(20)2010年普通高等学校招生全国统一考试 数学试卷(文史类)
2010年全国高考文科数学试题及答案-四川
2010年普通高等学校招生全国统一考试四川卷(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B ) =P (A )+P (B ) 24s R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334R V π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)kkn kn P k C p p k n -=-=第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}3,5,6,8A =,集合{}4,5,7,8B =,则A B 等于( )A . {}3,4,5,6,7,8B . {}3,6C . {}4,7D .{}5,8 2.函数2log y x =的图象大致是( )A. B. C . D .3.抛物线28y x =的焦点到准线的距离是( )A .1B . 2C . 4D . 84.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人。
为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,65. 函数2()1f x x m x =++的图象关于直线1x =对称的充要条件是( )A.2m =-B.2m =C.1m =-D.1m =6. 设点M 是线段BC 的中点,点A 在直线BC 外,216,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )A.8B.4C. 2D.17. 将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A. sin(2)10y x π=- B.sin(2)5y x π=-C. 1sin()210y x π=-D.1sin()220y x π=-8. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( ) A.甲车间加工原料10箱,乙车间加工原料60箱 B.甲车间加工原料15箱,乙车间加工原料55箱 C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱9、由1,2,3,4,5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )A .36 B. 32 C .28 D .24 10.椭圆22221()x y a b ab+=>>0的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A.02⎛ ⎝⎦ B.10,2⎛⎤⎥⎝⎦C.)1,1 D.1,12⎡⎫⎪⎢⎣⎭11、设0a b >>,则211()a aba ab ++-的最小值是( )A .1B . 2C .3D 412、如图1,半径为R 的球O 的直径A B 垂直于平面α,垂足为B ,△BCD 是平面α内边长为R 的正三角形,线段A C 、A D 分别与球面交于点M ,N ,那么M 、N 两点间的球面距离是( )A. 17arccos 25RB. 18arccos 25RC.13R πD. 415R π图1第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.42()x x-的展开式中的常数项为 .(用数字作答)14. 直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB = . 15. 如图2,二面角l αβ--的大小是60︒,,AB B l α⊂∈,AB 与l 所成的角为30︒,则AB 与平面β所成角的正弦值是 .16. 设S 为实数集R 的非空子集,若对任意的,x y S ∈,都有,,x y x y xy S +-∈,则称S 为封闭集,下列命题:① 集合{},S a b =+为整数为封闭集;② 若S 为封闭集,则一定有0S ∈; 图2 ③ 封闭集一定是无限集;④ 若S 为封闭集,则满足S T R ⊆⊆的任意集合T 也是封闭集。
2010年高考试题——数学文(天津卷)含答案
2010年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷1至3页。
第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.答I 卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:如果事件A 、B 互斥,那么 棱柱的体积公式V=Sh.()()()P A B P A P B ⋃=+ 其中S 表示棱柱的底面积.h 表示棱柱的高 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数31ii+-= (A)1+2i (B)2+4i (C)-1-2i (D)2-i(2)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为(A )12 (B )10 (C )8 (D )2(3)阅读右边的程序框图,运行相应的程序,则输出s 的值为 (A)-1 (B)0 (C)1 (D)3(4)函数f (x )=2xe x +-的零点所在的一个区间是(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2) (5)下列命题中,真命题是(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数(6)设554a log 4b log c log ===25,(3),,则 (A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c(7)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是(A){}a |0a 6≤≤ (B){}|2,a a ≤≥或a 4 (C){}|0,6a a ≤≥或a (D){}|24a a ≤≤(8)5y Asinx x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点 (A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(9)如图,在ΔABC 中,AD AB ⊥,3BC =BD ,1AD =,则AC AD ⋅=(A )23 (B )32 (C )33(D )3 (10)设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦2010年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年天津高考文科数学试题及答案
其中直径在区间[1.48,1.52]内的零件为一等品。 (Ⅰ)从上述 10 个零件中,随机抽取一个,求这个零件为一等品的概率; (Ⅱ)从一等品零件中,随机抽取 2 个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这 2 个零件直径相等的概率。 (19) (本小题满分 12 分) 如图, 在五面体 ABCDEF 中, 四边形 ADEF 是正方形, FA⊥平面 ABCD, BC∥AD, CD=1, AD= 2 2 ,∠BAD=∠CDA=45°. (Ⅰ)求异面直线 CE 与 AF 所成角的余弦值; (Ⅱ)证明 CD⊥平面 ABF; (Ⅲ)求二面角 B-EF-A 的正切值。
