电力谐波分析设备中数据采集系统的设计分析

合集下载

电力系统谐波监测与抑制技术研究

电力系统谐波监测与抑制技术研究

电力系统谐波监测与抑制技术研究随着电力系统的快速发展和电子设备的广泛应用,电力质量问题日益突出。

其中,谐波是造成电力系统质量下降的一个重要因素。

谐波会导致电网设备的破坏、电力损耗的增加以及对用户设备的干扰等问题。

因此,电力系统谐波监测与抑制技术的研究和应用对提高电力系统的可靠性和质量至关重要。

一、谐波监测技术谐波监测是对电力系统中谐波分量进行实时监测和分析的过程。

通过谐波监测,可以了解电力系统中谐波的水平、频率和相位等信息,为进一步的谐波抑制提供依据。

1. 传统谐波监测技术传统的谐波监测技术通常采用数字示波器或功率分析仪等设备。

这些设备可以通过采集电流和电压波形,计算谐波的幅值和相位差等参数,并通过显示和记录的方式反映出谐波的情况。

然而,传统的谐波监测技术受到监测点有限、成本高昂以及数据处理复杂等限制。

2. 基于智能传感器的谐波监测技术近年来,随着传感器技术的发展,基于智能传感器的谐波监测技术得到了广泛应用。

这些智能传感器可以直接安装在电网设备上,实时采集电流和电压的波形数据,并通过无线通信传输给监测系统。

利用智能传感器,可以实现对电力系统多个监测点的谐波监测,提高监测的覆盖面和准确性。

二、谐波抑制技术谐波抑制技术是为了减少电力系统中谐波分量的水平,保持电力质量的稳定性和可靠性。

根据谐波抑制技术的原理和应用范围不同,可以分为有源谐波抑制和无源谐波抑制技术。

1. 有源谐波抑制技术有源谐波抑制技术是通过在电力系统中添加特定的电子器件,实时监测和控制电流和电压的波形,从而在电力系统中产生与谐波相反的波形,以抑制谐波。

有源谐波抑制技术具有响应速度快、抑制效果好等特点,但其设备成本高、容量有限等问题也需要解决。

2. 无源谐波抑制技术无源谐波抑制技术是通过改进电力系统的电网结构和设备设计,减少谐波的产生和传输,从而达到谐波抑制的目的。

无源谐波抑制技术可以通过限制谐波源的接入、加装滤波器和隔离变压器等设备来实现。

基于MATLAB的电力谐波分析

基于MATLAB的电力谐波分析

基于MATLAB的电力谐波分析电力谐波是电力系统中常见的问题,可以导致电力设备故障、能耗增加以及电压波形失真等不良效果。

因此,对电力谐波进行分析和处理具有重要意义。

MATLAB是一种功能强大的工具,可以用于电力谐波分析。

一、电力谐波的概念和原理电力谐波是指在电力系统中,超过基波频率的功率频率成分。

它们是由非线性负载引起的,如电弧炉、变频器等。

谐波会导致电压和电流波形变形,使得电压谐波、电流谐波和功率谐波产生,严重时会导致设备损坏。

电力谐波分析的主要原理是通过傅里叶级数展开,将非线性负载引起的电压和电流信号分解为基波和谐波成分。

然后,可以计算谐波分量的谐波电流、谐波电压、相角等信息。

根据这些信息,可以评估电力系统中谐波的程度,并采取适当的措施进行补偿和抑制。

二、MATLAB工具箱的使用MATLAB有多个工具箱可以用于电力谐波分析,包括基本的波形分析工具箱、信号处理工具箱和工具箱的傅里叶分析工具。

1.使用波形分析工具箱进行谐波分析在波形分析工具箱中,有多种函数可以用于谐波分析,如fft、ifft、spectrogram等。

通过调用这些函数,可以对电压和电流信号进行傅里叶变换,得到频率和幅值谱。

然后,可以从频谱中提取出谐波分量的频率、幅值等信息。

2.使用信号处理工具箱进行谐波分析信号处理工具箱提供了更多用于谐波分析的函数,如stft、wavelet 等。

通过调用这些函数,可以对电压和电流信号进行时频分析,得到谐波分量的时频特性。

此外,还可以通过滤波等方法对谐波信号进行补偿和抑制。

3.使用傅里叶分析工具进行谐波分析MATLAB的傅里叶分析工具提供了多种方法进行谐波分析,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。

通过调用这些函数,可以对电压和电流信号进行频域分析,得到谐波分量的频谱特性。

然后,可以计算谐波电流、谐波电压、相角等信息。

三、电力谐波分析的步骤进行电力谐波分析时,可以按照以下步骤进行:1.数据采集:使用合适的传感器采集电压和电流信号数据。

电网谐波分析及其建模

电网谐波分析及其建模

电网谐波分析及其建模电网谐波分析一般包括谐波检测、谐波分析和建模三个步骤。

首先,采用谐波分析仪或数据采集系统对电网进行全面的谐波检测,得到电网各节点的电压和电流波形,以及各谐波成分的幅值和相位信息。

其次,在得到谐波数据后,进行谐波分析,主要包括谐波频谱分析、谐波源识别和谐波水平评估。

通过谐波频谱分析可以了解电网谐波的频率成分和幅值情况;谐波源识别可以确定谐波产生的具体设备或负载;谐波水平评估可以评价谐波对电网设备的安全运行和电能质量的影响程度。

最后,根据谐波分析结果,建立电网谐波模型,以便对谐波进行仿真和预测,为电网的设计和运行提供参考依据。

建立电网谐波模型是电网谐波分析的关键步骤之一、电网谐波模型一般采用复数形式,可以分为节点模型和支路模型两种。

节点模型主要用于描述电网节点处的电压谐波情况,采用复数形式表示各谐波成分的相位和幅值;支路模型主要用于描述电网支路中的电流谐波情况,一般采用节点电压差法和支路等值法建立支路模型。

