵OA 为圆O 的半径,∴AF 为圆O 的切线;(2)∵△AOF ≌△COF ,∴∠AOF =∠COF ,∵OA =OC ,∴E 为AC 中点, 即1,2AE CE AC OE AC ==⊥,∵∠90,6,OAF OA AF ︒===∴tan AF AOF OA ∠===, ∴∠AOF =30°, ∴132AE OA ==,∴26AC AE ==;(3)∵AC =OA =6,OC =OA ,∴△AOC 是等边三角形,∴∠AOC =60°,OC =6,∵∠OCP =90°,∴CP ==∴S △OCP=2116066622360AOC OC CP S ππ⋅⨯⋅=⨯⨯==扇形, ∴阴影部分的面积=S △OCP ﹣S 扇形AOC=6π.15. 【答案】(1)证明见解析(2)【分析】(1)由切线的性质和BC EF ∥可得AD BC ⊥,由垂径定理可得BG CG =,从而得到AD 垂直平分BC ,最后利用垂直平分线的性质即可得证;(2)先利用勾股定理得到BD =AGB BGD △∽△,从而得到AB BG BD DG =,代入数据计算即可. (1)证明:∵直线EF 切O 于点A ,AD 是O 的直径, ∴AD EF ⊥,∴90DAE DAF ∠=∠=︒,∵BC EF ∥,∴90DGB DAE ∠=∠=︒,∴AD BC ⊥,∴BG CG =,∴AD 垂直平分BC ,∴AB AC =;(2)如图,连接BD ,由(1)知:AD BC ⊥,BG CG =,∴90DGB AGB ∠=∠=︒,∵16DG BC ==, ∴182BG BC ==,在Rt DGB 中,BD == ∵AD 是O 的直径,∴90ABD ∠=︒, ∴90ABG DBG ∠+∠=︒,又∵90BDG DBG ,∴ABG BDG ∠=∠,又∵90DGB AGB ∠=∠=︒∴AGB BGD △∽△, ∴AB BG BD DG =, 即816,∴AB =即AB 的长为16. 【答案】(1)见解析;(2)3【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OB CF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值.(1)证明:连接OC ,∵AB 为O 的直径,∴∠ACB =90°,∴∠ACO +∠OCB =90°,∵OA =OC ,∴∠A =∠ACO ,∵BCD BAC ∠=∠,∴∠BCD =∠ACO ,∴∠BCD +∠OCB =90°,∴OC ⊥CD ,∴CD 是O 的切线. (2)解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x ,∴BE =BC -CE =1.5x ,∵∠C =90°,∴AC3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠=1.530.5OF x EF x ==.17. 【答案】(1)见解析(2)BC =(3)23π【分析】(1)连接OC ,先证明OC BD ∥,然后由平行线的性质和等腰三角形的性质,即可证明结论成立;(2)证明△ABC ∽△CBD 即可,根据题目中的条件,可以得到∠ABC =∠CBD ,∠ACB =∠D ,从而可以得到△ABC ∽△CBD ,即可求出BC 的长度;.(3)先证明△AOC 是等边三角形,然后求出扇形AOC 和△AOC 的面积,即可得到答案(1)证明:连接OC ,如图∵CD 与O 相切于点C ,∴OC CD ⊥∵BD CD ⊥,∴OC BD ∥∴OCB DBC ∠=∠.又∵OC OB =,∴OCB OBC ∠=∠,∴DBC OBC ∠=∠,∴BC 平分ABD ∠.(2)解:根据题意,∵线段AB 是直径,∴90ACB D ∠=︒=∠,∵BC 平分ABD ∠,∴∠ABC =∠CBD ,∴△ABC ∽△CBD , ∴AB BC CB BD=, ∵3BD =,4AB =,∴23412BC =⨯=,∴BC =(3)解:作CE ⊥AO 于E ,如图:在直角△ABC 中,2AC ==,∴2AO AC CO ===,∴△AOC 是等边三角形,∴60AOC ∠=︒,1OE =, ∴CE∴阴影部分的面积为:260212236023S ππ⨯⨯=-⨯= 18. 【答案】(1)见解析(2)15 8【分析】(1)连接OD,由CD平分∠ACB,可知AD BD=,得∠AOD=∠BOD=90°,由DF是切线可知∠ODF=90°=∠AOD,可证结论;(2)过C作CM⊥AB于M,已求出CM、BM、OM的值,再证明△DOF∽△MCO,得CM OMOD FD,代入可求.(1)证明:连接OD,如图,∵CD平分∠ACB,∴AD BD=,∴∠AOD=∠BOD=90°,∵DF是⊙O的切线,∴∠ODF=90°∴∠ODF=∠BOD,∴DF∥AB.(2)解:过C作CM⊥AB于M,如图,∵AB是直径,∴∠ACB=90°,∴AB2222(25)(5)5BC.∴1122AB CM AC BC=,即115255 22CM,∴CM=2,∴2222(5)21BM BC CM,∴OM=OB-BM=135122,∵DF∥AB,∴∠OFD=∠COM,又∵∠ODF=∠CMO=90°,∴△DOF∽△MCO,∴CM OM OD FD,即32252FD,∴FD=158.19. 【答案】(1)见解析(2)见解析【分析】(1)连接AD,得到∠ADF+∠FDC=90°,由DF⊥AC,得到∠ADF+∠DAF=90°,再由CD=DE,可推出∠DCE=∠FDC,即可证明CG=DG;(2)要证明BD是⊙O的切线,只要证明OD⊥BD,只要证明BD∥CE,通过计算求得sin∠B=35,即可证明结论.