当目标函数过直线 y=1 与 x+y=3 的交点(2,1)时 z 取得最大值 10. (3)阅读右边的程序框图,运行相应的程序,则输出 s 的值为 (A)-1 (B)0 【答案】B (C)1 (D)3
【解析】 本题主要考查条件语句与循环语句的基本应用,属于容易题。
特级教师 王新敞 wxckt@ qq: 12812342 第 6 页 共 22 页
/wxc
(7)设集合 A x||x-a|<1,x R , B x |1 x 5, x R .若A B , 则实数 a 的取值 范围是 (A) a | 0 a 6 (C) a | a 0, 或a 6 (B) a | a 2, 或a 4 (D) a | 2 a 4
F E
A B C
(20) (本小题满分 12 分) 已知函数 f(x)= ax
3
D
3 2 x 1( x R) ,其中 a>0. 2
(Ⅰ)若 a=1,求曲线 y=f(x)在点(2,f(2) )处的切线方程; (Ⅱ)若在区间
江西省2010年普通高考自行命题科目考试说明
江西省2010年普通高考自行命题科目考试说明教育部考试中心颁布的《2010年普通高等学校招生全国统一考试大纲》(以下简称《考试大纲》),规定了考试的目的、性质、内容和要求,体现了高校对入学新生的基本要求,是高考命题、备考和评价的依据。
在严格遵循《考试大纲》的前提下,按照教育部关于分省命题工作要“有助于高等学校选拔人才、有助于中等学校实施素质教育和有助于扩大高校办学自主权的原则”以及我省“平稳过渡、适度创新、有所变化、逐步体现我省地方特色”的命题指导思想,江西省普通高考自行命题工作小组办公室组织有关专家经过认真研讨,研究制定了《江西省2010年普通高考自行命题科目考试说明》。
语文科一、“考试性质”与“考试能力要求”按2010年教育部考试中心颁布的《考试大纲》实施。
二、“考试内容”按2010年教育部考试中心颁布的《考试大纲》范围实施。
三、“考试形式与试卷结构”按以下规定实施。
答卷方式:闭卷、笔试。
全卷共有22道题,满分为150分。
考试限定用时为150分钟。
江西省使用“分卷”。
“分卷”包括Ⅰ、Ⅱ两卷。
Ⅰ卷为单项选择题,占36—39分;Ⅱ卷为除单项选择题以外的其他题型,占111—114分。
试卷内容、题量、赋分分别如下:1、语言知识和语言表达,7题,24分(单项选择题5题,15分;其他题型2题,9分)。
2、文学常识和名篇名句,1题,8分(填空题)。
3、古代诗文阅读,6题,28分(单项选择题4题,12分;其他题型2题,16分)。
4、现代文阅读,7题,30分(单项选择题3—4题,9—12分;其他题型3—4题,18—21分)。
5、写作,1题,60分(每一个错别字扣1分,重复的不计)。
数学科一、“考试性质”与“考试要求”按2010年教育部考试中心颁布的《考试大纲》实施。
二、考试内容,理科与文科均按2010年教育部考试中心颁布的《考试大纲》范围实施。
三、“考试形式与试卷结构”按以下规定实施。
答卷方式:闭卷、笔试。
全卷满分150分,考试限定用时为120分钟。
2010年普通高等学校招生全国统一考试数学试题(江苏卷)(含答案)
2010年江苏高考数学试题及参考答案一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________ 答案:1;2、右图是一个算法的流程图,则输出S的值是______▲_______答案:63;3、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____答案:21;解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长(2)设实数t 满足(OC t AB -)·OC =0,求t 的值(1)(3,5),(1,1)AB AC ==-求两条对角线长即为求||AB AC + 与||AB AC - ,由(2,6)AB AC +=,得||AB AC +=由(4,4)AB AC -=,得||AB AC -=(2)(2,1)O C =-- ,∵(OC t AB -)·OC 2AB OC tOC =- ,易求11AB OC =- ,25OC = , 所以由(OC t AB -)·OC =0得115t =-。
16、(14分)如图,四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900(1)求证:PC⊥BC(2)求点A 到平面PBC 的距离D CB APE(1)∵PD⊥平面ABCD ,∴PD BC ⊥,又BC C D ⊥,∴B C ⊥面P C D ,∴BC PC ⊥。
(2)设点A 到平面PBC 的距离为h ,∵A PBC P ABC V V --=,∴1133PBC ABC S h S PD ⋅=容易求出h =17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大(1)∵tan AE AB α=,tan AE AD β=,∴tan 31tan 30A D A B αβ== (2)。
2010年普通高等学校招生全国统一考试(福建卷)文科数学 试卷
2010年普通高等学校招生全国统一考试(福建卷)文科数学 试卷数学试题(文史类)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}13A χχ=≤≤,{}2B χχ=>,则A B ⋂等于A.{}23χχ<≤B.{}1χχ≥C.{}23χχ≤<D.{}2χχ> 2.计算212sin 22.5-的结果等于A.123.若一个底面是正三角形的三棱柱的正规视图如图所示,则其侧面积...等于B.2C. D.64.i 是虚数单位,411i i +⎛⎫ ⎪-⎝⎭等于A.iB.-iC.1D.-15.若,y R χ∈,且1230y y χχχ≥⎧⎪-+≥⎨⎪≥⎩,则2z y χ=+的最小值等于A.2B.3C.5D.96.阅读右图所示的程序框图,运行相应的程序,输出的i 值等于A.2B.3C.4D.57.函数223,021,0(){n f χχχχχχ+-≤-+>=,的零点个数为A.2B.3C.4D.5 8.若向量(,3)()a R χχ=∈,则“4χ=”是“||5a =”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件 9.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是A.91.5和91.5B.91.5和92C.91和91.5D.92和92 10.将函数()sin()f χωχϕ=+的图像向左平移2π个单位。
若所得图象与原图象重合,则ω的值不可能...等于 A.4 B.6 C.8 D.12 11.若点O 和点F 分别为椭圆22143χγ+=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为A.2B.3C.6D.812.设非空集合|||S m l χχ=≤≤满足:当S χ∈时,有2S χ∈。
给出如下三个命题工:①若1m =,则|1|S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤≤。
2010年高考数学天津(文)(word版含答案)
x
s 1
i 1
s s (3 i) 1
i i 1
(A) ( 2, 1) (B) ( 1,0) (C) (0,1) (D) (1,2) (5)下列命题中,真命题的是 (A) m R ,使函数 f ( x) x mx( x R) 是偶函数
(9)如图,在△ABC 中,AD AB, BC 3 BD , AD 1 ,则 AC AD A (A) 2 3 (B)
3 2
(C)
3 3
(D)
3
B D C
(10)设函数 g ( x) x2 2( x R) , f ( x)
g ( x) x 4,x g ( x), 则 f ( x ) 的值域是 g ( x) x, x ≥ g ( x).