建立电网谐波模型的目的是为了了解电网各节点和支路上谐波的传播和衰减情况,以及谐波对电网设备的影响,进而采取相应的措施进行谐波补偿和谐波过滤。

电网谐波分析与建模在电力系统规划、设计和运行中起着重要的作用。

通过电网谐波分析和建模,可以了解电网谐波的产生和传播机理,预测潜在的谐波问题,指导电网的设计和建设;可以评估谐波对电网设备的影响,判断其安全运行的可行性;可以设计合理的谐波补偿和谐波过滤设备,提高电能质量,减小谐波对电网的危害。

因此,电网谐波分析与建模对于维护电网稳定运行和提高电能质量具有重要意义。

同时,随着电力电子设备和新能源接入电网的增多,电网谐波问题也日益突出,电网谐波分析和建模的研究和应用将变得越发重要。

电力系统谐波监测与分析系统设计与实现

电力系统谐波监测与分析系统设计与实现

电力系统谐波监测与分析系统设计与实现摘要:电力系统的谐波问题在实际运行中经常出现,并且对系统的稳定性和设备的运行状态有着重要影响。

因此,设计一个有效的电力系统谐波监测与分析系统是非常必要的。

本文针对这一问题进行了探讨,并提出了一个基于实时数据采集和信号处理的谐波监测与分析系统。

该系统可以实时监测电力系统中的谐波波形,并进行谐波分析,从而帮助电力系统的维护和运行。

1. 引言电力系统的谐波问题是一个普遍存在且重要的问题。

谐波是指电力系统中频率为基波频率整数倍的分量,由于现代电力系统中存在各种非线性负载和电力电子设备,谐波问题愈加严重。

谐波会导致系统中的电压和电流失真,并对设备的运行状态产生不良影响,甚至可能引起设备故障。

因此,建立一个有效的电力系统谐波监测与分析系统,对于电力系统的稳定运行和设备状态的评估十分重要。

2. 谐波监测与分析技术2.1 实时数据采集实时数据采集是谐波监测与分析系统的基础。

电力系统中的谐波信号是时变的,因此需要实时采集电流和电压信号。

常用的数据采集方式包括传统的电流互感器和电压互感器采集方法以及无线传感器网络技术。

传统的互感器方法已经被广泛应用于实际工程中,但存在着信号失真和受限于布线的问题。

无线传感器网络技术具有灵活性高、成本低等优点,逐渐成为一种重要的数据采集手段。

2.2 信号处理与谐波分析采集到的电流和电压信号需要进行信号处理和谐波分析。

常用的方法包括傅里叶变换、小波变换等。

傅里叶变换能够将时间域的信号转换为频率域的信号,分析出信号中各个频率的分量,但在非稳态情况下存在精度问题。

小波变换是一种时频分析方法,能够同时分析信号的时间和频率特性,因此能够更好地分析非稳态的谐波信号。

3. 谐波监测与分析系统设计与实现3.1 系统架构设计谐波监测与分析系统的设计需要考虑到数据采集、信号处理和分析结果展示等模块。

系统架构如下所示:(1) 数据采集模块:负责采集电力系统中的电流和电压信号。

基于FFT的电网谐波检测方法的研究

基于FFT的电网谐波检测方法的研究

基于FFT的电网谐波检测方法的研究1. 本文概述随着现代工业和科技的发展,电网的稳定性和电能质量越来越受到重视。

电网中的谐波污染问题,已成为电力系统运行和电能质量控制的重要课题。

快速傅里叶变换(Fast Fourier Transform,FFT)作为一种高效、精确的信号处理技术,已在电网谐波检测领域得到了广泛应用。

本文旨在研究基于FFT的电网谐波检测方法,以期为电力系统的稳定运行和电能质量的提升提供理论支持和技术参考。

本文首先对电网谐波产生的原因、危害及检测的必要性进行概述,明确研究的背景和意义。

随后,详细介绍FFT算法的基本原理及其在谐波检测中的应用,包括算法流程、计算精度和效率等关键问题。

在此基础上,本文将探讨不同类型的FFT算法及其在谐波检测中的适用性,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)及其改进算法等。

