中考数学二模试卷及答案解析
中考二模测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。
2022年中考二模考试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各数中最大的数是( )A. 5B. 3C. πD. -82.随着”一带一路”建设不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×1073.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.5.下列计算正确是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y26.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPDA. 162°B. 152°C. 142°D. 128°9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x<2时,y随x增大而增大B. a-b+c<0C. 拋物线过点(-4,0)D. 4a+b=0二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA度数是_____度.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD =16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣227.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.S.(1)求抛物线的解析式; (2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件点N.答案与解析一.选择题(共10小题)1.下列各数中最大数是( )A. 5B. 3C. πD. -8【答案】A【解析】试题分析:因为-8<3<<5,所以最大的数是5,故选A.考点:实数的大小比较.2.随着”一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×107【答案】C【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| < 10|)的记数法. 【详解】8200000 用科学记数法表示为8.2×106.故选C【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法的定义.3.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.【答案】A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.5.下列计算正确的是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y2【答案】C【解析】试题分析:选项A,根据合并同类项法则可得x4+x4=2x4,故错误;选项B,根据同底数幂的乘法可得x3•x2=x5,故错误;选项C,根据积的乘方可得(x2y)3=x6y3,故正确;选项D,根据平方差公式(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故错误;故答案选C.考点:整式运算.6.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【详解】解:点P(4,3)关于y轴的对称点坐标为:(﹣4,3),则此点在第二象限.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确把握横纵坐标的关系是解题关键.7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定【答案】B【解析】【分析】直接利用反比例函数的增减性分析得出答案.【详解】解:∵反比例函数y=kx(k>0)中,k>0,∴在每个象限内,y随x的增大而减小,∵点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,且﹣2>﹣4∴y1<y2,故选:B.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD 为( )A. 162°B. 152°C. 142°D. 128°【答案】C【解析】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选C.9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分【答案】A【解析】【分析】 根据众数的定义即可解决问题.【详解】解:这组数据中90出现了两次,次数最多,所以这组数据的众数为90分.故选:A .【点睛】本题考查众数的定义,解题的关键是记住众数的定义.10.已知抛物线y =ax 2+bx +c (a≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x <2时,y 随x 增大而增大B. a -b +c <0C. 拋物线过点(-4,0)D. 4a +b =0【答案】D【解析】【分析】 根据二次函数的性质以及图象对各项进行判断即可.【详解】A. 对称轴为直线x =2,根据二次函数的增减性可得,当x <2时,y 随x 增大而减小,错误;B. 对称轴为直线x =2,与x 轴一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),故当x=-1,0y a b c =>-+,错误;C. 对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),且抛物线与x 轴有且只有两个交点,错误;D. 对称轴为直线x =2,可得22b a-=,即4a +b =0,正确; 故答案为:D .【点睛】本题考查了二次函数的问题,掌握二次函数的性质以及图象是解题的关键. 二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.【答案】(x+y)2(x﹣y)2【解析】【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【详解】x4−2x2y2+y4=(x2−y2)2=(x+y)2(x−y)2.故答案为(x+y)2(x−y)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】8 5【解析】【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【详解】解:根据勾股定理得:AC22345,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:85.【点睛】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.【答案】67.5.【解析】【分析】根据正方形的性质可得∠BAC=45°,由AE=AB根据等腰三角形的性质进行求解即可得. 【详解】∵四边形ABCD是正方形,∴∠BAD=90°,∵AC是对角线,∴∠BAC=12∠BAD=45°,∵AE=AB,∴∠BEA=(180°-∠BAC)÷2=67.5°,故答案为67.5.【点睛】本题考查了正方形的性质、等腰三角形的性质等,熟练掌握正方形的性质是解题的关键.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.【答案】0.3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD = _________0【答案】65【解析】根据直径所对圆周角是直角可得: ∠ACB=90°,∠ADB=90°,因为∠ABC = 40°,所以∠BAC=90°-40°=50°,因为AD平分∠BAC,所以∠BAD=50÷2=25°,所以∠ABD=90°-25°=65°,故答案为65°.16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.【答案】18 5【解析】【分析】由折叠的性质可得S△ABE=S△AB'E,BE=B'E,可证∠BB'C=90°,由勾股定理可求AE的长,由面积法可求BB'的长,由勾股定理可求解.【详解】解:∵将△ABE沿着AE折叠至△AB'E,∴S△ABE=S△AB'E,BE=B'E,∵BE=CE,∴BE=EC=B'E=3,∴∠BB'C=90°,在Rt△ABE中,AE22AB BE+916+5,∵12×AE×BB'=2×12×AB×BE,∴BB'=2435⨯⨯=245,∴B'C22BC B B'-5763625-=185,故答案为:185.【点睛】本题考查了矩形的性质,折叠的性质,求出BB'的长是本题的关键.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2+27.【答案】235-【解析】【分析】直接利用特殊角三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.【详解】解:原式═1+3﹣3933-+=235-.【点睛】本题考查了实数的运算:包含了零指数幂、负整数指数幂、特殊角的三角函数值和去绝对值.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【答案】(1)200(2)60(3)300【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,可求得这次被调查的学生数;(2)首先求得C项目对应人数,然后补全统计图即可;(3)用该校1000学生数×参加了羽毛球社团的人数所占的百分比即可得到结论.【详解】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人); 补充条形统计图如下图:(3)1000×60200=300(人),答:这1000名学生中有300人参加了羽毛球社团.【点睛】题考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.扇形统计图直接反映部分占总体的百分比大小.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.【答案】(1)证明见解析(2)四边形ABCD是矩形;理由见解析【解析】试题分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用”角角边”证明△AED和△CFB全等即可;(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.考点:全等三角形的判定与性质;矩形的判定.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【答案】慢车速度为50千米/小时,快车速度为60千米/小时【解析】【分析】设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意列方程即可得到结论.【详解】解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得150x﹣12=1501.2x,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.【点睛】本题考查了分式方程的应用,正确的理解题意是解题的关键.22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.【答案】(1)见解析;(2)MN=2.【解析】【分析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN=22=22.DM DN【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,0);(2)S=23(023)23(23)t tt t⎧<⎪⎨-⎪⎩;(3)存在,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0)【解析】【分析】(1)求出A,B两点的坐标,求出AB=2,则OC可求出,则点C的坐标可求出;(2)先求出∠ABC=90°,分两种情况考虑:当M在线段BC上;当M在线段BC延长线上;表示出BM,利用三角形面积公式分别表示出S与t的函数关系式即可;(3)点P是y轴上的点,在坐标平面内存在点Q,使以A、B、P、Q为顶点的四边形是菱形,如图所示,利用菱形的性质,根据AQ与y轴平行或垂直,求出满足题意Q得坐标即可.【详解】解:(1)对于直线y33当y=0 时,33x=0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y3∴B(03,∴OB3∵∠AOB=90°,∴AB2200A B+13+2,∵AB:AC=1:2,∴AC =4,∴OC =3,∴C (﹣3,0);(2)如图所示,∵1OA =,3OB =21AB OA ==,∴∠ABO =30°,同理:BC =3,∠OCB =30°,∴∠OBC =60°,∴∠ABC =90°,分两种情况考虑:①若M 在线段BC 上时,BC =3CM =t ,可得BM =BC ﹣CM =3﹣t ,此时S △ABM =12BM •AB =12×(3t )×2=3t (0≤t <3②若M 在BC 延长线上时,BC =3,CM =t ,可得BM =CM ﹣BC =t ﹣3,此时S △ABM =12BM •AB =12×(t ﹣3)×2=t ﹣3t 3); 综上所述,S =23(023)23(23)t t t t ⎧<⎪⎨-⎪⎩;(3)存在.若AB 是菱形的边,如下图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).【点睛】此题属于一次函数综合题,考查了含30度直角三角形的性质,勾股定理,坐标与图形性质,一次函数图象上点的坐标特征,三角形的面积,菱形的性质,利用了分类讨论的思想,熟练掌握一次函数的性质及菱形的性质是解本题的关键.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD 和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF 得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;S.(2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.【答案】(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S =梯形﹣﹣即可解决问题.(3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOB S S S S =梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15.(3)存在.如图2中,∵OC=OB=5,∴△BOC是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质。