1 2 侧视图
2 1 俯视图 .
(14)已知圆 C 的圆心是直线 x y 1 0 与 x 轴的交点, 且圆 C 与直线 x y 3 0 相切.则圆 C 的方程为 ( 15 )设 an 是等比数列,公比 q
2 , Sn 为 an 的前 n 项和,记 Tn
.
17 Sn S2 n , an 1
2
(A) a c b
(B) b c a
(C) a b c
(D) b a c
(7)设集合 A x x a 1,x R , B x 1 x 5,x R ,若 A∩B = ,则实 数 a 的取值范围是 (A) a 0 ≤ a ≤ 6
最新最全!10年上海高考数学真题全汇总
3. 计算: 2i = __________( i 为虚数单位)。 1+ i
4.
已知集合 A =
x| x 2
,
B
=
x
|
1 x +1
0
,则
A
B
=
__________。
5.
若椭圆
x2 25
+
y2 16
10. 各棱长为1的正四棱锥的体积V = __________。
开始
否 是
12 4 11. 方程 1 x x2 = 0 的解为 __________。
1 −3 9
12. 根据所示的程序框图(其中 x表示不大于 x 的最大整数),
输出 r = __________。 13. 在右图所示的斜截圆柱中,已知圆柱底面的直径为 40cm ,
已知首项为
x1 的数列xn 满足
xn+1
=
axn xn +1
(a
为常数)。
1) 若对于任意的 x1 −1,有 xn+2 = xn 对于任意的 n N * 都成立,求 a 的值;
4
上海高考真题-2010 春
2) 当 a = 1时,若 x1 0 ,数列xn 是递增数列还是递减数列?请说明理由; 3) 当 a 确定后,数列 xn 由其首项 x1 确定。当 a = 2 时,通过对数列 xn 的探究,写出
24. 不等式 2 − x 0 的解集是 __________。 x+4
25. 若复数 z = 1− 2i ( i 为虚数单位),则 z z + z = __________。
2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)
2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh =锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.设集合{1,1,3}A =-,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为____▲____.1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验. 【解析】由题意得1,32==+a a .又由342=+a 不符合题意.经检验得1=a . 2.设复数z 满足(23)64z i i -=+(i 为虚数单位),则z 的模为____▲____. 2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算. 【解析】由i i z 46)32(+=-得,2)32)(32()32)(46(3246i i i i i i i z =+-++=-+=即2,2=∴=z i z . 3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21. 【命题意图】本题考查古典概型知识. 【解析】31.62p == 4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm. 4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005=⨯⨯. 5.设函数()()xxf x x e ae -=+(x ∈R )是偶函数,则实数a 的值为____▲____. 5.【答案】1-.【命题意图】本题考查函数的奇偶性.【解析】设R x ae e x g xx∈+=-,)(,由题意分析)(x g 应为奇函数(奇函数⨯奇函数=偶函数), 又R x ∈ ,0)0(=∴g ,则,01=+a 所以1-=a .6.在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____.6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用. 【解析】由题意得点15,3(±M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(-±+-==4.或用第二定义:2MFe d==,2d =,4MF =. 7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值. 【解析】由流程图得12345122222S =+++++=1+2+48+16+32=6333≥,即.63=S8.函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以 1135,1641212kk a a a a a +=++=++=. 9.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13)-.【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线于1,即1313,13,151222<<-∴<<+c c c .10.设定义在区间(0,)2π上的函数y=6cosx 的图象与y=5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____. 10.【答案】.32【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin =x 结合图象,0=数形结合分析P 1P 2的值.【解析】由题意得x x tan 5cos 6=,即x x xxx sin 5cos 6,cos sin 5cos 62==, 226(1sin )5sin ,6sin 5sin 60x x x x -=+-=得,32sin =x 结合图象分析得32sin 21==P P x .11.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____▲____.11.【答案】).12,1(--【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x ⎧->⎪⎨->⎪⎩解得11x -<<-,所以x 的取值范围是).12,1(-- 12.设x,y 为实数,满足3≤2xy ≤8,4≤2x y≤9,则34x y 的最大值是____▲____.12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy =⋅∈,43yx 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若6cos b a C a b +=,则tan tan tan tan C CA B+的值是 ▲ . 【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想. (方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性. 当A=B 或a=b 时满足题意,此时有1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan 22C =.等腰三角形中,1tan tan tan 2A B C===,tan tan tan tan C CA B+=4. (方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CA B C A B C A B C A B+++=⋅=⋅=⋅, 由正弦定理,得上式22222214113cos ()662c c c c C ab a b =⋅===+⋅. 14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s =梯形的周长)梯形的面积,则s 的最小值是____▲____.【答案. 【解析】考查函数中的建模应用,等价转化思想. 设剪成的小正三角形的边长为x,则222(3)(01)122x s x x -==<<-. (方法一)利用导数求函数最小值.22(3)()1x S x x -=-,2222(26)(1)(3)(2)()(1)x x x x S x x -⋅---⋅-'=-222(31)(3)(1)x x x ---=- 1()0,01,3S x x x '=<<=.当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增.故当13x =时,S取最小值3.(方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t -=∈∈,则222186681t S t t t t==-+--+-.故当131,83x t ==时,S. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A --,(2,3)B ,(2,1).C -- (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(t -)·=0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分. 解:(1)由题设知(3,5)AB =,(1,1)AC =-,则(2,6)A B A C+=,(4,4).AB AC -=所以||AB AC +=,||AB AC -= 故所求的两条对角线长分别为42,210.