本文还将重点关注基于FFT的谐波检测技术在电网中的应用实例,分析其在实际检测中的性能表现和存在的问题。

通过对比不同方法的优缺点,本文将探讨如何优化FFT算法以提高谐波检测的准确性和实时性。

本文还将探讨现代智能算法在电网谐波检测中的应用前景,如神经网络、模糊逻辑等。

本文将总结基于FFT的电网谐波检测技术的最新研究进展,并对未来研究方向提出展望。

通过本文的研究,我们期望能为电力系统中的谐波检测提供新的理论视角和技术手段,为保障电网安全稳定运行和提升电能质量做出贡献。

2. 谐波检测的重要性与挑战随着现代工业与科技的发展,电网中非线性负载的使用日益广泛,如整流器、变频器、电弧炉等。

这些设备在运行过程中会产生大量的谐波电流,对电网造成污染,影响电能质量。

谐波不仅会增加电网的线路损耗,降低设备效率,还可能引发谐振,对电网造成危害。

准确、快速地检测电网中的谐波成分,对于维护电网的稳定运行、提高电能质量、保障设备的正常运行具有重要意义。

谐波检测面临着诸多挑战。

电网中的谐波成分复杂多变,且可能同时存在多种频率的谐波,这使得谐波检测需要具备高灵敏度和高分辨率。

电力系统中的电压谐波分析与抑制

电力系统中的电压谐波分析与抑制

电力系统中的电压谐波分析与抑制导言电力系统是现代社会不可或缺的基础设施,为民众提供电能支持。

然而,电力系统中存在着各种电力质量问题,其中之一便是电压谐波。

电压谐波是电力系统中的一种非线性现象,会对电力设备造成损害,影响设备的正常使用。

因此,电压谐波的分析与抑制成为电力系统运行和设备保护中的重要问题。

一、电压谐波的概念与产生原因1.1 电压谐波的定义电压谐波是指电力系统中电压波形中包含有频率大于基波频率(通常为50Hz或60Hz)的高次谐波成分。

这些高次谐波会导致电压波形失真,给电力设备带来损害。

1.2 电压谐波的产生原因电压谐波的产生与电力系统中存在的非线性负载有关。

例如,电弧炉、变频器、整流装置等都会引起电力系统中的非线性特性,进而产生电压谐波。

此外,电力系统中的短路故障和接地故障也会导致电压谐波。

二、电压谐波的影响与评估方法2.1 电压谐波的影响电压谐波会对电力设备产生多方面的影响。

首先,电压谐波会增加电力设备的损耗,缩短设备的寿命。

其次,电压谐波还会导致电力设备的热量增加,进一步加剧设备的老化程度。

此外,电压谐波还会引起设备的振动和噪声,对设备的正常工作造成干扰。

2.2 电压谐波的评估方法为了评估电压谐波的严重程度,通常会采用一些指标来描述。

常用的指标有谐波电压含量、总谐波畸变率等。

谐波电压含量用来描述各次谐波电压的幅度大小,总谐波畸变率则用来描述电压波形失真的程度。

三、电压谐波的分析方法3.1 谐波分析仪的原理谐波分析仪是用于电压谐波分析的关键设备。

它能够通过采集电压波形的实时数据,并进行频谱分析,得出各次谐波的含量和相位角。

同时,谐波分析仪还能显示电压波形的畸变程度,方便分析人员进行准确的判断。

3.2 谐波分析的实施步骤电压谐波的分析过程一般包括数据采集、频谱分析和结果判断三个步骤。

首先,需要使用谐波分析仪对电压波形进行实时数据采集。

然后,通过对采集数据进行频谱分析,得出各次谐波的含量和相位角。

电力系统谐波监测与分析技术研究与实现

电力系统谐波监测与分析技术研究与实现

电力系统谐波监测与分析技术研究与实现电力系统谐波指的是电网中频率为基波频率整数倍的电压和电流谐振,其对电力系统的稳定运行造成了一定的影响。

为了保障电力系统的稳定运行和用户用电质量,谐波监测与分析技术成为了当今电力系统研究的热点之一。

谐波产生的原因多种多样,包括非线性负载、变动频率的负载和电源电压波形失真等。

这些谐波会导致电力系统中电压和电流波形的畸变,甚至引起设备的过热和工作异常。

因此,及时监测和分析谐波情况对于电力系统稳定运行至关重要。

在电力系统谐波监测与分析技术的研究中,一种重要的方法是采用谐波监测仪器。

谐波监测仪器通过对电力系统中的电压、电流等信号进行采集与处理,能够实时监测谐波情况,并提供丰富的谐波参数。

通过对这些参数的分析,可以了解电力系统的谐波情况和谐波源的特征。

随着科学技术的不断进步,谐波监测仪器的技术也逐渐得到了提高。

目前市场上最常见的谐波监测仪器有功率质量分析仪、电能质量分析仪和谐波分析仪等。

这些仪器具有高精度、高灵敏度、宽测量范围和多功能等特点,能够满足不同电力系统的谐波监测与分析需求。

谐波监测与分析技术的研究不仅局限于仪器的开发,还包括对谐波源定位和谐波传播规律的探究。

通过谐波源定位技术,可以确定谐波源的位置和性质,进而采取针对性的措施来减少谐波的产生或抑制谐波的传播。

谐波传播规律的研究则可以从物理角度解释谐波在电力系统中的传输方式,为谐波监测与分析提供理论依据。

除了研究,实现谐波监测与分析技术也是电力系统领域的一项重要任务。

目前,国内外的电力系统谐波监测与分析技术应用已经取得了一定的成果。

在我国,一些重要的电力系统已经安装了谐波监测仪器,并建立了谐波监测与分析系统。

这些系统有效地监测了电力系统中的谐波情况,为谐波源的治理和电力系统的稳定运行提供了有效的手段。

在实现谐波监测与分析技术时,还面临着一些挑战。

首先,电力系统谐波监测与分析涉及到大量的数据采集、传输和处理,对仪器的计算能力和存储容量提出了更高的要求。

电能数据采集用户终端谐波分析及计量改进方法

电能数据采集用户终端谐波分析及计量改进方法

电能数据采集用户终端谐波分析及计量改进方法摘要:社会生产与生活中电费的收取是在电力系统采集到的电能计量信息基础上进行,因此,电力系统中电能的计量与采集准确与否至关重要。

在电学领域,谐波是指电流/电压中基波频率整数部分。

在电能计量过程中,如果电信号非工频(50Hz),则被视为谐波。

电网中一旦产生谐波,会破坏正弦电压的常规波形,导致电能异常损耗并可能进一步引发输送电系统故障。

在输送电中,如果谐波超过本线路总电压的30%,则会破坏负载平衡,发生集肤效应。

此时,如果不及时采取措施,就会对中性线施加电流,从而发生严重电力事故,如发电机跳闸、大面积停电等。

在智能电表使用过程中,如果要有效应对谐波危害,须首先做好谐波计量和分析工作。

关键词:电能数据采集;用户终端;谐波分析;计量改进1.谐波在电能质量受到的多种干扰因素中,谐波影响是最为普遍的。

当前,电力系统的非线性负荷正在快速增长,非线性负荷产生的谐波使电网谐波含量不断提高,导致电压、电流的波形发生畸变,进而使电网的电能质量出现问题,相关电气设备的正常运行受到影响。