(1)证明:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,则∠ADF+∠FDC=90°,∵DF⊥AC,∴∠AFD=90°,则∠ADF+∠DAF=90°,∴∠FDC=∠DAF,∵CD=DE,∴∠DCE=∠DAC,∴∠DCE=∠FDC,∴CG=DG;(2)证明:连接OD,设OD与CE相交于点H,∵CD=DE,∴OD⊥EC,∵DF⊥AC,∴∠ODF=∠OCH=∠ACE,∵3 sin5ACE∠=,∴sin∠ODF=sin∠OCH=35,即OF OHOD OC==35,∴OF=185,由勾股定理得DF=245,FC=OC-OF=125,∴FB= FC+BC=325,由勾股定理得DB=405=8,∴sin∠B=2458DFBD==35,∴∠B=∠ACE,∴BD∥CE,∵OD⊥EC,∴OD⊥BD,∵OD是半径,∴BD是⊙O的切线.20. 【答案】(1)PC与⊙O相切,理由见解析(2)9【分析】(1)先证明∠ACB=90°,然后推出∠PCB=∠OCA,即可证明∠PCO=90°即可;(2)先证明12BC AC =,再证明△PBC ∽△PCA ,从而求出=41PA PB =,,AB =3,32OC OB ==,52OP =,最后证明△PBC ∽△POD ,求出10PD =,则CD =6,由此求解即可.(1)解:PC 与⊙O 相切,理由如下:∵AB 是圆O 的直径,∴∠ACB =90°,∴∠OCB +∠OCA =90°,∵OA =OC ,∴∠OCA =∠OAC ,∵∠PCB =∠OAC ,∴∠PCB =∠OCA ,∴∠PCB +∠OCB =∠OCA +∠OCB =90°,即∠PCO =90°,∴PC 与⊙O 相切;(2)解:∵∠ACB =90°,1tan =2A , ∴12BC AC =, ∵∠PCB =∠OAC ,∠P =∠P ,∴△PBC ∽△PCA , ∴1=2PC PB BC PA PC CA ==, ∴=82PA PB =,,∴AB =6,∴3OC OB ==,∴5OP =,∵BC OD ∥,∴△PBC ∽△POD , ∴PB PC OP PD =,即245PD=, ∴10PD =,∴CD =6, ∴192OCD S OC CD =⋅=. 21. 【答案】(1)⊙M 与x 轴相切,理由见解析(2)6(3)122y x=-+【分析】(1)连接CM,证CM⊥x即可得出结论;(2)过点M作MN⊥AB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN 值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可.(1)解:⊙M与x轴相切,理由如下:连接CM,如图,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半径,点C在x轴上,∴⊙M与x轴相切;(2)解:如图,过点M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四边形OCMN是矩形,∴MN=OC,ON=C M=5,∵OA+OC=6,设AN=x,∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC===∵BD是⊙M的直径,∴∠BCD =90°,BD =10,在Rt △BCD 中,∠BCD =90°,由勾股定理,得CD=CD 2=20,在Rt △CPD 中,由勾股定理,得PD 2=CD 2-CP 2=20-CP 2,在Rt △MPD 中,由勾股定理,得PD 2=MD 2-MP 2=MD 2-(MC -CP )2=52-(5-CP )2=10CP -CP 2,∴20-CP 2=10CP -CP 2,∴CP =2,∴PD 2=20-CP 2=20-4=16,∴PD =4,即D 点横坐标为OC +PD =4+4=8,∴D (8,-2),设直线CD 解析式为y =kx +b ,把C (4,0),D (8,-2)代入,得4082k b k b +=⎧⎨+=-⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为:122y x =-+. 22. 【答案】(1)见解析(2)①见解析;【分析】 (1)根据圆周角定理可得∠BOD =2∠BAC =90°,再由OD ∥BC ,可得CB ⊥OB ,即可求证;(2)①根据∠BOD =2∠BAC =90°,OB =OD ,可得∠BAC =∠ODB ,即可求证;②根据ABD DBE ∽,可得2BD AB BE =⋅,即26BD =,再由勾股定理,即可求解. (1)证明∶∵∠BAC =45°,∴∠BOD =2∠BAC =90°,∴OD ⊥OB ,∵OD ∥BC ,∴CB ⊥OB ,∵OB 为半径,∴直线BC 是⊙O 的切线;(2)解:①∵∠BAC =45°,∴∠BOD =2∠BAC =90°,OB =OD ,∴∠ODB =45°,∴∠BAC =∠ODB ,∵∠ABD =∠DBE ,∴ABD DBE ∽; ②∵ABD DBE ∽, ∴AB BD BD BE =, ∴2BD AB BE =⋅, ∵6AB BE ⋅=, ∴26BD =, ∵22222OD OB OB BD +==, ∴23=OB ,∴OB =即⊙O 的半径的长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形综合练习题
一、选择题
1:在下列命题中,正确的是( )
A .一组对边平行的四边形是平行四边形
B .有一个角是直角的四边形是矩形
C .有一组邻边相等的平行四边形是菱形
D .对角线互相垂直平分的四边形是正方形
2:如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )。