(2)由题设知 (2,1)OC =--,(32,5).AB tOC t t -=++由()0AB tOC OC -=,得(32,5)(2,1)0t t ++--=, 从而511t =-,所以11.5t =- 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分.解:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC.又PD DC D ⋂=,PD ⊂平面PCD ,DC ⊂平面PCD , 所以BC ⊥平面PCD.因为PC ⊂平面PCD ,所以PC ⊥BC. (2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F.易知又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍,故点A 到平面PBC . (方法二)连结AC.设点A 到平面PBC 的距离h. 因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC ∆的面积1ABC S ∆=.由PD ⊥平面ABCD 及PD=1,得三棱锥P ABC -的体积11.33ABC V S PD ∆== 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以PC ==由PC ⊥BC ,BC=1,得PBC ∆的面积PBC S ∆=由11213323PBC V S h h ∆===,得h =因此,点A 到平面PBC . 17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m ,试问d 为多少时,αβ-最大?【解析】本小题主要考查解三角形、基本不等式、导数等基础知识,考查数学建模能力、抽象概括能力和解决实际问题的能力.满分14分. 解:(1)由tan HAB α=,tan h BD β=,tan H AD β=及AB BD AD +=,得tan tan tan H h H αββ+=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m. (2)由题设知d AB =,得tan .H dα= 由tan tan H h AB AD BD ββ=-=-,得tan H hdβ-=,所以tan tan tan()()1tan tan h H H h d dαβαβαβ--==≤-+⋅+,当且仅当()H H h d d-=,即d ==.所以当d =tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当d =时,αβ-最大.故所求的d是18.(本小题满分16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y . (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.满分16分.解:由题设得(3,0)A -,(3,0)B ,(2,0).F(1)设点(,)P x y ,则222(2)PF x y =-+,222(3).PB x y =-+ 由422=-PB PF ,得2222(2)(3)4x y x y -+---=,化简得92x =. 故所求点P 的轨迹为直线92x =. (2)由12x =,2211195x y +=及10y >,得153y =,则点5(2,)3M , 从而直线AM 的方程为113y x =+; 由213x =,2222195x y +=及20y <,得2109y =-,则点110(,)39N -, 从而直线BN 的方程为5562y x =-. 由11,355,62y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得7,10.3x y =⎧⎪⎨=⎪⎩所以点T 的坐标为10(7,)3.(3)由题设知,直线AT 的方程为(3)12m y x =+,直线BT 的方程为(3)6my x =-. 点11(,)M x y 满足112211(3),121,95m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得 22111(3)(3)(3)9125x x x m -++=-,因为13x ≠-,则211339125x x m -+=-,解得212240380m x m -=+,从而124080my m=+. 点22(,)N x y 满足2222222(3),61,953,m y x x y x ⎧=-⎪⎪⎪+=⎨⎪≠⎪⎪⎩解得22236020m x m -=+,222020m y m -=+.若12x x =,则由222224033608020m m m m--=++及0m >,得m = 此时直线MN 的方程为1x =,过点(1,0).D若12x x ≠,则m ≠MD 的斜率2222401080240340180MDmm m k m m m +==---+, 直线ND 的斜率222220102036040120NDmm m k m mm -+==---+,得MD ND k k =,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0). 19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S .已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示);(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29. 【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.满分16分. 解:(1(1)(1)n d n d =-=-,则当2n ≥时,221232.n n n a S S d d n -=-=-=+由2132a a a =+,得2212(2)23d a d =++.d = 故当2n ≥时,222.n a nd d =-又21a d =,所以数列{}n a 的通项公式为2(21)n a n d =-. (2d =(1)n d =-,得0d >,22n S n d =.于是,对满足题设的k n m ,,,m n ≠,有2222222()99()222m n k m n S S m n d d d k S ++=+>==.所以c 的最大值max 92c ≥.另一方面,任取实数92a >.设k 为偶数,令331,122m k n k =+=-,则k n m ,,符合条件,且22222222331()((1)(1))(94).222m n S S d m n d k k d k +=+=++-=+于是,只要22942k ak +<,即当k >时,就有22122m n k S S d ak aS +<⋅=.所以满足条件的92c ≤,从而max 92c ≤. 因此c 的最大值为92. 20.(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数2()ln (1)1b f x x x x +=+>+,其中b 为实数. (i)求证:函数)(x f 具有性质)(b P ;(ii)求函数)(x f 的单调区间.(2)已知函数)(x g 具有性质)2(P .给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.【解析】本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分.解:(1)(i)由2()ln 1b f x x x +=++,得'()f x 221.(1)x bx x x -+=+ 因为1x >时,21()0(1)h x x x =>+,所以函数)(x f 具有性质)(b P . (ii)当2b ≤时,由1x >得222121(1)0x bx x x x -+≥-+=->, 所以)('x f 0>,从而函数)(x f 在区间),1(+∞上单调递增.当2b >时,解方程210x bx -+=得12b x -=,22b x +=因为12b x -=21b=<<,212b x +=>, 所以当2(1,)x x ∈时,)('x f 0<;当2(,)x x ∈+∞时,)('x f 0>;当2x x =时,)('x f =0. 从而函数)(x f 在区间2(1,)x 上单调递减,在区间2(,)x +∞上单调递增. 综上所述,当2b ≤时,函数)(x f 的单调增区间为),1(+∞;当2b >时,函数)(x f 的单调减区间为,单调增区间为)+∞. (2)(方法一)由题意,得22'()()(21)()(1)g x h x x x h x x =-+=-. 又)(x h 对任意的),1(+∞∈x 都有)(x h >0,所以对任意的),1(+∞∈x 都有()0g x '>,()g x 在(1,)+∞上递增.当1m =时,1x α=,2x β=,不合题意.1212,(21)()x x m x x αβαβ+=+-=--. 当1,12m m >≠时,αβ<,且112212(1)(1),(1)(1)x m x m x x m x m x αβ-=-+--=-+-, 221212()()(1)()0x x m x x αβ∴--=---<,12x x αβ∴<<<或12x x αβ<<<,若12x x αβ<<<,则12()()()()f f x f x f αβ<<<,12|()()||()()|g g g x g x αβ∴->-,不合题意. 12x x αβ∴<<<,即112122(1),(1),x mx m x m x mx x <+-⎧⎨-+<⎩解得1m <,11.2m ∴<<当12m =时,αβ=,120|()()||()()|g g g x g x αβ=-<-,符合题意. 