电力系统中能产生非线性负荷的设备称为谐波源。

谐波按照来源的不同可分为电网侧谐波和用户侧谐波。

电网侧谐波一般为低频谐波,通常是40次以下的谐波,会对供电系统产生危害,导致电网供电效率下降、电容发热甚至烧毁等严重后果。

用户侧谐波一般为高频谐波,通常是40次以上的谐波,会损害用电设备,使其出现死机、效率低下、耗电增大、寿命下降等问题。

1.谐波下电能计量系统的误差分析2.1电子式电能表的谐波计量误差电能表总体可分为两类。

一类为机电式电能表,它由测量部件和电子部件构成,由于这种类型的电能表的波形信号发生装置采用脉冲信号发生的方式,因此也被称为感应式脉冲电能表。

另一类为电子式电能表(也称为固态式多功能电能表或静止式多功能电能表),这种电能表完全采用大规模集成芯片构成的电子电路实现。

目前,电子式多功能电能表逐渐成为市场的主流,得到了越来越广泛的应用。

基于FFT算法的电力谐波检测技术研究

基于FFT算法的电力谐波检测技术研究

基于FFT算法的电力谐波检测技术研究电力系统中的谐波是指频率为电源基波频率的整数倍的信号成分,其存在会对电网和电力设备造成不良影响。

因此,谐波检测和分析技术对于保证电力系统的稳定和安全运行至关重要。

其中,基于快速傅里叶变换(FFT)算法的谐波检测技术被广泛应用,具有高效、准确和实时的特点。

本文将对基于FFT算法的电力谐波检测技术进行研究,从算法的原理、实现方法和应用案例等方面进行探讨。

首先,介绍FFT算法的原理。

FFT算法是一种快速计算离散傅里叶变换的方法,通过将N点的离散信号转换为N/2点的两个离散信号,并重复迭代,最终实现对离散信号的频域表示。

利用FFT算法可以将时域信号转换为频域信号,并计算出各个频率成分的振幅和相位信息。

基于FFT算法的电力谐波检测技术主要分为两个步骤:数据采集和信号分析。

数据采集可以通过电力监测仪或传感器获取电流、电压等信号,并进行模拟到数字的转换。

信号分析则是基于FFT算法对采集到的数据进行处理,得到频率和振幅信息,并判断是否存在谐波。

在信号分析方面,首先需要对采集到的数据进行预处理,包括去直流分量、滤波等操作。

然后,利用FFT算法对预处理后的数据进行频域转换和谱分析,得到各个频率成分的振幅。

通过设置阈值和判据,可以判定是否存在谐波,并对谐波进行定位和分析。

基于FFT算法的电力谐波检测技术已经在电力系统中得到广泛应用。

例如,在电力质量监测中,可以利用FFT算法实时检测电网中的谐波情况,并对谐波进行分类和分析,有助于及时发现和解决电力系统中的谐波问题。

在电力设备的故障诊断中,也可以利用FFT算法检测设备运行时产生的谐波信号,分析其对设备性能的影响,并判断设备是否工作正常。

综上所述,基于FFT算法的电力谐波检测技术是一种高效、准确和实时的检测方法,在电力系统中具有重要的应用价值。

未来的研究可以进一步探索基于FFT算法的谐波检测技术在电力系统的应用,提高其检测和分析的准确性和可靠性。

电力系统中的谐波监测与滤波技术研究

电力系统中的谐波监测与滤波技术研究

电力系统中的谐波监测与滤波技术研究电力系统作为现代社会不可或缺的基础设施,在供电过程中可能会产生谐波现象,进而影响供电质量和设备的正常运行。

因此,对电力系统中的谐波进行监测与滤波技术的研究具有重要的意义。

本文将围绕电力系统中的谐波监测与滤波技术展开探讨和研究。

首先,我们来了解一下什么是谐波。

谐波是指信号中频率是基波频率的整数倍的分量,例如基波频率为50Hz的电力系统中,2倍频率就是100Hz的二次谐波。

谐波的产生是由于各种非线性负载对电网的影响,如电弧炉、调光器等。

谐波的存在会导致电压和电流的畸变,进而引起电网设备的损坏和电能的损耗,影响电力系统的稳定运行。

为了监测电力系统中的谐波,可以采用各种谐波监测技术。

其中,最常用的是谐波监测仪。

谐波监测仪是一种专门用于测量电力系统中各次谐波含量的仪器。

它可以通过电流与电压的采样,运用傅立叶变换等算法,将信号转换为频谱图,进而分析和确定谐波的类型和大小。

谐波监测仪具有高精度、高灵敏度和较大的测量范围等优点,可以帮助工程师全面了解电力系统中的谐波情况,并采取相应的措施进行处理。

与谐波监测技术相应的是谐波滤波技术。

谐波滤波技术的主要目的是通过滤除电力系统中的谐波成分,恢复电流和电压的纯正波形,并改善电力系统的供电质量。

谐波滤波器是实现谐波滤波技术的关键设备。

谐波滤波器根据谐波的类型和大小,采用不同的滤波电路和滤波器元件,通过串联或并联的方式与电力系统相连,使谐波通过滤波器绕过负载而流回电网中,从而达到滤波的效果。

在实际的工程应用中,电力系统中的谐波监测与滤波技术的研究具有一定的挑战和难度。

首先,电力系统中的谐波是非线性负载引起的,负载的变化会带来谐波产生频率的变化和谱中谐波含量的不确定性,这为谐波监测和滤波技术的研究带来了一定的复杂性。

其次,电力系统中的谐波会通过传输线和变压器等电力设备相互传递和耦合,需要考虑传输和耦合效应对谐波监测和滤波技术的影响,提高系统的抗干扰能力。

电力系统谐波监测与分析研究

电力系统谐波监测与分析研究

电力系统谐波监测与分析研究随着工业化与城市化进程的加快,电力系统的负荷逐渐增大,电气设备的频繁运行导致各种电力质量问题的出现,其中之一便是电力系统中产生的谐波问题。