中考二模检测《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为( ) A 3×10-5B. 3×10-4C. 0.3×10-5D. 0.3×10-42. 一元二次方程x 2-3x=0的解是( ) A. 0B. 3C. 0,3D. 0,-23. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A. 108°B. 90°C. 72°D. 60°4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数的取值范围是( ).A. 2a ≥-B. 2a <-C. 2a ≤-D. 2a >-5. 已知函数y=kx的图像经过点(1,-1),则函数y=kx-2的图像是( ) A. B. C. D.6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF =,则HFBG的值为( )A.712B.23C.12D.5128. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)二.填空题(每题3分,共24分)9. 分解因式:228ax a=_______.10. 在式子212xx++中自变量x 的取值范围是__________11. 若关于x的分式方程7311mxx x+=--无解,则实数m=_______.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.14 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.三.解答题(共102分)17. -14+3tan30°-33+(2017+)0+(12)-218 先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-119. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天) 1≤x<5050≤x≤90售价(元/件) x+4090每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线; (2)若AE=6,FB=4,求⊙O 的面积.25. 菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 形状是 ; (2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCDS S四边形时,直接写出线段CE 的长.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B(1,0). (1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由; (3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.答案与解析一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为( )A. 3×10-5B. 3×10-4C. 0.3×10-5D. 0.3×10-4【答案】A【解析】由科学计数法的定义得:0.00003=3×10−5,故选A.2. 一元二次方程x2-3x=0的解是( )A. 0B. 3C. 0,3D. 0,-2【答案】C【解析】原方程变形为:x(x-3)=0,x1=0,x2=3.故答案为x1=0,x2=3.点睛:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.3. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A. 108°B. 90°C. 72°D. 60°【答案】C【解析】分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数取值范围是( ).A. 2a ≥-B. 2a <-C. 2a ≤-D. 2a >-【答案】D 【解析】【详解】试题解析:0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-.由②得:224x x -->--36x ->- 2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的的取值范围为:2a -<. ∴2a >-. 故选D . 5. 已知函数y=kx的图像经过点(1,-1),则函数y=kx-2的图像是( ) A. B. C. D.【答案】A 【解析】将(1,-1),代人y=kx,得k=-1, 所以一次函数的解析式为y=-x-2.根据k=-1<0,且过点(0,-2),可判断图像经过二、三、四象限. 故选A.6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学的身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式 【答案】C 【解析】 【分析】利用抽样调查,全面普查适用范围直接判断即可【详解】A. 要了解一批节能灯的使用寿命,应采用抽样调查方式,故A 错 B. 调查你所在班级同学的身高,应采用全面普查方式,故B 错C. 环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C 对D. 调查全市中学生每天的就寝时间,应采用抽样调查方式,故D 错 【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF ,则HFBG的值为( )A.712B.23C.12D.512【答案】A 【解析】设DF=a ,则DF=AE=a ,AF=EB=2a ,由△HFD∽△BFA,得===,求出FH ,再由HD∥EB,得△DGH∽△EGB,得===,求出BG 即可解决问题.解:∵四边形ABCD 是菱形, ∴AB=BC=CD=AD,∵AF=2DF,设DF=a ,则DF=AE=a ,AF=EB=2a , ∵HD∥AB,∴△HFD∽△BFA,∴===,∴HD=1.5a,=,∴FH=BH,∵HD∥EB,∴△DGH∽△EGB,∴===,∴=,∴BG=HB,∴.故选A.“点睛”本题考查相似三角形的性质和判定、菱形的性质、比例的选择等知识,解题的关键是利用相似三角形的性质解决问题,学会设参数,属于中考常考题型.8. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)【答案】B【解析】观察发现:B1(1,1),B2(0,2),B3(−2,2),B4(−4,0),B5(−4,−4),B6(0,−8),B7(8,−8),B8(16,0),B9(16,16),…,∴B8n+1(24n,24n)(n为自然数).∵2017=8×252+1,∴点B2017的坐标为(21008,21008).故答案为(21008,21008).点睛:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点的坐标规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同.2倍.二.填空题(每题3分,共24分)9. 分解因式:2ax a=_______.28【答案】2(2)(2)a x x +-【解析】【分析】首先提公因式2a ,再利用平方差公式分解即可.【详解】原式=2a (x 2﹣4)=2a (x +2)(x ﹣2).故答案为2a (x +2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10. 在式子2x +中自变量x 的取值范围是__________ 【答案】2x ≠-【解析】根据分式的意义和二次根式的意义,列不等式组求解.根据题意得210{20x x +≥+≠,解得x≠-2. 故填:x≠-211. 若关于x 的分式方程7311mx x x +=--无解,则实数m =_______. 【答案】3或7.【解析】解:方程去分母得:7+3(x ﹣1)=mx ,整理得:(m ﹣3)x =4.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=4,m =7.综上所述:∴m 的值为3或7.故答案为3或7.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________. 【答案】14 【解析】随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反, ∴两次正面都朝上的概率是14.故填:14.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.【答案】2【解析】数据8,6,10,7,9,的平均数=15(8+6+10+7+9)=8,方差=15[(8−8)2+(6−8)2+(10−8)2+(7−8)2+(9−8)2]=2.故填2.14. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.【答案】75.【解析】【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为75.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.【答案】①④【解析】∵抛物线与x轴有2个交点,∴b2−4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴是直线x=1,但不能确定抛物线与x轴的交点坐标,∴4a−2b+c<0不确定;不等式ax2+bx+c>0的解集x>3错误,所以②③错误;∵点(−2,y1)比点(5,y2)到直线x=1的距离小,而抛物线开口向上,∴y1<y2,所以④正确.故答案为①④.点睛:根据抛物线与x轴的交点个数对①进行判断;由于不能确定抛物线与x轴的交点坐标,于是可对②③进行判断;当抛物线开口向上,抛物线上的点到对称轴的距离越远,对应的函数值越大,由此可对④进行判断.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.65.【解析】【分析】在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.【详解】如图,在BE上截取BG=CF,连接OG,∵Rt△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,∵OB=OC,∴△OBG≌△OCF(SAS),∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴222262210+=+=BC CE∵BC2=BF•BE,则62=BF210,解得:BF=105,∴EF=BE﹣BF=105,∵CF2=BF•EF,∴310,∴GF=BF﹣BG=BF﹣CF=105,在等腰直角△OGF中OF2=GF2,∴OF=65.65.三.解答题(共102分)17. -14+3tan30°30+(12)-2【答案】4【解析】试题分析:原式利用乘方、特殊角的三角函数值、零指数幂、负整数指数幂计算即可得到结果.试题解析:原式=-1+33318. 先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-1【答案】21aa--,54【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.试题解析:原式=-()()2a2a2a1a2(a1)+--⨯+-=a2a1--,当11a a33-⎛⎫=-=-⎪⎝⎭即时,原式=5419. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)【答案】广告牌CD的高度约为2.7米【解析】试题分析:过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH,在△ADE 解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长,然后根据CD=CG+GE-DE即可求出宣传牌的高度.试题解析:过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH=33∴∠BAH=30°,∴BH=12AB=5;∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG 是矩形. ∵BH=5,AH=53, ∴BG=AH+AE=53+15,Rt△BGC 中,∠CBG=45°,∴CG =BG=53+15.Rt△ADE 中,∠DAE=60°,AE=15,∴DE=3AE=153.∴CD=CG+GE −DE=53+15+5−153=20−103≈2.7(m).答:宣传牌CD 高约2.7米.20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.【答案】(1)12;(2)转动转盘1更优惠. 【解析】试题分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可;(2)分别求得转动两个转盘所获得优惠,然后比较即可得到结论.试题解析:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)=612=12; (2)转盘1能获得的优惠为:0.33000.230020.1300312⨯+⨯⨯+⨯⨯=25元,转盘2能获得的优惠为:40×24=20元,所以选择转动转盘1更优惠.考点:列表法与树状图法.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.【答案】(1)8,4;(2)1440;(3)2340人.【解析】【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【详解】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50-8-15-20-1-2=4人;故答案为:8;4;(2)扇形统计图中,D组所占圆心角的度数=360×2050=144度;故答案为:144°;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比=20+15+450=78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点睛】本题考查频数和扇形统计图,解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【答案】(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据”甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线;(2)若AE=6,FB=4,求⊙O 的面积.【答案】(1)证明见解析(2)16π【解析】试题分析:(1)连结AD 、OD ,如图,根据圆周角定理由AB 为⊙O 的直径得到∠ADB=90°,即AD⊥BC,再根据等腰三角形的性质得BD=CD ,则OD 为△ABC 的中位线,所以OD∥AC,加上EF⊥AC,于是OD⊥EF,然后根据切线的判定定理得EF 是⊙O 的切线;(2)设⊙O 的半径为R ,利用OD∥AE 得到△FOD∽△FAE,根据相似比可得 6R =442R R++,解得R=4,然后利用圆的面积公式求解. 试题解析:(1)连结AD 、OD ,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=CD ,而OA=OB ,∴OD 为△ABC 的中位线,∴OD ∥AC ,∵EF ⊥AC ,∴OD ⊥EF ,∴EF 是⊙O 的切线;(2)设⊙O 的半径为R ,∵OD ∥AE ,∴△FOD ∽△FAE , ∴OD AE =FO DA ,即6R =442R R++, 解得R=4,∴⊙O 的面积=π•42=16π.25.菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 的形状是 ;(2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCD S S =四边形时,直接写出线段CE 的长.【答案】(1)△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;(3)333+333.【解析】试题分析:(1)先证四边形ABCD 是正方形,得出∠EBO=∠FCO=45°,OB=OC ,得出∠BOE=∠COF ,进一步得到△BOE ≌△COF ,从而得到结论;(2)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,根据菱形的性质可得CA 平分∠BCD ,∠ABC+BCD=180°,求得OG=OH ,∠BCD=120°,∠GOH=∠EOF=60°,进一步得出∠EOG=∠FOH ,得出△EOG ≌△FOH ,从而得到结论;(3)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,先求得四边形O′GCH 是正方形,从而求得GC=O′G=3,∠GO′H=90°,得到△EO′G ≌△FO′H 全等,得到△O′EF 是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E 的长,然后根据勾股定理求得EG ,即可求得CE 的长.试题解析:(1)△OEF 是等腰直角三角形;如图1,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴OB=OC ,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,∴∠BOE+∠COE=90°,∵∠MON+∠BCD=180°,∴∠MON=90°,∴∠COF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,∵∠BOE=∠COF ,OB=OC ,∠EBO=∠FCO ,∴△BOE ≌△COF(ASA),∴OE=OF ,∴△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;如图2,过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,∴∠OGE=∠OGC=∠OHC=90°,∵四边形ABCD 是菱形,∴CA 平分∠BCD ,∠ABC+BCD=180°,∴OG=OH ,∠BCD=180°﹣60°=120°,∵∠GOH+∠OGC+∠BCD+∠OHC=360°,∴∠GOH+∠BCD=180°,∴∠MON+∠BCD=180°,∴∠GOH=∠EOF=60°,∵∠GOH=∠GOF+∠FOH ,∠EOF=∠GOF+∠EOG ,∴∠EOG=∠FOH ,在△EOG与△FOH 中,∵∠EOG=∠FOH ,OG=OH ,∠EGO=∠FHO ,∴△EOG ≌△FOH(ASA),∴OE=OF ,∴△OEF 是等边三角形;(3)如图3,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴'34O C AC =,过O 点作O′G ⊥BC 于G ,作O′H ⊥CD 于H ,∴∠O′GC=∠O′HC=∠BCD=90°,∴四边形O′GCH 是矩形,∴O′G ∥AB ,O′H ∥AD ,∴'''34O G O H O C AB AD AC ===,∵AB=BC=CD=AD=4,∴O′G=O′H=3,∴四边形O′GCH 是正方形,∴GC=O′G=3,∠GO′H=90°,∵∠MO′N+∠BCD=180°,∴∠EO′F=90°,∴∠EO′F=∠GO′H=90°,∵∠GO′H=∠GO′F+∠FO′H ,∠EO′F=∠GO′F+∠EO′G ,∴∠EO′G=∠FO′H ,在△EO′G 与△FO′H 中,∵∠EO′G=∠FO′H ,O′G= O′H ,∠EG O′=∠FH O′,∴△EO′G ≌△FO′H (ASA),∴O′E=O′F ,∴△O′EF 是等腰直角三角形;∵S 正方形ABCD =4×4=16,ΔO'EF98ABCD S S =四边形,∴S △O′EF =18,∵S △O′EF =21'2O E ,∴O′E=6,在RT △O′EG 中,∴CE=CG+EG=3+∠M′ON′旋转到如图所示位置时,CE′=E′G ﹣CG=3.综上可得,线段CE的长为3+3.考点:1.四边形综合题;2.正方形的判定与性质;3.等边三角形的判定;4.等腰直角三角形;5.分类讨论;6.综合题;7.压轴题.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B(1,0).(1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由;(3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.【答案】(1)y=﹣x 2﹣x+4,Q 20(1,)3-(2)(﹣5,﹣16)(3)①2414(,)55M --②15(,6)2M -- 【解析】 试题分析:(1)利用一次函数的解析式求出点A 、C 的坐标,然后再利用B 点坐标即可求出二次函数的解析式;(2)由于M 在抛物线F 1上,所以可设M(a ,-248433a a a -+),然后分别计算S 四边形MAOC 和S △BOC ,过点M 作MP⊥x 轴于点P ,则S 四边形MAOC 的值等于△APM 的面积与梯形POCM 的面积之和.(3)由于没有说明点P 的具体位置,所以需要将点P 的位置进行分类讨论,当点P 在A′的右边时,此情况是不存在;当点P 在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D 、P 为顶点的三角形与△AB′C 相似,则分为以下两种情况进行讨论:①AC A B ''=DA PA '';②AB AC '=DA PA''.试题解析:(1)令y=0代入y=43x+4, ∴x=﹣3,A(﹣3,0),令x=0,代入y=43x+4,∴y=4,∴C(0,4), 设抛物线F 1的解析式为:y=a(x+3)(x ﹣1), 把C(0,4)代入上式得,a=﹣43, ∴y=﹣43x 2﹣83x+4,Q 201,3⎛⎫- ⎪⎝⎭(2)∵点B 的坐标为(1,0),取点B 关于y 轴的对称点B′(﹣1,0),连接CB′,则∠BCO=∠B′CO ,∴△BPC 的内心在y 轴上,直线B′C 的解析式为y=4x+4,联立,2y 4x 448y x x 433{=+=--+∴点P 的坐标为(﹣5,﹣16);N(0,-6),直线AC 的表达式为4y x 43=+, 当△MNC ∽△AOC 时,①∠CMN 为直角设 4M x,x 43⎛⎫+ ⎪⎝⎭,根据勾股定理可得2414M ,55⎛⎫-- ⎪⎝⎭ ②当∠CNM 直角时,MN ∥x 轴,∴15M ,62⎛⎫-- ⎪⎝⎭点睛:本题主要考查对待定系数法求一次函数的解析式,二次函数图象上的点的坐标的特征,函数和坐标轴的交点,二次函数的三种形式,相似三角形的判定,对称性质等知识的连接和掌握,熟练运用性质进行推理是解决此题的关键所在,要注意分类讨论思想的在此题中的运用.。