当12m <时,αβ>,且212112(),()x m x x x m x x αβ-=--=--,同理有12x x βα<<<,112122(1),(1),x m x mx mx m x x <-+⎧⎨+-<⎩解得0m >,10.2m ∴<<综合以上讨论,得所求的m 的取值范围是(0,1).(方法二)由题设知,()g x 的导函数2'()()(21)g x h x x x =-+,其中函数()0h x >对于任意的),1(+∞∈x 都成立,所以,当1x >时,2'()()(1)0g x h x x =->,从而()g x 在区间),1(+∞上单调递增. ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,222(1)mx m x x α<+-=,得12(,)x x α∈,同理可得12(,)x x β∈,所以由()g x 的单调性知()g α,()g β12((),())g x g x ∈,从而有|)()(βαg g -|<|)()(21x g x g -|,符合题设.②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,于是由1,1αβ>>及()g x 的单调性知12()()()()g g x g x g βα≤<≤,所以|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.③当1m ≥时,同理可得12,x x αβ≤≥,进而得|)()(βαg g -|≥|)()(21x g x g -|,与题设不符. 因此,综合①、②、③得所求的m 的取值范围为(0,1).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C.若DA=DC ,求证:AB=2BC.【解析】本题主要考查三角形、圆的有关知识,考查推理论证能力.满分10分.证明:(方法一)连OD ,则OD ⊥DC.又OA=OD ,DA=DC ,所以∠DAO=∠ODA=∠DCO ,∠DOC=∠DAO+∠ODA=2∠DCO ,所以∠DCO=300,所以OC=2OD ,即OB=BC=OD=OA ,所以AB=2BC.(方法二)连结OD 、BD.因为AB 是圆O 的直径,所以∠ADB=900,AB=2OB.因为DC 是圆O 的切线,所以∠CDO=900.又因为DA=DC ,所以∠A=∠C ,于是△ADB ≌△CDO ,从而AB=CO.即2OB=OB+BC ,得OB=BC.故AB=2BC.B.选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,已知点(0,0),(2,0),(2,1)A B C --.设k 为非零实数,矩阵M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.【解析】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力.满分10分. 解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.由0001000k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,0201002k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,021012k k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 可知1(0,0)A ,1(0,2)B -,1(,2)C k -.计算得△ABC 的面积是1,△A 1B 1C 1的面积是||k ,则由题设知||212k =⨯=.所以k 的值为2-或2.C.选修4-4:参数方程与极坐标(本小题满分10分)在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++=相切,求实数a 的值.【解析】本题主要考查曲线的极坐标方程等基础知识,考查转化问题的能力.满分10分.解:将极坐标方程化为直角坐标方程,得圆的方程为22222,(1)1x y x x y +=-+=即,直线的方程为340x y a ++=.由题设知,圆心(1,0)到直线的距离为11,=解得8a =-,或2a =. 故a 的值为8-或2.D.选修4-5:不等式选讲(本小题满分10分)设a ,b 是非负实数,求证:3322)a b a b +≥+.【解析】本题主要考查证明不等式的基本方法,考查推理论证的能力.满分10分.证明:由a ,b 是非负实数,作差得3322)a b a b a b ++=+55]=-.当a b ≥≥55≥,得55]0-≥;当a b <<55<,得55]0->.所以3322)a b a b +≥+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【解析】本题主要考查概率的有关知识,考查运算求解的能力.满分10分.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02.由此得X 的分布列为:(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =. 所以3344440.80.20.80.8192P C C =+=. 故所求概率为0.8192. 23.(本小题满分10分)已知△ABC 的三边长都是有理数.(1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数.【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.满分10分.证法一:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)①当1n =时,由(1)知cos A 是有理数.当2n =时,∵2cos22cos 1A A =-,因为cos A 是有理数,∴cos2A 也是有理数;②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数.当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+, 11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++, 解得cos(1)2cos cos cos(1)k A kA A k A +=--. ∵cos A ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数,∴cos(1)k A +是有理数.即当1n k =+时,结论成立.综上所述,对于任意正整数n ,cos nA 也是有理数.证法二:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)用数学归纳法证明cos nA 和sin sin A nA 都是有理数.①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A =-也是有理数.②假设当(1)n k k =≥时,cos kA 和sin sin A kA 都是有理数.当1n k =+时,由cos(1)cos cos sin sin k A kA A A kA +=-,sin sin(1)sin (sin cos cos sin )A k A A A kA A kA +=+(sin sin )cos (sin sin )cos A A kA A kA A =+,及①和归纳假设,知cos(1)k A +与sin sin(1)A k A +都是有理数.即当1n k =+时,结论成立.综合①、②可知,对任意正整数n ,cos nA 也是有理数.。
2010年全国1卷高考数学(含答案)
绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么球的表面积公式P(A+B)=P(A)+P(B) 24RS 如果事件A 、B 相互独立,那么其中R 表示球的半径P(A ·B)=P(A)·P (B)球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334RV 球n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径kn kk n n P P C k P )1()(一、选择题(1)复数ii 3223(A )i (B )i(C )i 1312(D )i1312(2)记k )80cos(,那么100tan (A )kk 21(B )-kk 21(C )21kk (D )-21kk (3)若变量y x,满足约束条件.02,0,1yxy x y则y x z 2的最大值为(A )4(B )3(C )2(D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则=(A )25(B )7(C )6(D )24(5)533)1()21(x x 的展开式中x 的系数是(A )-4(B )-2(C )2(D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A )30种(B )35种(C )42种(D )48种(7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32(B )33(C )32(D )36(8)设2135,2ln ,2log cb a,则(A )cba(B )a cb (C )b ac (D )ab c (9)已知F 1、F 2为双曲线1:22yx C 的左、右焦点,点P 在C 上,6021PF F ,则P到x 轴的距离为(A )23(B )26(C )3(D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f 且若,则b a2的取值范围是(A )),22((B ),22(C )),3((D ),3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA 的最小值为(A )24(B )23(C )224(D )223(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332(B )334(C )32(D )338绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:.;.1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。