谐波是电力系统中普遍存在的一种电磁干扰现象,它对电力设备的正常运行和生产安全造成了不可忽视的威胁。

因此,对电力系统中的谐波进行监测与分析研究显得尤为重要。

谐波是指频率为原有电网电源频率整数倍的电磁波,它主要由非线性负载引起,如电弧炉、变频器、电焊机、晶闸管等。

这些非线性负载会导致谐波电流和电压的产生,进而影响电力系统的稳定性和安全性。

在电力系统中,谐波不仅会引起电流、电压谐波失真,还会对电力设备造成损坏。

例如,电流谐波会导致电机的温升增加、转矩波动等问题,甚至引起设备的过载和烧毁;电压谐波则会导致电能计量不准确、设备的故障率增加等。

因此,对电力系统中的谐波进行监测与分析,可以及早发现问题,并采取相应的措施进行防范和处理,保障电力系统的稳定运行。

电力系统谐波监测与分析的研究内容主要包括以下几个方面。

首先,谐波监测与测量技术的研究是电力系统谐波研究的基础和前提。

通过使用高精度的谐波仪表和监测设备,可以对电力系统中的谐波进行准确的测量和监测。

同时,针对电力系统中不同类型的负载和设备,需要选择合适的监测点位和监测方法,以保证监测结果的准确性和可靠性。

其次,对谐波数据的采集、存储和管理进行研究。

电力系统谐波数据量大,因此需要建立科学的数据采集与存储系统,通过合理的数据管理和分析,可以为谐波问题的分析和解决提供有力的支持和依据。

第三,对电力系统谐波的特性和规律进行深入研究和分析。

谐波的特性和规律研究可以为谐波问题的诊断和预测提供基础。

通过对谐波的频谱特性、波形特征等进行分析,可以确定谐波的来源和影响程度,为进一步的问题解决提供指导。

最后,根据谐波监测与分析的研究结果,对电力系统中的谐波问题进行有效的控制和治理。

通过采取合理的谐波抑制措施,如添加谐波滤波器、优化电力系统结构等,可以有效降低电力系统中谐波的含量和影响,提高电力系统的质量和可靠性。

电力系统中的谐波分析技巧

电力系统中的谐波分析技巧

电力系统中的谐波分析技巧谐波是在电力系统中经常发生的一种现象。

它们是电力系统中除了基波(频率为50Hz或60Hz)外的其他频率成分。

谐波会导致电力系统中电压和电流的失真,进而影响系统的稳定性和运行质量。

因此,对谐波进行准确的分析和评估对于保障电力系统的正常运行至关重要。

本文将介绍电力系统中的谐波分析技巧,帮助读者更好地理解和处理谐波问题。

一、谐波分析的基本概念谐波分析是对电力系统中出现的谐波进行定量分析和评估。

其目的是确定谐波的源头、频率、振幅和相位等参数,以便采取相应的措施来减少谐波的影响。

谐波分析的基本工具是傅里叶级数和傅里叶变换,通过将谐波信号展开成一系列正弦函数的和,可以得到谐波的频率和振幅。

二、谐波分析的步骤1. 数据采集:首先需要采集电力系统中的电压和电流信号。

这可以通过专门的谐波分析仪器或传感器进行实时监测,也可以利用历史数据进行离线分析。

2. 信号处理:采集到的电压和电流信号需要进行预处理,包括滤波、去直流、采样等步骤。

滤波可以去除干扰信号,去直流可以使信号的均值为零,采样可以将连续信号转换为离散信号。

3. 傅里叶变换:对预处理后的信号进行傅里叶变换,将时域信号转换到频域。

傅里叶变换可以把信号分解成谐波的频率、振幅和相位信息,方便后续的分析和处理。

4. 谐波分析:对傅里叶变换得到的频谱进行分析,确定谐波的频率、振幅和相位等参数。

可以使用傅里叶级数展开法、阶梯逼近法等方法来拟合频谱,得到谐波的具体特征。

5. 故障诊断:根据谐波分析的结果,判断谐波是否达到了规定的限值,以及谐波的源头是否来自电力系统内部或外部设备。

如果谐波超过了限值,需要进一步诊断故障原因并采取相应的措施。

三、谐波分析的技巧1. 选择合适的谐波分析仪器:根据实际需求选择合适的谐波分析仪器,包括采样率、频率范围、精度等参数。

仪器的选择应考虑到分析任务的复杂性和精度要求。

2. 合理设置采样参数:采样率和采样时长是影响谐波分析结果的重要参数。

电能质量数据采集和谐波分析方法的实现_吴展遥

电能质量数据采集和谐波分析方法的实现_吴展遥

电能质量数据采集和谐波分析方法的实现吴展遥(江苏联合职业技术学院无锡机电分院 江苏无锡 214028)摘 要:针对电能质量分析问题,设计了基于DSP和CPLD的电能质量检测装置,完成对电网信号数据的实时采集和处理,介绍了系统的总体结构以及数据处理的方法。

为消除泄漏误差,采用锁相环电路实现对电网信号的同步采样。

为提高计算的准确性,采用基于加窗插值的FFT算法分析电力系统谐波,并对算法的实现进行了详细的描述。

关键词:同步采样;FFT;加窗插值算法;数据采集中图分类号:TM93 文献标识码:B 文章编号:10042373X(2006)232145203Implement of Data Sampling and H armonic Analysis for the Pow er SystemsWU Zhanyao(Wuxi Mechano2electronic Branch,Jiangsu Union Technical Institute,Wuxi,214028,China)Abstract:In this paper,a system based on DSP and CPLD is developed in order to analyze the power quality.The overall design of this system and the means of data processing are introduced.Due to the error of nonsynchronous sampling,the meth2 od of synchronous sampling based on PLL is applied.In order to improve accuracy of calculation,FF T algorithm based on win2 dow f unction and interpolation is used to analyze harmonic of the power systems.Finally,the realization of the algorithm is de2 scribed in detail.K eywords:synchronous sampling;FFT;window f unction algorithm;data acquisition收稿日期:2006207228 随着非线性设备的广泛应用以及现代工业自动化水平的不断提高,电能质量问题日益突出。

电力谐波动态监测系统的研究与设计

电力谐波动态监测系统的研究与设计
电压 信 号 , 路 经 过 A 6 0放 大 偏 置 以 后 作 为 一 D2 D P检测谐 波 电压 的输 入信 号 , 一路经 斯 密特 触 S 另 发 器整 形后送 锁 相控 制 电路 , 生一 个与被 测 电压 产
1 神 经 元 电力 谐 波 动 态 检 测 的 方 法
基 于 自适 应 噪声 对 消技 术 的神经 元 电力谐 波 动态 检测 方法 的原理 如 图 1所示 。 神经元 的学习规 则采 用最小 均 方 ( MS 算法 , L )
维普资讯
第2 8卷 第 18期 7
2 7年 8月 1 0 0 0日