2024年陕西省部分学校中考数学二模试卷+答案解析
2024年陕西省部分学校中考数学二模试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.规定:表示零上12摄氏度,记作,表示零下7摄氏度,记作()A. B. C. D.2.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱3.将含有的直角三角板在两条平行线中按如图所示的方式摆放.若,则的度数是()A.B.C.D.4.计算的结果是()A. B. C. D.5.已知一次函数,当时,函数值y的取值范围是,则的值为()A. B.1 C.或1 D.1或26.在中,,,则的值是()A. B. C. D.7.如图,AB为的直径,点C,D都在上,,若,则的度数为()A.B.C.D.8.抛物线L:经过,两点,且抛物线L不经过第四象限,则下列点坐标可能在抛物线L上的是()A. B. C. D.二、填空题:本题共5小题,每小题3分,共15分。
9.在实数,,,,,中,无理数的个数是______.10.七边形的外角和等于______.11.菱形ABCD的对角线,,则AB的长为______.12.如图,过点作轴,垂足为C,轴,垂足为,PD分别交反比例函数的图象于点A,B,则阴影部分的面积是______.13.如图,在矩形ABCD中,点E在边AB上,点F在边AD上,连接CE,CF,EF,,,,,则线段EF的长度为______.三、解答题:本题共13小题,共81分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题5分计算:15.本小题5分解不等式组:16.本小题5分已知,求代数式的值.17.本小题5分如图四边形ABCD是菱形,,请用尺规作图法,在边AD上求作一点P,使保留作图痕迹,不写作法18.本小题5分如图,A,B,C,D四点在同一条直线上,,,求证:19.本小题5分小明和小乐两位同学都是体育爱好者,小明喜欢观看“足球、乒乓球、羽毛球”赛事,小乐喜欢观看“篮球、排球”赛事,他们商定采用抽签的方式确定观看的赛事项目,并制作了五张卡片这些卡片除赛事名称外,其余完全相同并将卡片背面朝上洗匀后放在桌面上.小乐从五张卡片中随机抽取一张卡片,是他喜欢的赛事的概率是______.我们常称足球、排球、篮球为“三大球”,小明先从洗匀后的五张卡片中抽取一张卡片,小乐从剩下的卡片中再抽取一张卡片,求他俩抽取的卡片上都是“三大球”中的赛事项目的概率.20.本小题5分如图在平面直角坐标系中,的顶点坐标分别是,,作,使其与关于y对称,且点,,分别与点A,B,C对应.在的情形中,连接,则的长为______.21.本小题6分如图,装有某种液体的工业用桶中放置有一根搅拌棍.工人师傅为了解桶内所装液体的体积,先在搅拌棍所处桶孔位置做好标记点A,并取出;然后测得搅拌棍接触到液体部分,搅拌棍A到底端D处的长度为,最后测量出桶的高AE为,圆桶内壁的底面直径为已知桶内的液面与桶底面平行,其平面示意图如图2所示.请你根据以上数据,帮工人师傅计算出桶内所装液体的体积结果保留22.本小题7分小明同学通过查阅资料发现,声音在空气中传播的速度随气温的变化而变化,几组对应值如下表:气温0510152025声音在空气中的传播速度331334337340343346已知声音在空气中的传播速度与气温成一次函数关系,请求出该函数的表达式.若当日气温为,小明观看到炫烂的烟花5s后才听到声响,求小明与烟花之间的大致距离.23.本小题7分阅读使人进步,启智增慧,阅读素养的建立使人终身受益.某学校随机抽取了50名学生寒假期间阅读书本的数量并统计分析,发现学生寒假阅读的书本数最少的有1本,最多的有4本,并根据调查结果绘制了如下不完整的频数分布直方图.补全频数分布直方图;这50名学生寒假阅读的书本数的中位数是______本;求抽取的学生寒假阅读书本数的平均数;若该校共有1100名学生,请估算该校学生寒假阅读书本数在3本及以上的人数.24.本小题8分如图,在中,,以边AB为直径的交BC于点D,点E在上,连接AD,DE,满足,连接求证:若,,求DE的长.25.本小题8分如图,在一个斜坡上架设两个塔柱AB,可看作两条竖直的线段,塔柱间挂起的电缆线下垂弧度可以近似看成抛物线的形状.两根塔柱的高度满足,塔柱AB与CD之间的水平距离为60m,且两个塔柱底端点D与点B的高度差为以点A为坐标原点,1m为单位长度构建平面直角坐标系求点B,C,D的坐标.经测量得知:A,C段所挂电缆线对应的抛物线的形状与抛物线一样,且电缆线距离斜坡面竖直高度至少为时,才符合设计安全要求.请结合所学知识判断上述电缆的架设是否符合安全要求?并说明理由.26.本小题10分在平面直角坐标系中,A为y轴正半轴上一点,B为x轴正半轴上一点,且,连接如图1,C为线段AB上一点,连接OC,将OC绕点O逆时针旋转得到OD,连接AD,求的值如图2,当点C在x轴上,点D位于第二象限时,,且,E为AB的中点,连接DE,试探究线段是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:表示零上12摄氏度,记作,表示零下7摄氏度,记作,故选:根据相反意义的量即可得到答案.本题考查了正负数的应用,解答本题的关键要明确正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.【答案】B【解析】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.【答案】D【解析】解:如图,,,,的直角三角板,,,故选:先根据平行线的性质求出的度数,再由对顶角相等求出的度数,由三角形外角的性质即可得出结论.本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.4.【答案】C【解析】解:原式故选:根据积的乘方、幂的乘方法则计算即可.本题考查了积的乘方、幂的乘方,掌握运算法则是解题的关键.5.【答案】B【解析】解:当时,y随x的增大而增大,即一次函数为增函数,当时,,当时,,代入一次函数解析式得:,解得:,;当时,y随x的增大而减小,即一次函数为减函数,当时,,当时,,代入一次函数解析式得:,解得:,,故选:由一次函数的性质,分和时两种情况讨论求解即可.本题考查了一次函数的图象与性质,解题的关键是分两种情况来讨论.6.【答案】A【解析】解:如图,做于点D,,,,,::故选首先根据题意画出图形,做于点D,根据题意可推出,,然后即可推出AC::本题主要考查解直角三角形,特殊角的三角函数,关键在于根据题意画出图形,正确的通过作辅助线构建直角三角形,认真的进行计算.7.【答案】C【解析】解:连接AC,,,,,为的直径,,故选:根据圆周角定理求出和的度数,再结合平行线的性质即可得到答案.本题考查直径所对圆周角定理.求出和的度数是解题的关键.8.【答案】B【解析】解:抛物线L:经过,两点,抛物线L不经过第四象限,当,,函数不过第四象限时,函数图象只过一二象限,点不可能在抛物线上,当,,时函数只过一二三象限,不过第四象限,,,,将点A、B、C、D分别代入解析式中解得,当点代入,解得,不符合题意,点不可能在抛物线上,故选:由二次函数经过,两点,且不经过第四象限,所以抛物线开口向上,开口向上,函数和x轴有一个交点或没有交点的情况下,函数图象只过一二象限;开口向上,函数两根均小于零的情况下,函数只过一二三象限,不过第四象限;根据题意求将各点坐标带入求出函数解析式,即可得出结论.本题主要考查的是二次函数的性质,关键是二次函数图象上点的坐标的应用.9.【答案】3【解析】解:在实数,,,,,中,是无理数的有:,,,是无理数的有3个,故答案为:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数,结合所给数据进行判断即可.本题考查了无理数的定义,解题的关键是掌握无理数的几种形式.10.【答案】【解析】解:七边形的外角和等于故答案为:根据多边形的外角和等于360度即可求解.本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于是解题的关键.11.【答案】【解析】解:如图,,,,,,四边形ABCD是菱形,,,,,故答案为:利用菱形的面积公式求出,利用菱形的性质得到,,,利用勾股定理求出AB的长即可.本题主要考查了菱形的性质,勾股定理,熟知菱形的性质是解题的关键.12.【答案】6【解析】解:点,,,反比例函数,,故答案为:求阴影部分的面积,先根据点的坐标求出矩形DPCO的面积,再根据k的几何意义求出和,最后根据得出答案.本题主要考查了反比例函数中k的几何意义,解答本题的关键是熟练掌握反比例函数的性质.13.【答案】【解析】解:如图,延长EB至G,使,连接CG,矩形ABCD中,,,,在和中,,≌,,,又,,在和中,,≌,,设,则,在中,,,整理得:,解得:,又,,,故答案为:延长EB至G,使,连接CG,证明≌,得到,再证明≌即可求解.本题考查了矩形的性质,全等三角形的判定与性质,勾股定理,掌握相关性质是解题的关键.14.【答案】解:【解析】根据实数的运算法则计算即可求解.本题考查了实数的运算.15.【答案】解:,解不等式①,得:,解不等式②,得:,不等式组的解集为:【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解确定不等式组的解集,熟知口诀是解答此题的关键.16.【答案】解:原式,当时,原式【解析】先根据分式的混合运算法则把原式化简,再将a的值代入计算可得.本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.17.【答案】解:如图,点P即为所求,.【解析】根据平行四边形、平行线的性质求出,先作出的平分线BM,然后作出的平分线即可.本题考查了平行四边形的性质,尺规作图法,掌握如何用尺规作图法作出角平分线是解答本题的关键.18.【答案】证明:A,B,C,D四点在同一条直线上,,,,,,在和中,,≌,【解析】利用AAS证明≌,得对应边相等.本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解答本题的关键.19.【答案】【解析】解:小乐从五张卡片中随机抽取一张卡片,是他喜欢的赛事的情况有2种,是他喜欢的赛事的概率是,故答案为:;设足球、乒乓球、羽毛球,篮球、排球,画树状图如下:由树状图知,共有20种等可能结果,其中他俩抽取的卡片上都是“三大球”中的赛事项目的有6种结果,则他俩抽取的卡片上都是“三大球”中的赛事项目的概率为共有5种等可能出现的结果,其中抽到小乐喜欢的赛事的有2种,由概率的定义可得答案;用树状图列举出所有等可能出现的结果,再根据概率的定义进行计算即可.本题考查列表法或树状图法,用树状图表示所有等可能的出现的结果是正确解答的关键.20.【答案】5【解析】解:找出,,关于y轴的对称点,,,连接各点,如图1:即为所求.连接,如图2:由格点可知:,故答案为:找出,,关于y轴的对称点,,,连接各点即可;由格点知识,利用勾股定理即可求解.本题考查了网格作图-轴对称图形,坐标与图形,勾股定理,熟练掌握轴对称的性质是解题的关键.21.【答案】解:由题意得,,,,解得:,桶内所装液体的体积立方米答:桶内所装液体的体积为立方米.【解析】根据油面和桶底是一组平行线,利用平行线分线段成比例定理求得,再利用圆柱的体积公式计算即可解答.本题考查了平行线分线段成比例定理,掌握平行线分线段成比例定理是关键.22.【答案】解:设函数关系式为根据题意,得,解得,当时,,小明与烟花之间的大致距离为【解析】设声速与气温为之间的函数关系式为,根据题意列方程解方程即可解答;把代入中表达式求出y,再根据时间、速度之间的关系即可解答.本题主要考查了一次函数与实际问题,利用待定系数法求一次函数解析式,函数的三种表示形式,函数的定义,掌握函数的三种表示方式是解题的关键.23.【答案】2【解析】解:阅读1本的人数有人,这50名学生寒假阅读的书本数的中位数是从小到大排列后的第25、26位的数据的平均数,第25、26位都是2本,则中位数是2本,补全频数分布直方图如图:故答案为:2;平均数是本;该校学生寒假阅读书本数在3本及以上的人数约有本先由总人数减去其他篇数的人数求得阅读1本的人数,再根据中位数的定义求解;根据平均数的计算方法求解即可;用总人数乘以样本中3本及以上的人数所占比例即可得.本题考查的是频数分布直方图的应用,求中位数和平均数,样本估计总体,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.24.【答案】证明:,,,,,,解:连接AE,设AC与交于F,连接BF,如图:为直径,,,,,即,,在中,,,,即,或舍去,,,即,,,,,,,,∽,,即,【解析】由,得到,进而得到即可求证;连接AE,设AC与交于F,连接BF,通过圆周角定理得到,,进而得出,求出AF,再证明∽即可求解.本题考查了平行线的判定,相似三角形的判定与性质,等腰三角形的性质,圆周角定理,解题的关键是学会添加辅助线,构造基本图形解决问题.25.【答案】解:如图1,设CD交x轴于点E,过点B作,垂足为F,由题意可知,米,米,米,,米,米,,,;这种电缆线的架设符合要求,理由如下:如图2,作轴,交抛物线于点G,交BD于点H,、C段所挂电缆线的形状与抛物线一样,设A、C所挂电缆线抛物线的解析式为,抛物线过点,,,解得,所以抛物线解析式为,设直线BD的解析式为,直线BD过点,,,解得,所以直线BD的解析式为,设点,则,,,,,当时,GH有最小值为18,,这种电缆线的架设符合要求.【解析】如图,设CD交x轴于点E,过点B作,垂足为F,分别求出与点B、C、D相关线段的长,然后根据点的坐标特征写出坐标即可;如图,作轴,交抛物线于点G,交BD于点H,用待定系数法分别求出A、C所挂电缆线抛物线和直线BD的解析式,设G、H的坐标,计算出GH的长度,然后根据二次函数的性质求出GH的最小值,然后和米比较即可作出判断.本题考查了二次函数的应用,解答本题的关键是点的坐标和对应线段的长度的相互转换、用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识.26.【答案】解:旋转,,,,又,≌,,;,,,为AB的中点,,即,过点D作于点M,于点N,又,四边形DMON是矩形,,又,,又,,≌,,点D在的平分线上,取点,连接,,则和A关于的平分线对称,,,当点、D、E三点共线时,最小,最小值为,的最小值为【解析】证明≌,得出,可得出,然后利用勾股定理求解即可;过点D作于点M,于点N,证明≌,可得出点D在的平分线上,取点,连接,,则和A关于的平分线对称,由得出当点、D、E三点共线时,最小,最后利用两点间距离公式求解即可.本题考查了全等三角形的判定与性质,旋转的性质,矩形的性质与判断,勾股定理等知识,根据题意添加合适辅助线,构造全等三角形是解题的关键.。
2024年黑龙江省哈尔滨市松北区中考数学二模试卷(含解析)