高考数学文理科考纲
2010年高考数学(文科)考试大纲Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试大纲(文科·2010年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照"考查基础知识的同时,注重考查能力"的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。
2010年高考数学湖北(文)(word版含答案)
17.(本小题满分 12 分) 为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出 100 条鱼,称得每条鱼的质量(单位:千克) ,并将所得数据分组,画出频率分布直方图(如图 所示) . (Ⅰ)在答题卡上的表格中填写相应的频率; (Ⅱ)估计数据落在[1.15,1.30 )中的概率为多少; (Ⅲ)将上面捕捞的 100 条鱼分别作一记号后再放回水库,几天后再从水库的多处不同 位置捕捞出 120 条鱼, 其中带有记号的鱼有 6 条. 请根据这一情况来估计该水库中的鱼的总 条数. 频率/组距 6 5.6 5 4 3 2 1 0.4 1.00 1.05 1.10 1.15 1.20 1.25 1.30
2010 年普通高等学校招生全国统一考试(湖北卷) 数 学(文史类)
本试题卷共 4 页,三大题 21 小题.全卷满分 150 分.考试用时 120 分钟. ★祝考试顺利★ 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证 号条形码粘贴在答题卡上的指定位置.用 2B 铅笔将答题卡上试卷类型 A(或 B)后的方框 涂黑. 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷、草稿纸上无效. 3.填空题和解答题用 0.5 毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区 域内.答在试题卷、草稿纸上无效. 4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.设集合 M={1,2,4,8},N={ x | x 是 2 的倍数},则 M A.{2,4} 2.函数 f ( x ) = 3 sin A. B.{1,2,4} C.{2,4,8}
普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学
绝密★启用前普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= (A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0} (D){-3,-2,-1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A)(B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B)b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C)(D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L 的方程为(A)y=x-1或y=-x+1 (B)y=(X-1)或y=-(x-1)(C)y=(x-1)或y=-(x-1)(D)y=(x-1)或y=-(x-1)(11)已知函数f(x)=x3+ax2+bx+c ,下列结论中错误的是(A)(B)函数y=f(x)的图像是中心对称图形(C)若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减(D)若x0是f(x)的极值点,则f’(x0)=0(12)若存在正数x使2x(x-a)<1成立,则a 的取值范围是(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)第Ⅱ卷本卷包括必考题和选考题两部分。
上海市教育委员会关于做好2010年上海市普通高校招生考试工作的通知
上海市教育委员会关于做好2010年上海市普通高校招生考试工作的通知【法规类别】高等教育【发文字号】沪教委学[2010]20号【发布部门】上海市教育委员会【发布日期】2010.02.11【实施日期】2010.02.11【时效性】现行有效【效力级别】XP10上海市教育委员会关于做好2010年上海市普通高校招生考试工作的通知(沪教委学〔2010〕20号)各高等学校、区县教育局、后方基地教育处、上海市教育考试院:为做好2010年本市普通高校的招生工作,我委制定了《2010年上海市普通高校招生考试工作办法》,现印发给你们,请认真按照执行,切实做好2010年本市普通高校招生考试工作。
附件:2010年上海市普通高校招生考试工作办法上海市教育委员会二○一○年二月十一日附件:2010年上海市普通高校招生考试工作办法根据国家有关法规和教育部《关于进一步深化普通高校招生考试制度改革的意见》(教学〔1999〕3号)、教育部关于年度普通高等学校招生工作规定等有关普通高等学校招生工作精神,结合本市实际情况,制定本办法。
一、指导思想2010年上海市普通高校招生考试工作应深入贯彻党的十七大精神,以科学发展观为指导,继续做好平行志愿和高校自主招生等以推进改善民生为出发点的高招改革工作,贯彻公平竞争、公正选拔、公开透明的原则,坚持德智体美全面考核、综合评价、择优录取,促进高校招生考试平安稳定开展,促进高校依法行使办学自主权并探索试行招生考试改革,促进高校教育教学改革,促进基础教育全面实施素质教育。
二、招生计划与专业2010年度本市市属普通高校安排在沪招生计划约5.62万人。
各普通高校的招生专业必须是经教育部或上海市教育委员会批准或备案的专业。
三、普通高等学校招生全国统一考试(以下简称“全国统考”)报名和志愿填报(一)报名凡符合《上海市教育委员会关于做好2010年上海市普通高等学校招生考试报名工作的通知》(沪教委学〔2009〕75号)中的报名条件的考生均可报名。
2010年全国高考数学文科试题和答案-重庆
2010年普通高等学校招生全国统一考试(重庆卷)数学 (文史类)数学试题卷(文史类)共4页。
满分150分。
考试时间l20分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.1.4(1)x +的展开式中2x 的系数为 ( )A.4B.6C.10D.202.在等差数列{}n a 中,1910a a +=,则5a 的值为 ( )A.5B.6C.8D.103.若向量(3,)a m =,(2,1)b =-,0a b ∙=,则实数m 的值为 ( )A.32-B.32C.2D.64.函数y = ( )A.[0,)+∞B.[0,4]C.[0,4)D.(0,4)5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 ( )A.7B.15C.25D.356.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )A.sin(2)2y x π=+ B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+7.设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为 ( )A.0B.2C.4D.68.若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为 ( )A.(2-B.[22-+C.(,2(2)-∞-++∞D.(22-+9.到两互相垂直的异面直线的距离相等的点 ( )A.只有1个B.恰有3个C.恰有4个D.有无穷多个10.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天;若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 ( )A.30种B.36种C.42种D.48种二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.设{}{}|10,|0A x x B x x =+>=<,则A B =____________ .12.已知0t >,则函数241t t y t-+=的最小值为____________ .13.已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则BF =_ _ .14.