A .4 B .3 C .2 D .1
3:如图,在菱形
ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形
ABCD 的周长为( ) A .16a B .12a
C .8a
D .4a
4.对角线互相垂直平分的四边形是( )
A .平行四边形、菱形
B .矩形、菱形
C .矩形、正方形
D .菱形、正方形
5.顺次连接菱形各边中点所得的四边形一定是( )
A .等腰梯形
B .正方形
C .平行四边形
D .矩形
6.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形
7.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( )
A .
B . C

D .8
8.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若
22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )
A .6个
B .5个
C .4个
D .3个
D
C
B
A A






E D A
B 22.5
9. 如图,EF 过矩形的对角线交点O ,且分别交AB 、CD 于E 、F ,如果阴影部分的面积为12,那么矩形的面积为( )
A .60
B .48
C .40
D .36
10. 如图所示:将一张矩形纸片ABCD 的角C 沿着GF 折叠(F 在BC 边上,不与B 、C 重合)使得C 点落在矩形ABCD 内部的E 处,FH 平分∠BFE ,则∠GFH 的度数α满足( )
A .90°<α<180°
B .α=90°
C .0°<α<90°
D .α随着折痕位置的变化而变化
A
B
C
D E
H
G
F
二、填空题
1.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长
为1,则该菱形的面积为
2.如图,在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==,,则AC
的长为 .
3.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 .
4.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充一个条件能使菱形ABCD 成
为正方形,则这个条件是 (只填一个条件即可).
5.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .
6. 如果四边形ABCD 满足____________________条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).
7. 已知,如图所示,△ABC 三边的中点分别为D 、E 、F ,如果AB =6cm ,AC =8cm ,BC =10cm ,那么△DEF 的周长是__________cm .
A A D
B
O
B C
D
A
P
B
F C
D
E
G
B
C
D
A
B
C
D
A
B
C
D E
F
8.如图,把两个大小完全相同的矩形拼成“L ”型图案,则
FAC ∠= ,FCA ∠= .
9.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2
.cm
10.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米. (三)解答题
1. 已知:如图Rt △ABC 中,∠ACB =90°,CD 为∠ACB 的平分线,DE ⊥BC 于点E ,DF ⊥AC 于点F.
求证:四边形CEDF 是正方形.
2. 已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于 点F. 求证:四边形AEDF 是菱形.
3.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交
于E F ,.
(1)求证:BOE DOF △≌△; (2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.
4:已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并
延长交DE 于F .
(1)求证:BCG DCE △≌△

F D
O
C
B E
A
第12题图
B
C
(2)将DCE △绕点D 顺时针旋转90得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说
明理由. 5、如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且
PE=PB .
(1)求证:① PE=PD ; ② PE ⊥PD ;
6、如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.
(1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.
7.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.
(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________.
(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说
图4
C
A
D
B 图3
C
A
D
B 图2
D 1
C 1B 1
C
A
D
B 图1
30︒
30︒
B D
A
C
A
B
C
D E
F E '
G A
B
C
P
D
E
出你的结论和理由:_________________________________________.
(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______时,四边形ABC1D1为矩形,其理由是_____________________________________;当点B的移动距离为______时,四边形ABC1D1为菱形,其理由是_______________________________.(图3、图4用于探究)。

相关文档
最新文档