2024年黑龙江省哈尔滨市松北区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.实数−13的倒数是( )A. 13B. 3 C. −3 D. −132.下列运算中,结果正确的是( )A. x3⋅x3=x6B. 4=±2C. (x−3)2=x2−9D. 6x2+3x2=9x43.下列图形中,是轴对称图形而不是中心对称图形的是( )A. B. C. D.4.如图是由6个相同的小正方体搭成的几何体,则这个几何体的左视图是( )A.B.C.D.5.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于( )A. 32°B. 38°C. 52°D. 66°6.反比例函数y=k−3x的图象,当x>0时,y随x的增大而增大,则k的取值范围是( ) A. k<3 B. k≤3 C. k>3 D. k≥37.方程4x =62x−1的解为( )A. x=1B. x=2C. x=4D. x=38.用※定义一种新运算:对于任意实数m和n,规定m※n=m2−4n,如:1※2=12−4×2=−7.则3※(−2)的结果是( )A. 9B. 11C. 13D. 159.如图,在△ABC中,D、E分别为AB、AC边上的点,DE//BC,BE与CD相交于点F,若AD:BD=3:2,DF=2,则CF的长是( )A. 3B. 103C. 83D. 410.现有两段长度相等的公路隔离护栏清洗任务,分别交给甲、乙两个环卫小组同时进行清洗.甲、乙两组清洗的长度y(米)与清洗时间x(时)之间的函数关系的部分图象如图所示.下列说法不正确的是( )A. 甲组清洗速度每小时10米B. 清洗4小时,甲、乙两组施工的长度相同C. 乙组工作5小时共清洗护栏46米D. 清洗6小时时,甲组比乙组多完成了10米二、填空题:本题共10小题,每小题3分,共30分。
2024年中考数学二模试卷(上海卷)(全解全析)
2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
2024年广东省广州市越秀区中考数学二模试卷+答案解析
2024年广东省广州市越秀区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.当前,手机移动支付已成为当下流行的消费支付方式.如果在微信零钱记录中,收入100元,记作元,那么支出50元应记作为()A.元B.元C.元D.元2.剪纸是中国的传统艺术.下列剪纸图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.如图是某一物体的三视图,则此三视图对应的物体是()A.B.C.D.5.若点在平面直角坐标系的第三象限内,则x的取值范围在数轴上可表示为()A.B.C.D.6.如图,将沿BC方向平移到,若A,D之间的距离为2,,则BF等于()A.6B.7C.8D.97.若关于x的一元二次方程有两个不相等的实数根,则实数m的值可以是()A.5B.4C.3D.28.正方形网格中,如图放置,则的值为()A.B.C.D.29.已知二次函数为常数,且的图象上有四点,,,,则,,的大小关系是()A. B. C. D.10.如图,在正方形ABCD中,E是边BC上一点,F是CD延长线上一点,连接EF交对角线BD于点G,连接AG,若,,则()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.“白日不到处,青春恰自来,苔花如米小,也学牡丹开”.这是一首用苔藓比喻人生的励志小诗.目前在全世界约有23000种苔藓植物.将数据23000用科学记数法表示为______.12.分解因式:______.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图扇形的弧长为______结果用表示14.如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是______.15.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为点A、B、E在x轴上,若正方形BEFG的边长为6,则C点坐标为______.16.如图,是的外接圆,,于点D,BO的延长线交CD于点______填“>,<或=”;若,,则______.三、解答题:本题共9小题,共72分。
中考二模检测《数学试卷》含答案解析
一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 52.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确D .三人均不正确3.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A .ADB .DC C .BCD .AB4..方程70050020x x =-的解为( ) A .x =0B .x =20C .x =70D .x =505.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1a b>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 6.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第( )象限. A .一B .二C .三D .四7.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠BCF 度数为( )A .15°B .18°C .25°D .30°8.如图,▱ABCD 的对角线AC 与BD 相交于点O ,过点O 作OE ⊥AD 于点E ,若AB =4,∠ABC =60°,则OE 的长是( )A B .C .2 D .589.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A.(1,4) B.(2,4) C.(32,4) D.(2,2)10.知正六边形的边心距是,则正六边形的边长是A.B.C.D.11.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为A.2 B.6C.4 D.812.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________.15.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标__________.16.如图,在△A 1B 1C 1中,已知A 1B 1=8,B 1C 1=6,A 1C 1=7,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点,得到△A 3B 3C 3,…,按这样的规律下去,△A 2019B 2019C 2019的周长为__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.18.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC△△ECB;(2)求证:OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.23.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结A C.B D.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.答案与解析一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 5【答案】C【解析】A .原式=a 2﹣b 2,故A 错误;B .x 与2y 不是同类项,不能合并,原式=x +2y ,故B 错误;C .原式=0,故C 正确;D .原式=a 6,故D 错误.2.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确 D .三人均不正确【答案】C【解析】原式2222223226244444x x x x x x x x x x x +--+-+--=+===----()()1,则丙正确.3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在( )边上.A.AD B.DC C.BC D.AB【答案】C【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为2a33a132⨯=+,甲行的路程为2a11132⨯=+a,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边BC上.故选C .4..方程70050020x x =-的解为( ) A .x =0 B .x =20C .x =70D .x =50【答案】C【解析】去分母得:700x ﹣14000=500x , 移项合并得:200x =14000, 解得:x =70,经检验x =70是分式方程的解. 5.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1ab>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 【答案】D【解析】∵c >d ,∴﹣c <﹣d ,∴如果a >b ,c >d ,那么a ﹣c >b ﹣d 不一定成立,∴选项A 不符合题意;∵b =0时,ab 无意义, ∴选项B 不符合题意;∵a >0>b 时,11ab>,∴选项C 不符合题意;∵如果22a b c c<,那么a <b ,∴选项D 符合题意.6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第( )象限.A.一B.二C.三D.四【答案】D【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠BCF度数为( )A.15°B.18°C.25°D.30°【答案】D【解析】由题意可得:∠ABC=30°,∵AB∥CF,∴∠BCF=∠ABC=30°.8.如图,▱ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB=4,∠ABC=60°,则OE的长是( )A B.C.2 D.5 8【答案】A【解析】作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF 12=CD =2,∴CF =∵CF ⊥AD ,OE ⊥AD ,CF ∥OE ,∵OA =OC ,∴OE 是△ACF 的中位线,∴OE 12=CF =9.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .(1,4)B .(2,4)C .(32,4) D .(2,2)【答案】B【解析】∵将线段BC 缩小为原来的12后得到线段DE , ∴△ADE ∽△ABC ,∴12AD DE AB BC ==, ∴点D 是线段AB 的中点,∵A (1,0),B (3,8), ∴点D 的坐标为(2,4),10.知正六边形的边心距是,则正六边形的边长是A .B .C .D .【答案】A【解析】∵正六边形的边心距为,∴OB ,∠OAB =60°,∴ABtan60OB ===︒,∴AC =2AB11.如图,将△ABC 沿BC 边上的高线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为2,若AA ′=4,则AD 的长度为A .2B .6C .4D .8【答案】B【解析】设AD =x ,则A ′D =x ﹣4,根据平移性质可知△ABC 与阴影部分三角形相似,则222418x x-=(),解得x =6. 12.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b +c <0;④b ﹣4a =0;⑤ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B【解析】∵抛物线开口向下,∴a <0, ∵2ba-=-2,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确, ∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b +c >0,∴③错误, 故正确的有②④⑤.故选B . 二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 【答案】±5,4,﹣2. 【解析】25的平方根是±5,16的算术平方根是4,﹣8的立方根是﹣2.14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________. 【答案】2019【解析】由根与系数关系α+β=1, α3+2019β﹣2018=α3﹣2019α+(2019α+2019β)﹣2018=α3﹣2019α+2019(α+β)﹣2018=α3﹣2019α+2019﹣2018=α3﹣2019α+1=α(α2﹣2019)+1=α(α+2018﹣2019)+1=α(α﹣1)+1=α2﹣α+1=2018+1=2019.15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标__________.【答案】故答案为:(2,2).【解析】如图,连结OA,OA=5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.16.如图,在△A1B1C1中,已知A1B1=8,B1C1=6,A1C1=7,依次连接△A1B1C1的三边中点,得到△A2B2C2,再依次连接△A2B2C2的三边中点,得到△A3B3C3,…,按这样的规律下去,△A2019B2019C2019的周长为__________.【答案】2018212【解析】∵A 1B 1=8,B 1C 1=6,A 1C 1=7,∴△A 1B 1C 1的周长是8+6+7=21,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2, ∴A 2B 212=A 1B 1=4,B 2C 212=B 1C 1=3,A 2C 212=A 1C 1=3.5, ∴△A 2B 2C 2的周长为4+3+3.5=10.512=⨯21, 同理△A 3B 3C 3的周长1122=⨯⨯21214=,… 所以,△A 2019B 2019C 2019的周长为(12)2018×212018212=.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°. 【答案】见解析.【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x 的值,代入计算可得.原式=[22x x +-﹣2(2)(2)x x x --]÷42x x -- =(22x x +-﹣2x x -)•24x x --=2x x -•24x x -- =4x x -当x =4tan45°+2cos30°=4×1+2=时,18.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC △△ECB ; (2)求证:OB =OC .【答案】见解析.【解析】(1)根据等腰三角形的性质得到△ECB =△DBC 根据全等三角形的判定定理即可得到结论; 证明:△AB =AC , △△ECB =△DBC ,在△DBC 与△ECB 中,△△DBC △△ECB (SAS );(2)根据全等三角形的性质得到△DCB =△EBC 根据等腰三角形的判定定理即可得到OB =OC证明:由(1)知△DBC△△ECB,△△DCB=△EBC,△OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【答案】见解析.【解析】(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)”数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD ⊥BC,施工队站在点D 处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【答案】隧道BC 的长度为700米.【解析】作EM ⊥AC 于点M,构建直角三角形,解直角三角形解决问题. 如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.【解析】(1)设反比例函数的解析式为y kx =(k ≠0), ∵反比例函数图象经过点A (﹣4,﹣2),∴﹣24k =-, ∴k =8,∴反比例函数的解析式为y 8x=, ∵B (a ,4)在y 8x =的图象上,∴48a=, ∴a =2,∴点B 的坐标为B (2,4);(2)根据图象得,当x >2或﹣4<x <0时,一次函数的值大于反比例函数的值; (3)设直线AB 的解析式为y =ax +b ,∵A (﹣4,﹣2),B (2,4),∴24a b ⎨+=⎩,解得2b ⎨=⎩,∴直线AB 的解析式为y =x +2,∴C (0,2),∴S △AOB =S △AOC +S △BOC 12=⨯2×41222+⨯⨯=6. 22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案: 甲园 游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x (千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)求y 1、y 2与x 之间的函数关系式;(2)请在图中画出y 1与x 之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由. 【解析】(1)根据题意,结合图象可知:甲乙两园的草莓单价为:300÷10=30(元/千克), y 1=30×0.6x +20×3=18x +60; 由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,20450k b ⎨+=⎩,解得150b ⎨=⎩, ∴当x >10时,y 2=15x +150,∴2300101515010x x y x x ≤≤⎧=⎨+>⎩()();(2)y 2与x 之间大致的函数图象如图所示:(3)y 1<y 2(x ≥10),即18x +60<15x +150,解得x <30; y 1=y 2,即18x +60=15x +150,解得x =30; y 1>y 2,即18x +60>5x +150,解得x >30,答:当草莓采摘量x 的范围为:10≤x <30时,甲采摘园更划算; 当草莓采摘量x =30时,两家采摘园所需费用相同; 当草莓采摘量x 的范围为x >30时,乙采摘园更划算.23.四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结A C.B D .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.【答案】见解析.【解析】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DH为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH,∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴AB=CD∴,∵AB+CD=2(+1),∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形,∴CH=24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【答案】见解析.【解析】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