加工某一零件需经过三道工序,设第一、二、三道工序的次品 率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ .15.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n项和n T .17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.18.(本小题满分13分),(Ⅰ)小问5分,(Ⅱ)小问8分)设A B C ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32abc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.19.(本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)已知函数32()f x ax x bx =++(其中常数a,b ∈R),()()()g x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式;(Ⅱ)讨论()g x 的单调性,并求()g x 在区间上的最大值和最小值.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )如图,四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥底面A B C D ,PA AB ==,点E 是棱P B 的中点.(Ⅰ)证明:A E ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B E C D --的平面角的余弦值.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )已知以原点O 为中心,0)F 为右焦点的双曲线C 的离心率2e =.(Ⅰ)求双曲线C 的标准方程及其渐近线方程; (Ⅱ)如题(21)图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E在双曲线C 上,直线M N 与双曲线的两条渐近线分别交于G 、H 两点,求OG OH的值.参考答案一、选择题:本大题共10个小题,每小题5分,共50分。
2010辽宁高考数学试题真题及答案(word版)
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
【解析】因为A ∩B={3},所以3∈A ,又因为u ðB ∩A={9},所以9∈A ,所以选D 。
本题也可以用Venn 图的方法帮助理解。
(2)设a,b 为实数,若复数11+2ii a bi =++,则 (A )31,22a b == (B) 3,1a b ==(C) 13,22a b == (D) 1,3a b ==【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。
【解析】由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16 【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题 【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于(A )1m n C - (B) 1m n A - (C) m n C (D) m n A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力 【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。
2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)
2010年普通高等学校招生全国新课标统一考试文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x | |x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}2.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-16653.已知复数z =3+i (1-3i )2,则|z |=( ) A.14 B.12C .1D .2 4.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +25.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B.5C.62D.526.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )7.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 28.如果执行右面的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.569.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}10.若cos α=-45,α是第三象限的角,则sin(α+π4)=( ) A .-7210 B.7210 C .-210 D.21011.已知▱ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在▱ABCD 的内部,则z =2x -5y 的取值范围是( )A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12) D .(20,24)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.圆心在原点且与直线x +y -2=0相切的圆的方程为________.14.设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱16.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面PAC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )性别 是否需要志愿者 男 女 需要 40 30 不需要 160 270 P (K 2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.82820.(本小题满分12分)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.21.(本小题满分12分)设函数f(x)=x(e x-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧 AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α, y=t sin , (t 为参数),圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)当坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生模拟考试(新课标 第二十套)数学试卷(文史类)(选自2010年普通高等学校招生全国统一考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ第三、四题为选考题,其它题为必考题。
满分150分,考试时间120分钟第Ⅰ卷一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1.已知集合A ={x | |x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2}2.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665 3.已知复数z =3+i(1-3i )2,则|z |=( )A.14B.12 C .1 D .2 4.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +25.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ) A. 6 B.5 C.62 D.526.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )7.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2 D .24πa 2 8.如果执行右面的框图,输入N =5,则输出的数等于( ) A.54 B.45 C.65 D.569.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6} D .{x |x <-2或x >2} 10.若cos α=-45,α是第三象限的角,则sin(α+π4)=( )A .-7210 B.7210 C .-210 D.21011.已知▱ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在▱ABCD 的内部,则z =2x -5y 的取值范围是( ) A .(-14,16) B .(-14,20) C .(-12,18) D .(-12,20)12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.