力 系



Vo . No 78 1 28 .1
T lc m u i t n r l t cP w r ytm e o m nc i sf e r o e s e ao o E ci S e
收 稿 日期 :2 0 0 6—1 2—2 修 回 日期 :0 7—0 9; 20 2—0 8
同步 的控制 信 号 , 此 信 号 送 入 D P的 外 部 中断 将 S
控 制端 , 于 自动调整谐 波 电流 检测 算法 的计算 步 用
长 。D C H T的一次侧 对 应 于 负载 电流 i, 二 次 侧 其 输 出 的交流 电流 通 过采 样 电阻 转 换 成交 流 电压形
利 用 误 差 反 馈 信 号 e t 来 调 整 权 值 W ( ) 其 中 () t(
t ≤2 ) ≤i n 。经 过 若 干 次 迭 代 之 后 , 经 元 的 输 神 出 Y t 最佳 逼近 ( ) 而 系 统 的输 出 ( ) 最佳 () t, t则 逼近需 要 检测 的 i t 。 ) (
中 图分 类 号 : M 6 T 72 文献标识码 : A 文 章 编 号 :0 5— 6 1 2 0 ) 8— 0 1 0 10 7 4 ( 07 0 0 6 — 3

电网谐振接地方式数据采集系统的设计

电网谐振接地方式数据采集系统的设计
辑 器件 ATS 5 8 1 0 AS芯 片 。
2 系 统 硬 件 主 要 特 性 及 工 作 原 理
系 统所 使 用 的几 个 主 要 的硬 件 包 括 P 0 C14主 板 、 P D、 / CL AD
再 由低 压载 波信 道 进行 数据 传 输 到集 中器 。 由于 1台采 集器 可 以 思 想 就是 通过 硬件 手 段 , 比较 不 同载波 电能表 的接 收信 噪 比或 信
述, 并将这一方法应用 到智能消弧线 圈成套装置 中, 测量系统参数 安全、 简便 、 准确 , 电容 电流补偿 效果好。 关键 词: 谐振接地系 统; 数据采集 系统; C14总线; D模块 : P 0 A/ 采样中断
O 引 言
P 的 一种 , C 它具 有 如 下 优 点 : 积 小 、 分 紧凑 , 采用 模 块 化 结 体 十 并 构 , 耗低 , 线 易于 扩 充 , P I 功 总 与 C 标准 兼容 , 于高 速 数 据传 输 , 适
且具 有 高可 靠 性 以及 多操 作 系统 支 持等 优 点 。C L 复 杂 可编 程 P D(
逻辑 器 件) 于 大 规 模在 系统 可 编 程 专用 集 成 电路 , 有 高 密度 、 属 具
高速度 、 可靠 性等 特 点 , 高 因此 C L 应用 于 高速 /多 通 道数 据采 PD
D qnhg 。h iige znu ag cnudga no yi

电网谐 振接地 方式数据 采 集系统 的设 计
邓书举 常会军 曹 廷 根
( 南 许 继 电抗 器 有 限 公 司 , 南 许 昌 4 10 ) 河 河 6 0 0

要 : 要介绍 了一种谐振接 地 电网系统的数据 采集 的设 计思路 、 简 方法 , 数据采集 系统的组 成、 对 软硬 件设计 、 能特 点等方 面进行 了叙 功

电力系统谐波检测与分析方法研究

电力系统谐波检测与分析方法研究

电力系统谐波检测与分析方法研究引言:电力系统中的谐波问题一直是一个引发关注的重要议题。

谐波是电力系统中的一个普遍存在的问题,它来源于非线性负载和谐波产生设备。

随着电子设备的普及和复杂化,谐波问题对电力质量和设备的正常运行产生越来越大的影响。

因此,电力系统谐波检测与分析方法的研究具有重要的实际意义。

1. 谐波检测方法1.1 采集数据为了进行谐波分析,首先需要采集谐波数据。

目前,常用的方法有两种:直接测量和间接测量。

直接测量方法是通过安装具有谐波分析功能的仪器进行现场测量。

这种方法的优点是准确性高,能够直接采集原始波形数据,可以观察到谐波的详细特征。

然而,直接测量方法的缺点是成本高昂且不适用于长期在线检测。

间接测量方法是通过采集电力系统中的其他参数间接推断谐波情况。

例如,可以通过检测电流或电压波形的畸变程度来判断谐波的存在。

这种方法的优点是成本低廉且适用于在线检测,但无法获取准确的谐波波形数据。

1.2 谐波分析方法谐波分析是对采集到的谐波数据进行处理,并进一步分析谐波的来源和影响。

常用的谐波分析方法包括时域分析、频域分析和小波分析。

时域分析是通过观察波形时间序列中的谐波成分来判断谐波问题。

时域分析可以直观地展示谐波的幅值和相位关系,但无法提供频率和频谱信息。

频域分析通过将时域波形转换为频域信号,利用傅里叶变换等数学方法得到波形的频率和幅值信息。

频域分析能够精确获得谐波分量的频率和幅值,但无法提供时间域的波形信息。

小波分析结合了时域分析和频域分析的优势。

通过小波变换,可以同时获取时域和频域的信息,能够更全面地分析谐波问题。

2. 谐波分析结果与效果评估谐波分析的结果需要进行效果评估,以判断谐波对电力系统的影响程度和采取相应措施的紧迫性。

2.1 谐波影响评估谐波的影响主要体现在两个方面:对电力系统设备的损坏和对电力质量的影响。

对设备的损坏主要表现为增加了设备的能量损耗和导致设备寿命缩短。

例如,变压器中的谐波电流会产生导磁损耗和铜损耗,使变压器温升增加,进而影响设备的使用寿命。

煤矿电力系统谐波分析及治理

煤矿电力系统谐波分析及治理

煤矿电力系统谐波分析及治理随着煤矿企业的不断发展壮大,电力系统也逐渐成为煤矿企业生产中不可或缺的重要环节。

然而在电力系统中,谐波问题一直是煤矿企业面临的重要挑战之一。

谐波问题会对电力设备、生产设备和工作环境造成严重影响,因此煤矿企业急需对电力系统进行谐波分析和治理,以确保生产的正常运行和员工的安全。

一、谐波产生的原因1. 非线性负载:在煤矿企业的生产过程中,经常会有大量的非线性负载如变频器、整流器、电弧炉等,这些负载会引起谐波的产生。

非线性负载导致电流波形不再是正弦波,而是包含有大量谐波成分的波形。

2. 高压电力设备:煤矿企业通常采用高压电力设备来确保能源传输的远距离和大功率传输,在这种情况下,电力系统中谐波的产生更为严重。

3. 并联运行的设备:煤矿企业生产的设备通常是相互关联并联运行的,这样会导致电力系统中谐波的相互干扰。

二、谐波对煤矿电力系统的影响1. 对电力设备的影响:谐波会导致电力设备温升升高、绝缘老化、电机转矩波动等问题,严重时还会导致电力设备的故障,增加了维护成本和生产成本。