2024年上海市金山区中考数学二模试卷+答案解析
2024年上海市金山区中考数学二模试卷一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.单项式的系数和次数分别是()A.和2B.和3C.2和2D.2和32.下列多项式分解因式正确的是()A. B.C. D.3.关于x的一元二次方程有实数根,那么a的取值范围是()A. B. C. D.4.在气象学上,每天在规定时段采集若干气温的平均数是当天的平均气温,连续5天的平均气温在以上,这5天中的第1个平均气温大于以上的日期即为春天的开始,那么下列表述正确的是()A.这5天中每天采集的若干气温中最高气温一定都大于B.这5天中每天采集的若干气温中最低气温一定都大于C.这5天中每天采集的若干气温的中位数一定都大于D.这5天中每天采集的若干气温的众数一定都大于5.在四边形ABCD中,,,对角线AC、BD相交于点下列说法能使四边形ABCD为菱形的是ㅤㅤA. B.C. D.6.下列命题中真命题是()A.相等的圆心角所对的弦相等B.正多边形都是中心对称图形C.如果两个图形全等,那么他们一定能通过平移后互相重合D.如果一个四边形绕对角线的交点旋转后,所得图形与原来的图形重合,那么这个四边形是正方形二、填空题:本题共12小题,每小题4分,共48分。
7.计算:______.8.已知,______.9.已知关于x的方程,则______.10.不等式的解集是______.11.若反比例函数的图象经过点,则该反比例函数的解析式解析式也称表达式为__________.12.从1到10这十个自然数中抽取一个数,这个数是素数的概率是______.13.在中,和互余,那么______14.正n边形的内角等于外角的5倍,那么______.15.如图,已知平行四边形ABCD中,,,E为AD上一点,,那么用,表示______.16.数据显示,2023年全球电动汽车销量约1400万辆,其中市场份额前三的品牌和其它品牌的市场份额扇形统计图如图所示,那么其它品牌的销量约为______万辆.17.如图,在中,,,D是AB的中点,把沿CD所在的直线翻折,点B落在点E处,如果,那么______.18.如图,在中,,,,以点C为圆心作半径为1的圆C,P是AB上的一个点,以P为圆心,PB为半径作圆P,如果圆C和圆P有公共点,那么BP的取值范围是______.三、解答题:本题共7小题,共78分。
2024年中考数学二模试卷(徐州卷)(全解全析)
2024年中考第二次模拟考试(徐州卷)数学·全解全析注意事项:1.本试卷共6页.全卷满分140分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年夏季奥运会将在法国巴黎举行,平移如图所示的巴黎奥运会图标可以得到的图形是()A.B.C.D.【答案】D【解析】解:由图形可知,选项D与原图形完全相同.故选:D2.8-的倒数是()A.8B.18C.18-D.8-【答案】C【解析】解:∵1818⎛⎫-⨯-= ⎪⎝⎭,∴8-的倒数为18-,故选:C .3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约1700万吨.将数据1700万用科学记数法表示为()A .71.710⨯B .80.1710⨯C .81.710⨯D .71710⨯【答案】A【解析】解:将数据1700万用科学记数法表示为71.710⨯.故选:A .4.下列运算正确的是()A .()325a a -=-B .3515a a a ⋅=C .22321a a -=D .()22346a b a b -=【答案】D【解析】解:A 、()326a a -=-,故A 不正确,不符合题意;B 、358a a a ⋅=,故B 不正确,不符合题意;C 、22232a a a -=,故C 不正确,不符合题意;D 、()22346a b a b -=,故D 正确,符合题意;故选:D .5.一个含45︒的三角板和一个直尺按如图所示方式叠合在一起,若1123=︒∠,则2∠的度数是()A .67︒B .68︒C .77︒D .78︒【答案】D【解析】解:1=123∠︒ ,123EFB ∴∠=︒,EF BD ∥,123EFB ∠=︒,18012357ABD ∴∠=︒-︒=︒,又90ABC ∠=︒ ,905733DBC ∴∠=︒-︒=︒,2453378C DBC ∠=∠+∠=︒+︒=︒.故选:D .6.如图,,OA OB 是O 的两条半径,点C 在O 上,连接,AC BC ,若36C ∠=︒,则AOB ∠的度数为()A .72︒B .62︒C .54︒D .36︒【答案】A 【解析】解:∵36C ∠=︒,∴272AOB C ∠︒=∠=,故选:A .7.某校射击比赛所用的靶子有8环,9环,10环三个环次,每一环又有10个小环,小新、小华、小宇三人每人射击三次,成绩如图所示,则射击成绩的平均数约为9.0环的是()A .小新B .小宇C .小华D .三人都有可能【答案】C 【解析】解:由图可知:小新的成绩2个在10环上,一个在9环上,平均成绩不可能为9.0环;小宇的成绩一个在10环,一个接近10环,一个接近9环,平均数不可能为9.0环;小华的成绩均在9环附近,射击成绩的平均数约为9.0环;故选C .8.如图,在平面直角坐标系中,矩形ABOC 的顶点C 在y 轴上,A 在x 轴上,把矩形ABOC 沿对角线BO 所在的直线翻折,点A 恰好落在反比例函数()0k y k x=≠的图象上点D 处,BD 与y 轴交于点E ,点D 恰好是BE 的中点.已知A 的坐标为()4,0,则反比例函数的表达式为()A .232y =B .43y =C .4y x =D .1633y x=【答案】B 【解析】解:∵矩形ABOC ,A 的坐标为()4,0,∴4OA =,点B 的横坐标为4,∵折叠,∴4OD OA ==,∵E 在y 轴上,D 为BE 的中点,∴点D 的横坐标为2,过点D 作DF OA ⊥,∴2OF =,∴2223DF OD OF =-,∴(2,23D ,∴22343k =⨯=∴反比例函数的表达式为43y =故选B .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.0.0081的平方根是.【答案】0.09±【解析】解:因为20.090.0081()±=,所以0.0081的平方根是0.09±;故答案为:0.09±.10.当x =时,分式43xx --无意义.【答案】3【解析】 分式43xx --无意义30x ∴-=3x ∴=.故答案为:3.11.如图,由三个正方形拼成的图形中,字母B 所代表的正方形面积是.【答案】144【解析】解:由勾股定理得,字母B 所代表的正方形面积16925144=-=.故答案为:144.12.如图,第4套人民币中菊花1角硬币采用“外圆内凹正九边形”设计,则内凹正九边形的外角的度数为.【答案】40︒【解析】解:内凹正九边形的外角的度数为360940︒÷=︒,故答案为:40︒.13.若分式方程12x x a +=+的解是3x =,则=a .【答案】1-【解析】解:分式方程去分母得:122x x a +=+,由分式方程的解为3x =,代入整式方程得:31232a +=⨯+,解得:1a =-,故答案为:1-.14.某节活动课上,安安用一张半径为18cm 的扇形纸板做了一个圆锥形帽子(如图,接缝处忽略不计).若圆锥形帽子的半径为10cm ,则这张扇形纸板的面积为cm².【答案】180π【解析】解:解:这张扇形纸板的面积为121018180cm²2ππ⨯⨯⨯=,故答案为:180π.15.已知20ax bx c ++=的两根为2,3,则20cx bx a -+=的两个根分别为.【答案】121123x x =-=-,【解析】解:∵20ax bx c ++=的两根为2,3,∴235236bca a -=+==⨯=,,∴56b a c a =-=,,∴方程20cx bx a -+=即为2560a ax x a ++=,∴26510x x +=+,∴()()21310x x ++=,解得121123x x =-=-,,故答案为:121123x x =-=-,.16.如图,边长为1的正方形ABCD 绕点A 逆时针旋转60︒得到正方形AEFG ,连接CF ,则CF 的长是.2【解析】解:如图所示,连接AC 、AF ,∵四边形AEFD 是四边形ABCD 逆时针旋转60︒,∴AC AF =,60CAF ∠=︒,∴ACF △是等边三角形,∴AC CF AF ==,在Rt ABC △中,222AC AB BC =+=∴2AC CF =2.17.如图,在矩形ABCD 中,4AB =,2AD =,点E 是AD 边的中点,连接,AC BE 交于点,F CAD ∠的平分线AG 交CD 边于点G ,点A 关于过点E 的某条直线的对称点H 恰好在AG 上,且点H 不与点A 重合,连接FH ,则FH 的长为.46363【解析】解:∵在矩形ABCD 中,4AB =,42AD =E 是AD 边的中点,∴90BAD ∠=︒,122AE ED AD ===∴222tan 42AE ABE AB ∠==,2tan 242CD CAD AD ∠=,∴tan tan ABE CAD ∠=∠,∴ABE CAD ∠=∠,∴90ABE BAF CAD BAF BAD ∠+∠=∠+∠=∠=︒,∴90BFA ∠=︒,即BE AC ⊥,∵在矩形ABCD 中,4AB =,22AE =∴()224226BE =+AE BC ∥,∴AEF CBF ∽△△,∴12EF AE BF BC ==,∴12633EF BE =,连接EH ,∵点A 关于过点E 的某条直线的对称点H 恰好在AG 上,∴2AE EH ==∴EAH EHA ∠=∠,∵AG 是CAD ∠的平分线,∴EAH CAH ∠=∠,∴EHA CAH ∠=∠,∴HE AC ∥,∵BE AC ⊥,∴BE EH ⊥,即90FEH ∠=︒,∴()222224622633FH EF EH ⎛⎫=+=+= ⎪⎝⎭463.18.如图,在矩形ABCD 中,6,10AB BC ==,点E 是AD 边的中点,点F 是线段AB 上任一点,连接EF ,以EF 为直角边在AD 下方作等腰直角EFG ,FG 为斜边,连接DG ,则DEG 周长最小值为.【答案】555【解析】解:如图,过点G 作GH AD ⊥于点H ,∵四边形ABCD 是矩形,∴90,6,10A AB CD AD BC ∠=︒====,∴5AE ED ==,∵90A FEG GHE ∠∠∠===︒,∴90,90AEF GEH GEH EGH ∠∠∠∠+=︒+=︒,∴AEF EGH ∠∠=,∵EF EG =,∴(AAS)AEF GHE ≌ ,∴5GH AE ==,过点G 作直线l AD ∥,∵5GH =,GH AD ⊥,∴点G 在直线l 上运动,作点D 关于直线l 的对称点T ,连接ET ,在Rt EDT 中,90,5,10DET DE DT ∠=︒==,∴2255ET DE DT +=∵GD GT =,∴GE GD EG GT ET +=+≥,∴55GE GD +≥,∴GE GD +的最小值为55,∴DEG 周长最小值为555,故答案为:555.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.计算.(1)()()220240221π433-⎛⎫-+--- ⎪⎝⎭;(2)21111x x x ⎛⎫-÷ ⎪+-⎝⎭.【解析】(1)解:原式411199=+--39=13=;(2)原式21111x x x x+--=⨯+(1)(1)1x x x x x+-=⨯+1x =-.20.解方程或方程组:(1)解方程:2450x x --=;(2)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩①②.【解析】(1)解:因式分解得,(5)(1)0x x -+=,∴10x +=或50x -=,∴15=x ,21x =-;(2)解:解不等式①得,1x ≥-,解不等式②得,3x <,∴不等式组的解集为:13x -≤<.21.一个不透明的笔袋里装有若干支黑色、红色和蓝色这三种颜色的中性笔(除笔芯颜色外,其余都相同),其中黑色中性笔有2支,红色中性笔有1支,从中任意摸出的一支笔是黑色中性笔的概率为12.(1)求笔袋中蓝色中性笔有多少支?(2)第一次任意摸出一支笔(不放回),第二次再摸出一支笔,请用树状图或列表法求出两次摸到的都是黑色中性笔的概率.【解析】(1)解:122112÷--=(支),答:笔袋中蓝色中性笔有1支.(2)解:解法一:树状图法由树状图可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.解法二:列表法第一次第二次黑1黑2红蓝黑1(黑1,黑2)(黑1,红)(黑1,蓝)黑2(黑2,黑1)(黑2,红)(黑2,蓝)红(红,黑1)(红,黑2)(红,蓝)蓝(蓝,黑1)(蓝,黑2)(蓝,红)由列表可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.22.某市教育局为了解“双减”政策落实情况,随机抽取几所学校部分初中生进行调查、统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:请根据图表中提供的信息,解答下面的问题:(1)在调查活动中,教育局采取的调查方式是(填写“普查”或“抽样调查”);(2)教育局抽取的初中生有人,扇形统计图中m的值是;(3)若该市共有初中生12000人,则平均每天完成作业时长在“7080t≤<”分钟的初中生约有多少人.【解析】(1)解:抽查方式为随机抽取几所学校部分初中生进行调查,则在调查活动中,教育局采取的调查方式是抽样调查,故答案为:抽样调查;(2)解:4515%300÷=人,∴教育局抽取的初中生有300人,∴每天完成作业时长在“7080t≤<”分钟的初中生人数有3004513521990----=人,∴90%100%30%300m=⨯=,∴30m=,故答案为:300;30;(3)解:1200030%3600⨯=人,∴平均每天完成作业时长在“7080t≤<”分钟的初中生约有3600人.23.新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,老疆车行销售甲、乙两种型号的新能源汽车,十月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)茅溪科技发展有限公司准备向老疆车行购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?【解析】(1)解:设每辆甲型车的售价为x 万元,每辆乙型车的售价为y 万元,根据题意得:36545155x y x y +=⎧⎨+=⎩解得:2015x y =⎧⎨=⎩,答:每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)解:设购买甲型车a 辆,则购买乙型车为()8a -辆,依题意得:()14520158153a a ≤+-≤,解得:5 6.6a ≤≤∵a 为正整数,∴a 取5或6.∴有两种购车方案:方案一:购买甲型车5辆,购买乙型车3辆,此时的费用是145万元,;方案二:购买甲型车6辆,购买乙型车2辆,此时的费用是150万元;24.如图,AC 是菱形ABCD 的对角线.(1)在AC 上求作一点E ,使得BEC BCD ∠=∠(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若140D ∠=︒,求CBE ∠的度数.【解析】(1)解:如图,点E 即为所求;(2)解: 四边形ABCD 是菱形,AD CB ∴∥,ACD ACB ∠=∠,180D BCD ︒∴∠+∠=,18014040BCD ∴∠=︒-︒=︒,20ACD ACB ∴∠=∠=︒,又∵40BEC BCD ∠=∠=︒,1801802040120CBE ACB BEC ∴∠=︒-∠-∠=︒-︒-︒=︒.25.如图,CD 是O 的直径,点B 在O 上,点A 为DC 延长线上一点,过点O 作OE BC ∥交AB 的延长线于点E ,且D E∠=∠(1)求证:AE 是O 的切线;(2)若线段OE 与O 的交点F 是OE 的中点,O 的半径为3,求阴影部分的面积.【解析】(1)证明:连接OB ,∵CD 是O 的直径,∴BC BD ⊥,即90CBD ∠=︒,∵OE BC ∥,∴90DGO CBD ∠=∠=︒,∴90BGE DGO ∠=∠=︒,90D DOG ∠+∠=︒,∵D E ∠=∠,∴DOE DBE ∠=∠,∵OD OB =,∴D OBD ∠=∠,∴90OBD DBE D DOG ∠+∠=∠+∠=︒,∴90OBE ∠=︒,∵OB 是O 的半径,∴AE 是O 的切线;(2)解:连接BF ,∵90OBE ∠=︒,F 是OE 的中点,∴BF OF =,∵O 的半径为3,90∠=︒DGO ,∴3BF OF OB ===,18090BGO DGO ∠=︒-∠=︒,∴OBF 是等边三角形,∴60BOF ∠=︒,∴9030OBG BOF ∠=︒-∠=︒,∴1322OG OB ==,2222333322BG OB OG ⎛⎫=-=-= ⎪⎝⎭,∴阴影部分的面积为:2603133339336022228OBG OBF S S ⨯π⨯π-=-⨯=-扇形△,∴阴影部分的面积为39328π26.