圆心在原点且与直线x +y -2=0相切的圆的方程为________.14.设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱16.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面P AC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.21.(本小题满分12分)设函数f (x )=x (e x -1)-ax 2. (1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧 AC =BD,过C 点的圆的切线与BA 的延长线交于E 点,证明: (1)∠ACE =∠BCD ; (2)BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α, y=t sin , (t 为参数),圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)当坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年普通高等学校招生模拟考试(新课标 第二十套)数学试卷(文史类)参考答案(选自2010年普通高等学校招生全国统一考试)解析:由题可知,集合A ={x |-2≤x ≤2},集合B ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所以集合A ∩B ={0,1,2}. 答案:D解析:由题可知,设b =(x ,y ),则2a +b =(8+x,6+y )=(3,18),所以可以解得x =-5,y =12,故b =(-5,12),由cos〈a ,b 〉=a·b |a| |b|=1665.答案:C 解析:由题知,z =3+i 1-3i 2=3+i -2-23i =3+i -2+23i -2-23i -2+23i =-34+14i ,可得|z |=-342+142=12. 答案:B解析:由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1.答案:A解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),所以其渐近线方程为y =±ba x ,因为点(4,-2)在渐近线上,所以b a =12,根据c 2=a 2+b 2,可得c 2-a 2a 2=14,解得e 2=54,e =52. 答案:D解析:由题可知,质点P 的初始位置在P 0(2,-2),所以此时点P 到x 轴的距离为2,由题质点P 按照逆时针方向运动,所以应该是距离x 轴的距离越来越小.根据四个选项可得C 正确.答案:C解析:由题可知,长方体的长、宽、高分别为2a ,a ,a ,其顶点在同一个球面上,所以球的直径等于长方体的体对角线的长度,故2R =4a 2+a 2+a 2,解得R =62a ,所以球的表面积S =4πR 2=6πa 2.答案:B解析:根据程序框图可知,该程序框图的功能是计算S =11×2+12×3+13×4+…+1N × N +1,现在输入的N =5,所以满足条件k <N 的结果为S =11×2+12×3+13×4+14×5+15×6=(1-12)+(12-13)+…+(15-16)=56.答案:D解析:由题可知函数f (x )是偶函数,所以当x <0时解析式为f (x )=2-x -4(x <0),所以当x -2<0时,f (x -2)=2-(x -2)-4,要使f (x -2)>0,解得x <0;当x -2≥0时,f (x -2)=2x -2-4,要使f (x -2)=2x -2-4>0,解得x >4,综上{x |f (x -2)>0}={x |x <0或x >4}.答案:B解析:由题知,cos α=-45,α是第三象限的角,所以sin α=-35,由两角和的正弦公式可得sin(α+π4)=sin αcos π4+cos αsinπ4=(-35)×22+(-45)×22=-7210.答案:A解析:由题可知,平行四边形ABCD 的点D 的坐标为(0,-4),点(x ,y )在平行四边形内部,如图,所以在D (0,-4)处目标函数z =2x -5y 取得最大值为20,在点B (3,4)处目标函数z =2x -5y 取得最小值为-14,由题知点(x ,y )在平行四边形内部,所以端点取不到,故z =2x -5y 的取值范围是(-14,20).答案:B 解析:由题意可知,画出函数的图象,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以ab =1,c 的范围是(10,12),所以abc 的范围是(10,12).答案:C解析:由题意可知,原点到直线x +y -2=0的距离为圆的半径,即r =|0+0-2|2=2,所以圆的方程为x 2+y 2=2.答案:x 2+y 2=2解析:这种随机模拟的方法,是在[0,1]内生成了N 个点,而满足几条曲线围成的区域内的点是N 1个,所以根据比例关系S S 正方形=N 1N,而正方形的面积为1,所以随机模拟方法得到的面积为N 1N .答案:N 1N解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观察者时其正视图是三角形,其余的正视图均不是三角形.答案:①②③⑤解析:如图,设AB =c ,AC =b ,BC =a ,则由题可知BD =13a ,CD =23a ,所以根据余弦定理可得b 2=(2)2+(23a )2-2×2×23a cos45°,c 2=(2)2+(13a )2-2×2×13a cos135°,由题意知b =2c ,可解得a =6+35,所以BD =13a =2+ 5. 答案:2+ 5解:(1)由已知a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9.可解得⎩⎪⎨⎪⎧a 1=9d =-2. 数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n n -12d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.解:(1)证明:因为PH 为四棱锥P -ABCD 的高, 所以AC ⊥PH .又AC ⊥BD ,PH ,BD 都在平面PBD 内,且PH ∩BD =H , 所以AC ⊥平面PBD , 故平面P AC ⊥平面PBD .(2)因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6, 所以HA =HB = 3. 因为∠APB =∠ADB =60°,所以P A =PB =6,HD =HC =1. 可得PH =3,等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500× 40×270-30×160 270×300×200×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4,又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c , x 2+y 2b 2=1.化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|, 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2=4 1-b 21+b 22-4 1-2b 21+b 2=8b 41+b 22, 解得b =22.解:(1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1). 当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f (x )=x (e x -1-ax ).令g (x )=e x -1-ax ,则g ′(x )=e x -a . 若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时g (x )≥0,即f (x )≥0. 若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,而g (0)=0,从而当x ∈(0,ln a )时g (x )<0,即f (x )<0. 综合得a 的取值范围为(-∞,1].证明:(1)因为 AC = BD, 所以∠BCD =∠ABC .又因为EC 与圆相切于点C ,故∠ACE =∠ABC , 所以∠ACE =∠BCD . (2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BC BE =CDBC,即BC 2=BE ×CD .解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3x -1 x 2+y 2=1,解得C 1与C 2的交点为(1,0),(12,-32).(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α,(α为参数),P 点轨迹的普通方程为(x -14)2+y 2=116.故P 点轨迹是圆心为(14,0),半径为14的圆.解:(1)由于f (x )=⎩⎪⎨⎪⎧-2x +5,x <2,2x -3,x ≥2,则函数y =f (x )的图象如图所示.(2)由函数y =f (x )与函数y =ax 的图象可知,当且仅当a ≥12或a <-2时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞).。