2. 对生产设备的影响:谐波会导致生产设备的转矩波动、振动增大,甚至损坏设备,影响了煤矿企业的生产效率和生产质量。

3. 对工作环境的影响:谐波会导致照明设备的闪烁、电磁辐射增加,给员工的工作环境带来不适和安全隐患。

对于煤矿企业的电力系统,谐波分析是非常重要的一步,只有通过深入的谐波分析,才能找出谐波产生的根本原因,采取合理的措施来解决谐波问题。

1. 谐波测试仪器的选择:在进行谐波分析之前,需要选用合适的谐波测试仪器对电力系统进行测试,检测谐波的频率、幅值、相位等参数。

2. 数据采集与分析:利用谐波测试仪器进行数据采集,对电力系统的谐波进行分析,找出谐波的产生原因和谐波的主要特性。

3. 谐波问题的诊断:通过对谐波数据的分析和对电力设备、生产设备的影响分析,可以对谐波问题进行准确定位,找出谐波问题的具体来源。

1. 选择合适的滤波设备:根据谐波测试分析的结果,选择合适的滤波设备来抑制电力系统中的谐波。

电力系统谐波检测算法研究与实现

电力系统谐波检测算法研究与实现

电力系统谐波检测算法研究与实现一、本文概述随着电力电子技术的快速发展和广泛应用,电力系统中的谐波问题日益突出,谐波的存在对电力系统的安全、稳定、经济运行构成了严重威胁。

对电力系统谐波的有效检测与抑制成为了当前研究的热点和难点。

本文旨在深入研究和实现电力系统谐波检测算法,为电力系统的谐波治理提供理论支持和技术保障。

本文首先介绍了谐波的基本概念、产生原因及其对电力系统的影响,阐述了谐波检测的重要性和紧迫性。

接着,综述了目前国内外在谐波检测领域的研究现状和发展趋势,指出了现有算法的优点和不足。

在此基础上,本文提出了一种基于快速傅里叶变换(FFT)和小波变换(WT)相结合的电力系统谐波检测算法,并详细阐述了该算法的基本原理、实现步骤和性能优势。

本文的研究内容包括但不限于:谐波信号的数学模型建立、谐波检测算法的设计与优化、仿真实验与结果分析等方面。

通过理论分析和实验验证,本文所提算法在谐波检测的准确性、实时性和鲁棒性等方面均表现出较好的性能,为电力系统的谐波治理提供了有效的技术手段。

本文的研究成果不仅具有重要的理论价值,而且具有广泛的应用前景。

未来,我们将继续深入研究和完善谐波检测算法,推动其在电力系统中的应用和推广,为保障电力系统的安全、稳定、经济运行做出更大的贡献。

二、谐波检测算法的理论基础在电力系统中,谐波是指频率为基波频率整数倍的电压或电流分量。

谐波的存在会对电力系统的稳定性、设备的正常运行以及电能质量产生不良影响。

对电力系统中的谐波进行准确检测和分析至关重要。

谐波检测算法的理论基础主要涉及傅里叶变换、滤波器设计以及信号处理技术等方面。

傅里叶变换是谐波检测中最常用的数学工具。

通过将时域信号转换为频域信号,可以清晰地观察到各次谐波分量的幅值和相位。

快速傅里叶变换(FFT)是实际应用中最常用的算法,它能够在短时间内完成大量的数据处理,提高谐波检测的实时性。

滤波器是谐波检测中常用的硬件或软件设备,用于提取特定频率的谐波分量。

电力系统谐波和间谐波检测方法综述

电力系统谐波和间谐波检测方法综述

电力系统谐波和间谐波检测方法综述一、本文概述随着电力电子技术的快速发展和广泛应用,电力系统中的谐波和间谐波问题日益严重,对电力系统的安全、稳定、经济运行构成了严重威胁。

因此,研究和发展有效的谐波和间谐波检测方法,对于提高电力系统的供电质量、保护电力设备和促进节能减排具有重要意义。

本文旨在对电力系统谐波和间谐波的检测方法进行全面的综述,分析各种方法的原理、特点、适用范围以及优缺点,以期为谐波和间谐波检测技术的发展和应用提供参考。

本文首先介绍了谐波和间谐波的基本概念、产生原因及其对电力系统的影响,为后续检测方法的研究提供了理论基础。

接着,详细阐述了传统的谐波和间谐波检测方法,如傅里叶变换、小波变换等,并分析了它们的优缺点和适用范围。

然后,介绍了近年来新兴的基于的谐波和间谐波检测方法,如深度学习、神经网络等,并探讨了它们在谐波和间谐波检测领域的应用前景。

对谐波和间谐波检测技术的发展趋势进行了展望,提出了未来研究的重点和方向。

本文期望通过对谐波和间谐波检测方法的综述,为相关领域的研究人员和技术人员提供一个全面、系统的参考,促进谐波和间谐波检测技术的不断创新和发展,为电力系统的安全、稳定、经济运行提供有力保障。

二、谐波和间谐波检测方法的分类电力系统中的谐波和间谐波检测是确保电力质量、保护设备和提高能源效率的关键环节。

针对这一目标,谐波和间谐波的检测方法主要可以分为两类:基于傅里叶变换的方法和现代信号处理方法。

基于傅里叶变换的方法是最常见的谐波和间谐波检测方法。

这类方法主要包括快速傅里叶变换(FFT)和离散傅里叶变换(DFT)。

FFT 是DFT的快速算法,能够在短时间内对信号进行频谱分析,从而准确地检测出谐波和间谐波的成分。

这类方法的主要优点是计算速度快,精度高,适用于稳态和准稳态信号的谐波分析。

然而,对于非稳态信号,FFT的检测结果可能会受到频谱泄漏和栅栏效应的影响。

现代信号处理方法则提供了更多的选择,以适应复杂多变的电力系统环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力谐波分析设备中数据采集系统的设计分析
摘要:近年来,随着各种电力电子设备的迅速普及以及大量非线性负载的广泛使用,使得电力系统谐波对公用电网造成的污染日趋严重。