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为51:12i =,且26AB =米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin530.8︒≈,cos530.6︒≈,tan 53 1.33︒≈,cot 530.75)︒≈.【解析】(1)解: 斜坡AB 的坡比为51:12i =,:12:5BE EA ∴=,设12BE x =,则5EA x =,由勾股定理得,222BE EA AB +=,即222(12)(5)26x x +=,解得,2x =,则1224BE x ==,510AE x ==,答:改造前坡顶与地面的距离BE 的长为24米;(2)解:作FH AD ⊥于H ,则tan FH FAH AH ∠=,24181.33AH ∴=≈,18108BF ∴=-=,答:BF 至少是8米.27.如图,在ABC 中,10AB AC ==,45BC =AD BC ⊥于点D ,点P 从点A 出发,沿折线AC CD →向终点D 运动,点P 在AC 上以每秒5个单位长度的速度匀速运动,在CD 5匀速运动,当点P 不与点A 、D 重合时,作PQ AB ∥,PQ 与射线AD 交于点Q ,以PQ 为一边向左侧作正方形PQMN .设点P 的运动时间为()s t .(1)直接写出AD =______.(2)求sin BAC ∠的值.(3)当正方形PQMN 与ABC 重叠部分图形是四边形时,直接写出t 的取值范围.(4)连接BM ,直接写出BM AB ⊥时t 的值.【解析】(1)解:∵,=⊥AB AC AD BC ,∴1145522BD BC ==⨯=在Rt △ABD 中,根据勾股定理得:2245AD AB BD -=故答案为:45(2)解:如图1,作CE AB ⊥于点E .分别以AB BC 、为底表示ABC 的面积两式相等,可得:8BC ADCE AB ⋅==;∴4sin 5CEBAC AC ∠==;(3)解:正方形PQMN 与ABC 重叠部分图形随着t 的变化而变化.①如图2,当Q 点与D 点重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为五边形.∵PQ AB ∥,∴1APBDPC DC ==,∴此时:1215ACt ==.②如图3:当MQ 经过B 点时,正方形PQMN 与ABC重叠部分图形,由五边形变为四边形.∵4sin 5BAC ∠=,∴243cos 155BAC ⎛⎫∠=-= ⎪⎝⎭;∵,PQ AB PN PQ ⊥∥,∴PN AB ⊥.∴此时,cos AP BAC PQ AB ⋅∠+=,即355105t t ⨯+=,解得:54t =.如图4:当P 与C 重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为三角形.此时,1025t ==.综上:t 的取值范围为:01t <≤或524t ≤<;(4)解:由(3)可知54t =时,MQ 经过点B 时BM AB ⊥;另外当P 在DC 上时,也会出现BM AB ⊥,如图5.∵,PQ AB MQ PQ ⊥∥;∴MQ AB ⊥,∴ABD BQD QPD ∽∽ .∴::::::AB BQ PQ AD BD QD BD QD PD ==,即10::45225:BQ PQ QD QD PD ==;得:52PD =∴535452522CP BC PD BD =--=-=;∴3572225t ==.故BM AB ⊥时t 的值为:54,72.28.如图,抛物线2y x bx c =-++交x 轴于A 、B 两点(点A 在点B 的左侧)坐标分别为()2,0-,()4,0,交y 轴于点C .(1)求出抛物线解析式;(2)如图1,过y 轴上点D 作BC 的垂线,交直线BC 于点E ,交抛物线于点F ,当355EF =F 的坐标;(3)如图2,点H 的坐标是()0,2,点Q 为x 轴上一动点,点()2,8P 在抛物线上,把PHQ 沿HQ 翻折,使点P 刚好落在x 轴上,请直接写出点Q 的坐标.【解析】(1)解:将()2,0-,()4,0代入表达式得:4201640b c b c --+=⎧⎨-++=⎩,解得:28b c =⎧⎨=⎩,∴抛物线解析式为228y x x =-++;(2)过点F 作x 轴的垂线交BC 于N ,交x 轴于M ,∵FNE BNM ∠=∠,90FNE EFN BNM MBN ∠+∠=∠+∠=︒,∴EFN MBN ∠=∠,在Rt BOC 中,90BOC ∠=︒,由勾股定理得:22224845BC OB OC =+=+=∴cos cos OB EF EFN MBN BC FN ∠=∠=35545FN =,∴3FN =,∵()4,0B ,()0,8C ,∴直线BC :28y x =-+,设()2,28F m m m -++,(),28N m m -+,∴()228283m m m -++--+=或()28²283m m m -+--++=,∴243m m -+=或243m m -+=-,解得:11m =,23m =,327m =427m =,∴()1,9F 或()3,5或(27,17-或()27,271其中()1,9F 和(27,17-两点所对应的E 点不在线段BC 上,所以舍去,∴点F 的坐标为()3,5或()27,271;(3)分两种情况讨论:①如图所示,当点Q 位于x 轴负半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,则四边形OMPN 为矩形,∵()2,8P ,∴2NP OM ==,8ON PM ==,∵()0,2H ,∴826NH =-=,∴222226210PH NP NH =+=+=,由折叠可知:210PH HP '==QP QP '=,∴()222221026OP P H OH =--'=',设OQ x =,∴6QP QP x '==+,2QM x =+,∵222P M Q M P Q +=,∴()()222826x x ++=+,∴4x =,∴Q 点的坐标为()4,0-;②如图所示,当点Q 位于x 轴正半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,由①得:210PH P H '==,P Q PQ '=,∴()222221026OP P H OH =--'=',设OQ m =,则6P Q PQ m '==+,2QM m =-,∵222P M Q M P Q +=,∴()()222286m m -+=+,∴2m =,∴Q 点的坐标为()2,0,综上所述,Q 点的坐标为()4,0-或()2,0.。
2024年陕西省西安市高新区曲江二中中考数学二模试卷+答案解析
2024年陕西省西安市高新区曲江二中中考数学二模试卷一、选择题:本题共7小题,每小题3分,共21分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.9的算术平方根为()A.3B.C.D.812.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.3.当光从一种介质射向另一种介质时,光线会发生折射,不同介质的折射率不同.如图,水平放置的水槽中装有适量水,空气中两条平行光线射入水中,两条折射光线也互相平行.若,则的度数为()A.B.C.D.4.在平面直角坐标系中,若将一次函数的图象向下平移2个单位长度后经过点,则b的值为()A.1B.C.5D.5.如图,在中,,D,E分别为AC,AB的中点,连接BD,若,则的值为()A.B.C.D.6.如图,在中,弦、点C是圆上一点且,则的直径为()A.2B.C.D.47.已知,,是二次函数图象上的三个点,则,,的大小关系是()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
8.在实数:0,,,,中,无理数有______个.9.分解因式:______.10.“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用.秦兵马俑被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,若如图所示的兵马俑头顶到下巴的距离为,则该兵马俑的眼睛到下巴的距离为______11.如图,在▱ABCD中,,连接BE,交AC于点F,,则CF的长为______.12.如图,是面积为4的等腰三角形,底边OA在x轴上,若反比例函数图象过点B,则该反比例函数的表达式为______.13.如图,在中,,,点M在边BC上且,点N是直线AC上一动点,点P是边AB上一动点,则的最小值为______.三、计算题:本大题共1小题,共4分。
14.解方程:四、解答题:本题共13小题,共77分。
解答应写出文字说明,证明过程或演算步骤。
15.本小题4分计算:16.本小题4分求不等式的正整数解.17.本小题4分已知,D为AB上一点,,请用尺规作图法,在边BC上求作一点F,使保留作图痕迹,不写作法18.本小题4分如图,E,F分别是等边三角形ABC的边AB,AC上的点,且,CE,BF交于点求证:19.本小题5分某商场推出新年大促销活动,其中标价为1800元的某种商品打九折销售,该种商品的利润率为求该商品的成本价是多少?20.本小题5分有甲、乙两个长方形纸片,边长如图所示,面积分别为和,试猜想哪个长方形纸片的面积更大,并通过计算证明自己的猜想.21.本小题5分甲、乙两人玩转盘游戏,如图转盘被平均分为3个区域,颜色分别为黑、白、红,游戏规则是:转动转盘,待转盘自动停止后,其指针指向的颜色即为转出的颜色如果指针指在两区域的分界线上,则重转一次两人参与游戏,一人转动两次转盘,另一人对转出的颜色进行猜测.若转出的颜色与猜测的人描述的特征相符,则猜测的人获胜;否则,转动转盘的人获胜.随机转动转盘一次,指针指向白色的概率是______;小明和小丽玩转盘游戏,小丽转动转盘,小明进行猜测,转动转盘前,小明想了两种猜测特征,第一种是猜测“两次转出的颜色相同”;第二种是猜测“转出的一定有黑色”.请你帮小明选择其中一种猜测特征,使他获胜的可能性更大,并说明理由.22.本小题6分问题情境某公司计划购入语音识别输入软件,提高办公效率.市面上有A、B两款语音识别输入软件,该公司准备择优购买.实践发现测试员小林随机选取了20段短文,其中每段短文都有10个文字.他用标准普通话以相同的语速朗读每段短文来测试这两款软件,并将语音识别结果整理数据如下.A款软件每段短文中识别正确的字数记录为:5,5,6,6,6,6,6,6,6,7,9,9,9,9,9,10,10,10,10,实践探究A、B两款软件每段短文中识别正确的字数分析数据如表:软件平均数众数中位数识别正确9字及以上的段数所占百分比A款68B款a8b问题解决上述表格中:______,______;若你是测试员小林,根据上述数据,你会向公司推荐哪款软件?请说明理由写出一条理由即可;若会议记录员用A、B两款软件各识别了800段短文,每段短文有10个文字,请估计这两款软件一字不差地识别正确的短文共有多少段?23.本小题7分如图,小明和爸爸二人配合测量小区内一棵树的高度他们的身高分别是,,小明在距离树的B处,看树的顶端D的视线为ED,原地再看爸爸的头部,视线为EF,爸爸经过移动调整位置,当时爸爸停止移动,这时测得已知点A,B,C在地平面的一条直线上,树和二人都垂直于这条直线,求树的高度24.本小题7分小西外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.从山脚出发后小西所走路程米和所用时间分钟之间的函数关系如图所示.小西中途休息用了______分钟;小西休息后爬山的平均速度是______米/分钟;求直线BC的函数表达式;当小西出发20分钟时,求他所走的路程.25.本小题8分如图,是的外接圆,,AD平分,且交于点D,过点D作,交AB的延长线于点E,连接BD、求证:DE是的切线;若,,求BE的长.26.本小题8分如图,某粮仓的横截面由抛物线的一段和矩形OABC构成.以地面OC所在直线为x轴,OA所在直线为y轴建立平面直角坐标系,其中,米,米.若抛物线的表达式为,DE为平行于地面的一排除湿板.求该抛物线的表达式;已知除湿板与地面间的距离为米,若除湿板上方需安装一排与地面平行的隔热板,且隔热板与除湿板相距米,求隔热板的最小长度.27.本小题10分如图,四边形OBCD是正方形,O,D两点的坐标分别是,直接写出点C的坐标是______;如图,点F为线段BC的中点,点E在线段OB上,若,求点E的坐标;如图,动点E,F分别在边OB,CD上,将正方形OBCD沿直线EF折叠,使点B的对应点M始终落在边OD上点M不与点O,D重合,点C落在点N处,设,四边形BEFC的面积为S,请求出S与x的关系式.答案和解析1.【答案】A【解析】【解答】解:,的算术平方根是故选:【分析】此题主要考查了算术平方根的定义.2.【答案】A【解析】解:此组合体的主视图为故选:根据从正面看到的几何图形,即可判定.本题考查了组合体的三视图的识别,熟练掌握和运用组合体的三视图的识别方法是解决本题的关键.3.【答案】A【解析】解:如图:由题意得:,,,,,故选:根据题意可得:,然后利用平行线的性质可得,再利用两直线平行,内错角相等可得,即可解答.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.【答案】B【解析】解:将一次函数的图象向下平移2个单位得到,把点代入得,,解得故选:一次函数根据平移规律得到,把点代入求解即可.此题考查了一次函数的图象与几何变换,熟练掌握平移规律是解题的关键.5.【答案】B【解析】解:在中,,D,E分别为AC,AB的中点,,,,,在中,,设,,,故选:根据三角形中位线定理得到,,根据线段垂直平分线的性质得到,求得,解直角三角形即可得到结论.本题考查了解直角三角形,三角形中位线定理,直角三角形斜边上的中线,熟练掌握三角函数的定义是解题的关键.6.【答案】D【解析】解:,,在中,,,由勾股定理得:则的直径为故选:根据圆周角定理可得,在等腰直角三角形AOB中,应用勾股定理进行计算即可得出OA的长度,从而得出答案.本题主要考查了圆周角定理,等腰直角三角形,熟练掌握圆周角定理进行求解是解决本题的关键.7.【答案】A【解析】解:函数图象的对称轴;又,图象的开口向下.在对称轴的左侧,距离对称轴越远,函数值越小,点距离对称轴:,点距离对称轴:,点距离对称轴:,故选:先算出函数图象的对称轴,再根据图像开口向下距离对称轴越远,函数值越小来判断,,的大小关系.本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标特征是解答本题的关键.8.【答案】2【解析】解:0,是整数,是分数,它们不是无理数;,是无限不循环小数,它们均为无理数,共2个;故答案为:无理数即无限不循环小数,据此即可求得答案.本题考查无理数的识别,熟练掌握其定义是解题的关键.9.【答案】【解析】解:原式,故答案为:提公因式后利用平方差公式因式分解即可.本题考查因式分解,熟练掌握因式分解的方法是解题的关键.10.【答案】【解析】解:设该兵马俑的眼睛到下巴的距离为x m,由题意得:,解得:,该兵马俑的眼睛到下巴的距离为,故答案为:设该兵马俑的眼睛到下巴的距离为xm,根据题意可得:,然后进行计算即可解答.本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.11.【答案】6【解析】解:四边形ABCD是平行四边形,,,,,,∽,,,,故答案为:由平行四边形的性质得,,则,可证明∽,得,则,于是得到问题的答案.此题重点考查平行四边形的性质、相似三角形的判定与性质等知识,证明∽是解题的关键.12.【答案】【解析】解:作轴,垂直为点D,是等腰三角形,底边OA在x轴上,,,,反比例函数图象在第四象限,,故反比例函数解析式为:,故答案为:作轴,根据条件可得,所以丨k丨,依据图象在第四象限即可得到反比例函数解析式.本题考查了待定系数法求反比例函数解析式,熟练掌握等腰三角形的性质是解答本题的关键.13.【答案】【解析】解:作点C关于AB的对称点C,连接AC,BC,取,连接,则,四边形ACBC是菱形,,,当M、P、共线,且时,最小,过点作于H,,,,的最小值为BC和AC之间的距离即为CH为,故答案为:作点C关于AB的对称点,连接AC,BC,取,连接PN,得四边形ACBC是菱形,则,故而,当M、P、共线,最小,从而解决问题.本题主要考查了等腰三角形的性质,轴对称-最短路线问题,菱形的判定与性质,含角的直角三角形的性质等知识线将的最小值转化为CM的长是解题的关键.14.【答案】解:去分母得:,解得:,经检验是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【答案】解:【解析】先计算二次根式、立方根、负整数指数幂,再计算乘法,最后计算加减.此题考查了实数的混合运算能力,关键是能准确确定运算顺序,并能进行正确地计算.16.【答案】解:,,,,则不等式的正整数解为1、【解析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得解集,继而可得正整数解.本题主要考查一元一次不等式的整数解,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.【答案】解:如图,点F即为所求.【解析】过点E作AB得平行线交BC于点F即可.本题考查了作图-复杂作图,平行线的判定与性质,熟练掌握基本作图方法是解答本题的关键.18.【答案】证明:是等边三角形,,,在和中,,≌,【解析】根据等边三角形性质,得到,,再利用两个三角形全等的判定定理SAS判定两个三角形全等,根据全等性质即可得到结论.本题考查两个三角形全等的判定与性质,涉及到等边三角形的性质,熟练掌握两个三角形全等的判定与性质是解决问题的关键.19.【答案】解:设该商品的成本价是x元,则,解得:,答:该商品的成本价是1500元.【解析】根据“种商品的利润率为”列方程求解.本题考查了一元一次方程的应用,找到相等关系是解题的关键.20.【答案】解:甲长方形的面积大于乙长方形的面积,甲长方形的面积为,乙长方形的面积为,则,,,则甲长方形的面积大于乙长方形的面积.【解析】根据长方形的面积公式表示出甲、乙长方形的面积,再作差即可.本题主要考查的列代数式,解题的关键是掌握长方形的面积公式、多项式乘多项式法则.21.