电力谐波不仅引起了电能质量的下降,而且严重影响了电网的安全运行,因此对电网谐波的检测与分析具有重要的现实意义。

关键词:电力谐波;电力电子设备;数据采集系统
电网谐波来源
1、电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,电源多少也会产生一些谐波,但一般来说很少。

2、输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。

它的大小与磁路的结构形式、铁心的饱和程度有关。

铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。

二、谐波研究的意义
谐波的危害十分严重。

谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。

谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。

对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。

三、电力系统中谐波的来源
电力系统中的谐波来自电气设备,也就是说来自发电设备和用电设备。

由于发电机的转子产生的磁场不可能是完善的正弦波,因此发电机发出的电压波形不可能是一点不失真的正弦波。

目前我国应用的发电机有两大类:隐极机和凸极机。

隐极机多用于汽轮发电机,凸极机多用于水轮发电机。

对于谐波分量而言,隐极机优于凸极机,但随着科技进步,可控硅、IGBT 等电子励磁装置的投入,使发电机的谐波分量有所上升。

当发电机的端电压高于额定电压的10%以上时,由于电机的磁饱和,会使电压的三次谐波明显增加。

同样在变压器的电源侧电压超过额定电压10%以上时,也会使二次侧电压的三次谐
波明显增加。

由于电网电压偏移在±7%以下,所以发电、变电设备产生的谐波分量都比较小,比国家的考核标准低的多,因此发电、变电设备不是影响电网电压波形方面质量的主要矛盾。

为此,影响电网电压波形质量的主要矛盾是非线性用电设备,也就是说非线性用电设备是主要的谐波源,非线性用电设备主要有以下四大类:
1、电弧加热设备:如电弧炉、电焊机等。

2、交流整流的直流用电设备:如电力机车、电解、电镀等。

3、交流整流再逆变用电设备:如变频调速、变频空调等。

4、开关电源设备:如中频炉、彩色电视机、电脑、电子整流器等。

这些用电设备都是非线性用电设备,但它们产生的谐波各不相同,具体举例分析如下:
电弧加热设备是由于电弧在70伏以上才会起弧,才会有弧电流,并且灭弧电压略低于起弧电压,造成弧电流与弧电压的非线性。

此外,弧电流的波形还有一定的非对称性。

正是由于弧电流是非正弦波,造成电弧加热设备对电网的谐波污染比较大,而且多为18次以下的低次谐波污染。

其实电焊机在上世纪四、五十年代已广泛应用。

由于当时电弧加热设备量少,电焊机应用的同时率就更小了,对整个电网的影响比较小,但在当时已发现在烧电焊时,局部低压电网的电压和电流变化很大,有较大的谐波影响。

交流整流直流用电设备的谐波产生的原因是由于整流设备有一个阀电压,在小于阀电压时,电流为零。

这类用电设备为了提供平稳的直流电源,在整流设备中加入了储能元件(滤波电容和滤波电感),从而使阀电压提高,加激了谐波的产生量。

为了控制直流用电设备的电压和电流,在整流设备中应用了可控硅,这使得该类设备的谐波污染更严重,而且谐波的次数比较低。

四、谐波现状浅析
通过对市场的常用电器的谐波状况的测试,我们了解到目前我国内工业企业的谐波污染十分严重,尤其是早些年为了节能,引入的变频电源和直流用电器的投入,其5次、7次、11次谐波电流的含量分别占基波的20%、11%、6%,这对于小功率的用户而言,还不怎样,但对于大功率的用户来说,危害就很大了,对于中频炉用户,它用常规的无功补偿就无法进行,有的用户用常规的电容器无功补偿,无法投入电容器,有的即便投入了,也对5次谐波电流放大了1.8~3.8倍以上,使得电动机、变压器等用电器的铜损、铁损大大地增加,缩短了设备的使用寿命,多交了电费。

五、目前国内对谐波污染的治理
(一)谐波的治理主要采用无源滤波装置和有源滤波器。

1、无源滤波装置。

主要采用LC回路,并联于系统中,LC回路的设定,只能针对于某一次谐波,即针对于某一个频率为低阻抗,使得该频率流经为其设定的LC回路,达到消除(滤除)某一频率的谐波的目的。

LC回路在滤除谐波的同时,在基波对系统进行无功补偿。

这种滤波装置简单,成本低,但不能滤除干净。

其主要元件为投切开关、电容器、电抗器以及保护和控制回路。

2、有源电力滤波器。

这种滤波器是用电力电子元件产生一个大小相等,但方向相反的谐波电流,用以抵销网络中的谐波电流,这种装置的主要元件是大功率电力电子器件,成本高,在其额定功率范围内,原则上能全部滤除干净。

(二)谐波治理的方法
前常用的谐波治理的方法无外乎有二种,无源滤波和有源滤波。

下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。

1、无源谐波滤除装置。

无源滤波的主要结构是用电抗器与电容器串联起来,组成LC串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。

其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。

现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。

虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。

由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。

由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。

因此,业主不得不要求滤波。

因而,其市场的前景可观,经济效益也就可观了。

2、有源谐波滤除装置。

有源谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。

它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。

但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。

其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。

对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以了。

参考文献
[1] 吴竟昌.供电系统谐波[M].北京:中国电力出版社,2008:35-47
[2] 马明建.数据采集与处理技术[M].西安:西安交通大学出版社,2009
[3] 谐波国家标准起草工作组《电能质量公用电网谐波》GB/T14549.2009
[4] 李念强魏长智潘建军张羽,数据采集技术与系统设计[M],北京:机械工业出版社2009
[5] 张直平李芬辰,城市电网谐波手册[M],北京:中国电力出版社2011
[6] 关彬,低压电力系统谐波检测方法研究[D],北京化工大学,2008
[7] 曲玉辰,电网谐波抑制技术研究[D],大庆石油学院,2009
[8] 李宏凯,USB2.0总线技术在数据采集系统中的应用[D],南京航天航空大学,2009。

相关文档
最新文档