【答案】【解析】解:转盘被平均分为3个区域,颜色分别为黑、白、红,每次转出黑、白、红颜色的可能性是均等的,所以随机转动转盘一次,指针指向白色的概率是,故答案为:;转动转盘2次,所有均可能出现的结果如下:共有9种等可能出现的结果,其中两次转出的颜色相同的有3种,两次转出的一定有黑色的有5次,所以两次转出的颜色相同的概率为,两次转出的一定有黑色的概率为,因此小明选择两次转出的一定有黑色的可能性更大.由转盘等分的份数以及概率的定义进行计算即可;用树状图法表示转动转盘2次所有等可能出现的结果,再根据概率的定义进行计算即可.本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键.22.【答案】【解析】解:,故B款的平均数为,即,由折线图可得,将B款语音识别输入软件每次识别正确的字数从小到大排列,第10,11个数都是8,故中位数为8,即,B款语音识别输入软件识别正确9字及以上的段数所占百分比为:故答案为:,8;会向公司推荐A款软件;理由如下:A款语音识别输入软件中更准确,因为在9字及以上次数所占百分比中,A款是,大于B款,说明A款识别准确率更高,会向公司推荐A款软件;款语音识别完全正确的百分比是:,B款语音识别完全正确的百分比是:,估计这800段短文中输入完全正确的有:段,答:估计这两款软件一字不差地识别正确的短文共有280段.根据平均数、中位数的意义,可以得到a,b的值;根据表格中的数据,由于平均数相同,因此可以从9字及以上次数所占百分比比较得出答案;分别求出把A款语音识别完全正确的百分比和B款语音识别完全正确的百分比,再根据题意求解即可.本题考查折线统计图、中位数、众数、平均数、用样本估计总体,解答本题的关键是读懂题意,理解各个概念的内涵和计算方法,利用数形结合的思想解答.23.【答案】解:如图,过E作于G,延长GE交AD于H,则,四边形CBEG、四边形AHEB是矩形,,,,,,,∽,,即,解得:,米,答:树的高度AD为米.【解析】过E作于G,延长GE交AD于H,则,四边形CBEG、四边形AHEB是矩形,得,,,再证明∽,得,即可解决问题.本题考查了相似三角形的应用以及余角的性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.24.【答案】515【解析】解:根据题意得:小西中途休息用了分钟;小西休息后爬山的平均速度是米/分钟故答案为:5,15;设直线BC的函数表达式为,将,代入得:,解得:,直线BC的函数表达式为;当时,答:当小西出发20分钟时,他所走的路程为375米.利用小西中途休息的时间=点B的横坐标-点A的横坐标,可求出小西中途休息的时间;利用小西休息后爬山的平均速度点C的纵坐标-点B的纵坐标点C的横坐标-点B的横坐标,即可求出小西休息后爬山的平均速度;设直线BC的函数表达式为,根据点B,C的坐标,利用待定系数法,即可求出直线BC 的函数表达式;代入,求出s的值即可.本题考查了一次函数的应用,解题的关键是:根据各数量之间的关系,列式计算;根据点B,C的坐标,利用待定系数法求出一次函数表达式;代入,求出s的值.25.【答案】证明:连接OD,,是的直径,,平分,,,是等腰直角三角形,,,,,是的切线;解:延长DO交AB于F,,,,,,,∽,,即,,,,,即,【解析】连接OD,根据圆周角定理易证得是等腰直角三角形,即可证得,根据平行线的性质证得,即可证得结论;延长DO交AB于F,通过证得∽,求得BF、OE,然后根据平行线分线段定理即可求得BE的长.本题考查了切线的判定,圆周角定理,勾股定理,三角形相似的判定和性质,作出辅助线构建相似三角形是解题的关键.26.【答案】解:米,米,点A的坐标为,点B的坐标为,把,代入中得:,解得:,该抛物线的表达式为:;由题意得:隔热板与地面间的距离米,当时,,解得:,,米,隔热板的最小长度为10米.【解析】根据已知易得:点A的坐标为,点B的坐标为,然后利用待定系数法求函数解析式即可解答;根据题意可得:隔热板与地面间的距离为米,然后把代入中进行计算,即可解答.本题考查了二次函数的实际应用,熟练掌握用待定系数法求二次函数解析式是解题的关键.27.【答案】解:;如下图,过点F作于点G,连接EF,四边形OBCD是正方形,,,,,,,在和中,,≌,,,点F为线段BC的中点,,,在和中,,,,设,则,,在中,根据勾股定理得,,即,解得,,点E在x轴的正半轴上,;如下图,分别连接BM、MF、BF,是折痕,垂直平分BM,,,设,,且,,则,,,点B的对应点M始终落在边OD上不与点O,D重合,,在中,根据勾股定理得,,即,解得,在和中,,,,,解得,即,,,即S和x的关系式为:【解析】解:四边形OBCD是正方形,,,,轴,,故答案为:;见答案;见答案.根据正方形的性质和D点的坐标得出C点坐标即可;过点F作于点G,连接EF,证≌,得,证,得,根据勾股定理求出OE即可确定E点坐标;设,,且,,分别用含有x的代数式表示出m和n,再根据四边形BEFC的面积等于和这两个三角形面积之和得出S和x的关系式即可.本题主要考查四边形的综合题,熟练掌握正方形的性质,折叠的性质,全等三角形的判定和性质等知识是解题的关键.。
2024年中考数学二模试卷-全国通用卷(全解全析)
2024年中考第二次模拟考试(全国通用卷)数学·全解全析(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项最符合题目1.下列各数中,是无理数的是()A .2024-B .0C .12024D 2024【答案】D【详解】解:2024-,0是整数,12024是分数,他们都不是无理数;2024故选:D .2.若m n >,则22m n ,“W ”中应填()A .<B .=C .>D .无法确定【答案】C【详解】解:∵m n >,∴22m n >,故选∶C .3.下列判断正确的是()A .“四边形对角互补”是必然事件B .一组数据6,5,8,7,9的中位数是8C .神舟十三号卫星发射前的零件检查,应选择抽样调查D .甲、乙两组学生身高的方差分别为2 1.6s =甲,20.8s =乙,则乙组学生的身高较整齐【答案】D【详解】A 、“四边形对角不一定互补”,故四边形对角一定互补是随机事件,故该选项不正确,不符合题意;B 、一组数据6,5,8,7,9,重新排列为5,6,7,8,9,则中位数是7,故该选项不正确,不符合题意;C 、神舟十三号卫星发射前的零件检查,这个调查很重要不可漏掉任何零件,应选择全面调查,故该选项不正确,不符合题意;D 、甲、乙两组学生身高的方差分别为s 甲2=1.6,s 乙2=0.8,则乙组学生的身高较整齐,故该选项正确,符合题意;故选:D .4.如图,12l l ∥,135∠=︒,250∠=︒,则3∠的度数为()A .85︒B .95︒C .105︒D .116︒【答案】B 【详解】解:∵12l l ∥,∴123180∠+∠+∠=︒,∵135∠=︒,250∠=︒,∴3180355095∠=︒-︒-︒=︒,故选:B .5.中国古代将天空分成东、北、西、南、中区域,称东方为苍龙象,北方为玄武(龟蛇)象,西方为白虎象,南方为朱雀象,是为“四象”.现有四张正面分别印有“苍龙象”“玄武象”“白虎象”“朱雀象”的不透明卡片(除正面图案外,其余完全相同),将其背面朝上洗匀,并从中随机抽取一张,记下卡片正面上的图案后放回,洗匀后再从中随机抽取一张,则抽到的两张卡片恰好是“苍龙象”和“朱雀象”的概率为()A .12B .14C .16D .18【答案】D 【详解】解:将四张卡片分别记为A ,B ,C ,D ,根据题意可画树状图如下,由图可知共有16种等可能的结果,其中有2种结果为抽到的两张卡片恰好是“苍龙象”和“朱雀象”,∴抽到的两张卡片恰好是“苍龙象”和“朱雀象”的概率为21168=.故选D.6.不等式组11231x x -≤⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】A 【详解】解:11231x x -≤⎧⎨+>⎩①②,解不等式①得:2x ≤,解不等式②得:1x >-,所以在数轴上表示正确的如图所示:,故选:A .7.如图,在ABCD Y 中,BAD ∠与CDA ∠的平分线相交于点O ,且分别交BC 于点E ,F .OP 为OEF 的中线.已知3BF =,2OP =,则ABCD Y 的周长为()A .12B .17C .28D .34【答案】D【详解】解: 平行四边形ABCD ,∥,∥AB DC AD BC ∴,180BAD ADC ∴∠+∠=︒,AE 平分BAD ∠,DF 平分ADC ∠,90OAD ODA ∴∠+∠=︒,90AOD EOF ∴∠=∠=︒,OP 是Rt OEF △的中线,12OP EF ∴=,OP EP FP ∴==,3,2BF OP == ,3227BE BF EP FP ∴=++=++=,AE 平分BAD ∠,DAE BAE ∴∠=∠,AD BC ∥ ,DAE AEB ∴∠=∠,BAE BEA ∴∠=∠,AB BE ∴=,7BE = ,7AB CD BE ∴===,DF 平分ADC ∠,ADF CDF ∠=∠∴,AD BC ∥ ,∴∠=∠ADF CFD ,CDF CFD ∴∠=∠,CD CF ∴=,7,3CD AB BF === ,7310BC CF BF ∴=+=+=,ABCD 的周长为()()2271034AB BC =+=⨯+=,故选:D .8.如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(22)x y +个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数相同,则+2x y 的值等于()A .128B .64C .32D .16【答案】A 【详解】调整后,甲袋中有29-22)x y +(个球,29222292x x y y +--=-,乙袋中有(292)y -个球,52+2252x y y x +-=+,丙袋中有(52)x +个球.∵一共有29+29+5=63(个)球,且调整后三只袋中球的个数相同,∴调整后每只袋中有633=21÷(个)球,∴52=21x +,292=21y -,∴216x =,28y =,∴222168128x y x y +=⋅=⨯=.故选:A .【点睛】本题考查了幂的混合运算,找准数量关系,合理利用整体思想是解答本题的关键.9.如图,ADF 是O 的内接正三角形,四边形ACEG 是O 的内接正方形,六边形ABDEFH 是O 的内接正六边形,设上述正三角形周长为1C 、正方形周长为2C 、正六边形周长为3C ,则123C C C ::为()A .1:23B .8329C .322342D .33426【答案】D【详解】设O 的半径为r ,如图1所示,在正三角形ADF 中,连接OD ,过O 作OM DF ⊥于M ,则330·cos302ODF DM OD r ∠=︒=︒=,,故23DF DM r =;∴正三角形周长1C 为33r ;如图2所示,在正方形ACEG 中,连接OE OC 、,过O 作ON CE ⊥于N ,则OCE △是等腰直角三角形,222CN OC =,即22CN r =,故2CE r =;∴正方形周长2C 为42r ;如图3所示,在六边形ABDEFH 中,连接OA OB 、,过O 作OP AB ⊥于P ,则OAB 是等边三角形,故1·cos 602AP OA r =︒=,∴2AB AP r ==,∴正六边形周长3C 为6r ,∴123C C C ::为33:42:633:42:6r r =.故选:D .10.如图所示的是某年2月份的月历,其中“U 型”、“十字型”两个阴影图形分别覆盖其中五个数字(“U 型”、“十字型”两个阴影图形可以重叠覆盖,也可以上下左右移动),设“U 型”覆盖的五个数字之和为1S ,“十字型”覆盖的五个数字之和为2S .若121S S -=,则12S S +的最大值为()A .201B .211C .221D .236【答案】B 【详解】解:设U 型阴影覆盖的最小数字为a ,则其他的数字分别是()()()()2,7,8,9a a a a ++++,()()()()12789526S a a a a a a ∴=++++++++=+,设十字形阴影覆盖的中间数字为b ,则其他数字分别是()()()()1,1,7,7b b b b -+-+,()()()()211775S b b b b b b ∴=+-+++-++=,121S S -=,52651a b ∴+-=,整理得:5a b -=-,即5b a =+,∴()()()125265526551051S S a b a a a +=++=+++=+,100> ,∴12S S +随a 的增大而增大,∴在符合题意得情况下,当21b =时,a 有最大值16,∴此时,12S S +的最大值为:161051211⨯+=,故选:B .11.如图,量筒的液面A -C -B 呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C (即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C 时,记录量筒上点D 的高度为37mm ;仰视点C (点E ,C ,B 在同一直线),记录量筒上点E 的高度为23mm ,若点D 在液面圆弧所在圆上,量筒直径为10mm ,则平视点C ,点C 的高度为()mm .A .3026-B .3746-C .2326+D .2346+【答案】A【详解】解:如图,连接BD OA OB OC 、、、,OC 交AB 于点G ,∵90DAB ∠=︒,∴BD 是O 的直径,由垂径定理得AG BG =,∴OG 是BAD 的中位线,∴OC DE ∥,∴12BCBOBE BD ==,∴BC CE =,∴()113723722OC DE ==-=,∴O 的直径为14,∵10AB =,∴221410966AD =-,∴1446AE =-∵CF AB ∥,∴12EFECAE EB ==,∴)76mm EF =-,∴点F 的高度即点C 的高度为)726233026mm -+=-,故选:A .12.如图是一个由五张纸片拼成的边长为10的正方形ABCD ,相邻纸片之间互不重叠也无缝隙,其中ABG 与CDE 是两张全等的纸片,AFD △与 CHB 是两张全等的纸片,中间是一张四边形纸片.EFGH 已知5AF =tan 2DAF ∠=,记ABG 纸片的面积为1S ,四边形EFGH 纸片的面积为2S ,则12S S 的值是()A .34B .154C .35D .914【答案】D【详解】解:过点F 作FH AD ⊥于H ,作FT AB ⊥于T ,延长AG 交BC 于P ,过点B 作BM AG ⊥于G ,连接BM ,过点M 作MQ AB ⊥于点Q,如图,ABG △≌CDE ,AFD △≌ CHB ,AG CE ∴=,BG DE =,DF BH =,AF CH =,AG AF CE CH ∴-=-,DF DE BH BG -=-,即:F G E H =,EF HG =,∴四边形EFGH 为平行四边形,EH FG ∴∥,四边形ABCD 为正方形,且边长为10,90DAB ABC ∴∠=∠= ,10AB BC CD DA ====,∴四边形AHFT 为矩形,HF AT ∴=,AH FT =,在Rt AHF △中,tan 2HFDAF AH ∠==,2HF AH ∴=,又5AF = ,由勾股定理得:222AH HF AF +=,即:22225AH AH +=()(),1AH ∴=,2HF AT ∴==,1FT AH ==,FT AB ⊥ ,MQ AB ⊥,FT MQ ∴∥,AFT ∴ ∽AMQ △,12FTMQAT AQ ∴==,即:2AQ MQ =,在Rt AMQ 中,由勾股定理得:222AQ MQ AM +=,即:222(2)MQ MQ AM +=,5AM MQ ∴=,90AQM AMB ∠=∠= ,QAM MAB ∠=∠,AMQ ∴ ∽ABM ,AMMQAB BM ∴=,510MQMQBM =,25BM ∴=在Rt ABM 中,10AB =,25BM =,由勾股定理得:2245AM AB BM =-=,FT AB ⊥ ,90ABC ∠= ,FT BC ∴∥,AFT APB ∴ ∽,12FTBP AT AB ∴==,152BP AB ∴==,10BC = ,∴点P 为BC 的中点,EH FG ∥ ,GP CH ∴∥,GP ∴为BCH V 的中位线,12BG BH ∴=,在Rt DFH △中,2HF =,1019DH DA AH =-=-=,由勾股定理得:2285DF DH HF =+,85BH DF ∴=18522BG BH ∴==,在Rt BMG 中,852BG =25BM =,由勾股定理得:2252MG BG BM -=595522AG AM MG ∴=+=+1115522.5222S AG BM ∴=⋅=⨯⨯=,122.5CDE S S ∴== ,111021022ADF S AB HF =⋅=⨯⨯= ,2100ABCD S AB ==正方形,10CHB ADF S S ∴== ,()2100222.51035S ∴=-⨯+=,1222.593514SS ∴==.故选:D .第Ⅱ卷二、填空题:本题共6小题,每小题3分,共18分。
中考二模测试《数学试卷》附答案解析
A B. ﹣ C.2D. ﹣2
二、填空题
11.因式分解:ab2﹣2ab+a=_____.
12.如图,已知正六边形ABCDEF,则∠ADF=_____度.
13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为_____.
24.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一交点为E,其顶点为F.
(1)求a、c 值;
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
【答案】B
【解析】
试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.
考点:棱柱的侧面展开图.
3.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE∥AB,∠ADE=42°,则∠B的大小为( )
A.42°B.45°C.48°D.58°
【答案】C
【解析】
【详解】解:∵DE∥AB,∠ADE=42°,∴∠CAB=∠ADE=42°.
【详解】A、 ,故A选项错误;
B、 ,故B选项错误;
C、 ,故C选项错误;
D、 a2+a2=2a2,故D选项正确,
故选D.
【点睛】本题考查了单项式乘以单项式、积的乘方、和合并同类项,正确掌握相关运算法则是解题关键.
6.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE= CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为()
数学中考二模试卷(含答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。
中考数学二模试题(有答案解析)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________时间100分钟满分150分一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y22.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出学生共有500人,那么估计全年级外出骑车的学生约有140人6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=.8.计算:A 3•A ﹣1=.9.已知函数f(x)=,那么f(10)=.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.14.如果正六边形的半径是1,那么它的边心距是.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为米.(结果保留根号形式)18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.20.(10分)解不等式组:,并将解集在数轴上表示出来.21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.参考答案一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y2【解答】解:A 、分母中含有字母,不是单项式;B 、符合单项式的概念,是单项式;C 、分母中含有字母,不是单项式;D 、不符合单项式的概念,不是单项式.故选:B .2.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y【解答】解:∵x>y,∴x﹣y>0,A x>A y(A >0),x+2>y+2,2﹣x<2﹣y.故选:D .3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y=(x﹣2)2+4,顶点坐标为(2,4),故选:A .4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定【解答】解:∵点A (2,1)到x轴的距离为1,圆的半径=1,∴点A (2,1)到x轴的距离=圆的半径,∴圆与x轴相切;故选:B .5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【解答】解:A 、由题意知乘车的人数是20人,占总人数的50%,所以九(3)班有20÷50%=40人,故此选项错误;B 、步行人数为:40﹣12﹣20=8人,故此选项正确;C 、步行学生所占的圆心角度数为×360°=72°,故此选项错误;D 、如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约为500×=150人,故此选项错误;故选:B .6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .【解答】解:∵=,=,∴=+=﹣+,∵A D ,B E是△A B C 的中线,∴G是△A B C 的重心,∴B G= B E,∴=﹣+,故选:A .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).8.计算:A 3•A ﹣1= A 2.【解答】解:原式=A 3+(﹣1)=A 2.故答案为:A 2.9.已知函数f(x)=,那么f(10)=2.【解答】解:∵f(x)=,∴f(10)==2.故答案为:2.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=9.【解答】解:把x=2代入方程得:22﹣6×2+m﹣1=0.解得m=9.故答案是:9.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为2000元.【解答】解:设这种商品的进价是x元,根据题意可以列出方程:由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为:2000.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.【解答】解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.14.如果正六边形的半径是1,那么它的边心距是.【解答】解:∵A B C D D EF为正六边形,∴∠B OC =360°÷6=60°,OG⊥B C .∴∠B OG=∠B OC =30°.在Rt△B OG中,C os∠B OG=.∵OB =1,∴OG=OB •C os∠B OG=1×=.故答案为:.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.【解答】解:∵在所列的6个方程中,整式方程有x+1=0,x2﹣2x﹣1=0,x4﹣1=0这3个,∴取到的方程是整式方程的概率是=,故答案为:.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是6.【解答】解:如图所示,设C D =3x,则C E=4x,B E=12﹣4x,∵=,∠D C E=∠A C B =90°,∴△A C B ∽△D C E,∴∠D EC =∠A B C ,∴A B ∥D E,∴∠A B F=∠B FE,又∵B F平分∠A B C ,∴∠A B F=∠C B F,∴∠EB F=∠EFB ,∴EF=B E=12﹣4x,由旋转可得D F=C D =3x,∵Rt△D C E中,C D 2+C E2=D E2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴C D =2×3=6,故答案为:6.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为100米.(结果保留根号形式)【解答】解:过B 作B M⊥HA 于M,过B 作B N∥A M,如图所示:则∠A MB =90°,∠A B N=∠B A M,由题意得:A B =200米,∠PB N=15°,∠P A H=60°,∵山坡A B 的坡度i=1:,∴tA n∠B A M=1:=,∴∠B A M=30°,∴∠A B N=30°,∴∠P A B =180°﹣∠P A H﹣∠B A M=90°,∠A B P=∠A B N+∠PB N=45°,∴△P A B 是等腰直角三角形,∴P A =A B =200米,在Rt△P A H中,sin∠P A H==sin60°=,∴PH=P A =100(米),故答案为:100.18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.【解答】解:如图,连接OP,过点O作OH⊥B C 于P,在等边△A B C 中,A B =4,∴A C =B C =A B =4,∠A C B =60°,∵点O是A C 的中点,∴A O=OC =2,∵以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,∴PO=2+B P,∵OH⊥B C ,∴∠C OH=30°,∴HC =1,OH=,∵OP2=OH2+PH2,∴(2+B P)2=3+(4﹣1﹣B P)2,∴B P=,故答案为.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.【解答】解:原式==﹣=,当x=﹣1时,原式==.20.(10分)解不等式组:,并将解集在数轴上表示出来.【解答】解:解不等式3(x+2)>x﹣2,得:x>﹣4,解不等式x﹣≤,得:x≤,则不等式组的解集为﹣4<x≤,将不等式组的解集表示在数轴上如下:21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).【解答】解:(1)过O作OH⊥A B 于H,并延长交⊙O于D ,∵OH⊥A B ,OH过O,∴∠OHA =90°,A H= A B ,=,∵水的深度等于25C m,∴HD =25(C m),∵OA =OD =50C m,∴OH=OD ﹣HD =25(C m),∴A H===25(C m),∴A B =50 C m;(2)连接OB ,∵OA =50C m,OH=25C m,∴OH=OA ,∵∠OHA =90°,∴∠OA H=30°,∴∠A OH=60°,∵OA =OB ,OH⊥A B ,∴∠B OH=∠A OH=60°,即∠A OB =120°,∴的长是=(C m).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.【解答】解:(1)设当0≤x≤100时,y关于x的函数解析式为y=kx+B ,根据题意,得:,解得,∴y=﹣x+50;(2)由题意可知,前100千米耗油量为10升,后250千米的耗油量为:250×(0.1+0.02)=30(升),油箱中的剩余油量为:50﹣10﹣30=10(升).23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .【解答】解:(1)证明:∵A E⊥B D ,EF⊥C E,∴∠A EB =∠C EF=∠A B C =90°,∴∠A B E+∠EA F=∠A B E+∠C B E=90°,∴∠EA F=∠C B E,∵∠A EF+∠B EF=∠B EC +∠B EF=90°,∴∠A EF=∠B EC ,∴△A EF∽△B EC ;(2)证明:∵A D ∥B C ,∠A B C =90°,∴∠B A D =180°﹣∠A B C =90°,∵A E⊥B D ,∴∠A EB =90°=∠B A D ,∵∠A B E=∠D B A ,∴△A B E∽△D B A ,∴=,∵△A EF∽△B EC ,∴=,∴=,∵A B =B C ,∴A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.【解答】解:(1)∵点C (0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A (3,0),∵抛物线y=x2+B x+C 经过点A ,交y轴于点B (0,﹣2),∴C =﹣2,6+3B ﹣2=0,∴B =﹣,∴抛物线解析式为y=x2﹣x﹣2;(2)∵P的横坐标为m(m>0),且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD ⊥x轴,B D ⊥PD ,∴点D 坐标为(m,﹣2),若△B D P为等腰直角三角形,则PD =B D ,①当点P在直线B D 上方时,PD =m2﹣m﹣2﹣(﹣2)=m2﹣m,如图1,B D =m.∴m2﹣m=m,解得:m1=0,m2=,∵m>0,∴m=;②当点P在直线B D 下方时,如图2,m>0,B D =m,PD =﹣m2+m,∴﹣m2+m=m,解得:m1=0,m2=,∵m>0,∴m=;综上所述,m=或;即当△B D P为等腰直角三角形时,线段PD 的长为或.(3)∵∠PB P'=∠OA C ,OA =3,OC =4,∴A C =5,∴sin∠PB P'=,C os∠PB P'=,若点P在y轴右侧,①当△B D P绕点B 逆时针旋转,且点P'落在y轴上时,如图3,过点D ′作D ′M⊥x轴,交B D 于M,过点P′作P′N⊥y轴,交MD '的延长线于点N,∴∠D B D ′=∠ND ′P′=∠PB P′,由旋转知,P′D ′=PD =m2﹣m,在Rt△P′D ′N中,sin∠ND ′P′==sin∠PB P′=,∴P′N=P′D ′=(m2﹣m),在Rt△B D ′M中,B D ′=m,C os∠D B D ′==C os∠PB P′=,∴B M= B D ′=m,∵P′N=B M,∴(m2﹣m)=m,∴m=,∴P(,);②当△B D P绕点B 顺时针旋转,且点P'落在y轴上时,如图4,过点P作PT⊥y轴于点T,∴PT=m,B T=OT﹣OB =﹣(m2﹣m﹣2)﹣2=﹣m2+m,∵∠PB P′=∠OA C ,∴tA n∠PB P′=tA n∠OA C ==,∴=,∴PT= B T,∴m=(﹣m2+m),解得:m=0(舍去)或m=,∴P(,﹣);若点P在y轴左侧,仿照上述方法讨论均不存在满足条件的点P;综上所述,点P的坐标为(,)或(,﹣).25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.【解答】解:(1)如图1中,∵∠C OD =90°,C ot∠OD C ==,∴可以假设OD =3k,OC =4k,则C D =5k,∵以C D 为半径的圆D 与圆O相切,∴C D =D B =5k,∴OB =OD +D B =3K+5K=4,∴k=,∴C D =.(2)如图2中,连接OP,过点P作PE⊥OA 于E,PF⊥OB 于F.∵=,∴∠A OP=∠POB ,∵PE⊥OA ,PF⊥OB ,∴PE=PF,∵∠PEC =∠PFB =90°,PD =PC ,∴Rt△PEC ≌Rt△PFB (HL),∴∠EPC =∠FPB ,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠C PB =90°,∴∠PC B =∠PB C =45°,∵OP=OB ,∠POB =45°,∴∠OB P=∠OPB =67.5°,∴∠C B O=67.5°﹣45°=22.5°,∴∠OC D =90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC ∥PD 时,∵OC ∥PD ,∴∠PD O=∠A OD =90°,∵C E⊥PD ,∴∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,设PC =PD =x,EC =OD =y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD =2﹣2,∴==﹣1.如图3﹣2中,当PC ∥OD 时,∵PC ∥OD ,∴∠C OD =∠OC E=∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,∵OP=4,OC =2,∴PC ===2,∴PD =PC =2,∴PE===2,∴EC =OD =2﹣2,∴===3+,综上所述,的值为﹣1或3+.。
2024年天津市河北区中考数学二模试卷+答案解析
2024年天津市河北区中考数学二模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算,结果等于()A.2B.C.D.2.下面4个汉字中,可以看作是中心对称图形的是()A.一B.往C.无D.前3.如图是一个由4个大小相同的正方体组成的立体图形,它的左视图是()A.B.C.D.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.将12000000用科学记数法表示是()A. B. C. D.6.计算的值是()A. B.1 C. D.37.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.8.若,是方程的两根,则()A.4B.5C.D.9.计算的结果等于()A. B. C.1 D.10.如图,已知,以点B为圆心,以任意长为半径作弧分别交射线BA,BC于点M,N,分别以点M,N为圆心,大于长为半径作弧,两弧相交于点P;在射线BC上取点H,以点H为圆心,以线段BH长为半径作弧交射线BP于点D;点E,F分别在射线BA,HD上,,射线EF,BD交于点G,,则()A. B. C. D.11.如图,在中,,以点A为中心逆时针旋转得到,点B,C的对应点分别是点D,E,且AD平分,BC交AD于点F,则下列结论一定正确的是()A. B.C. D.12.如图,一男生推铅球,铅球行进高度单位:米是水平距离单位:米的二次函数,即铅球飞行轨迹是一条抛物线.该男生推铅球出手时,铅球的高度为米;铅球飞行至水平距离4米时,铅球高度为4米,铅球落地时水平距离为8米.有下列结论:①铅球飞行至水平距离米时,铅球到达最大高度,最大高度为米;②当时,y与x之间的函数关系式为:;③铅球从出手到飞行至最高点的水平距离与从最高点运动至落地的水平距离相等.其中,正确结论的个数是()A.3B.2C.1D.0二、填空题:本题共6小题,每小题3分,共18分。
2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析
2024年江苏省南京市鼓楼区中考二模数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,最小的数是()A. B.0 C.2 D.2.如图,一辆汽车的轮胎因为漏气瘪掉了,将轮胎外轮廓看作一个圆,则这个圆和与它在同一平面内的地面看作一条直线的位置关系是()A.相交B.相切C.相离D.包含3.刚刚过去的“五一”假期,南京全市景区景点、文博场馆、乡村旅游等监测点接待游客量约为108250000人次.用科学记数法表示108250000是()A. B. C. D.4.计算的结果是()A. B. C. D.5.若一个正n边形的内角和为,则它的每个外角度数是()A. B. C. D.6.如图,O是的外心,,垂足分别为D,E,F,连接的中点H,I,J,则与的面积之比是()A. B. C. D.二、填空题:本题共9小题,每小题3分,共27分。
7.16的平方根是______,27的立方根是______.8.式子在实数范围内有意义,则x的取值范围是______.9.分解因式:__________.10.计算的结果是__.11.无人机正在飞行,某时刻控制界面显示“H:14m,D:48m”代表无人机离起飞点的垂直距离,D代表无人机离起飞点的水平距离,则此时无人机到起飞点的距离为_____12.如图,四边形ABCD是的内接四边形,BE是的直径,连接CE,若,则____13.用图中两块相同的含的三角板拼成一个四边形,在所有拼成的四边形中,两条对角线的所有比值的最大值为___.14.在平面直角坐标系中,直线与双曲线交于,两点,则的值为_____.15.如图,正方形ABCD边长为12,E为BC上一点,动点P,Q从E出发,分别向点B,C运动,且若PD和AQ交于点F,连接BF,则BF的最小值为_____.三、计算题:本大题共2小题,共12分。
16.计算:17.解方程:;解不等式组:四、解答题:本题共10小题,共80分。
数学中考二模测试题(带答案解析)
2.截止2021年2月28日,全球新冠肺炎累计确诊病例超113000000,数字113000000月科学记数法可简洁表示为()
A. B. C. D.
3.如图所示 几何体的俯视图为( )
A. B. C. D.
4.计算 的正确结果是()
A. B. C. D.
5.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()
,
故选C.
【点睛】本题考查一元一次方程的应用,熟练掌握列方程的方法是解题关键.
9.如图,一次函数 与y轴相交于点 ,与 轴相交于点 ,在直线 上取一点 (点 不与 , 重合),过点 作 轴,垂足为点 ,连结 ,若 的面积恰好为 ,则满足条件的 点有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
17.(1)计算:
(2)解方程:
18.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,如图表示两车行驶时间 (小时)与到甲地的距离 (千米)的函数图象,已知其中一个函数的表达式为 .
(1)求另一个函数表达式.
(2)求两车相遇的时间.
19.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为 , , , 四类,其中, 类表示“非常了解”, 类表示“比较了解”, 类表示“基本了解”, 类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.
试卷Ⅱ(非选择题,共110分)
二、填空题(本大题有6小题,每小题5分,共30分)
11.因式分解: _____
2024年中考数学二模试卷(北京卷)(全解全析)
2024年中考第二次模拟考试数学·全解全析第Ⅰ卷选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:8239000000 2.3910=⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值.2.下列图形中,既是中心对称图形也是轴对称图形的是()A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为()A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是()A .0a b +<B .0b a -<C .22a b >D .22a b +<+【答案】D 【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.【详解】解:由题意得:a <0<b ,且a <b ,∴0a b +>,∴A 选项的结论不成立;0b a ->,∴B 选项的结论不成立;22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为()A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是()A .1-B .1C .2D .3【答案】B 【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是()A .23B .34C .25D .35【答案】D【分析】根据概率计算公式进行求解即可.【详解】解:∵不透明的袋子里装有2个红球,3个黄球,∴从袋子中随机摸出一个,摸到黄球的概率为33235=+;故选:D .【点睛】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②22a b a b +>+;)2a b c +>;上述结论中,所有正确结论的序号是()A .①②B .①③C .②③D .①②③【答案】D 【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+,由DF DE <,可得a b c +<,进而可判断①的正误;由EAB BCD ≌△△,可得BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,则90EBD ∠=︒,BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,由AB AE BE +>,可得22a b a b +>+,进而可判断②的正误;由勾股定理得222DE BD BE =+,即()2222c a b =+,则()2222c a b a b =⨯+<+,进而可判断③的正误.【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,90EBD ∠=︒,∴BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,∵AB AE BE +>,∴22a b a b +>+,②正确,故符合要求;由勾股定理得222DE BD BE =+,即()2222c a b =+,∴()2222c a b a b =⨯+<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.第Ⅱ卷非选择题二、填空题(共16分,每小题2分)93x -有意义,则x 可取的一个数是.【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵式子3x -有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n-=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =的解为.【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值.【答案】2-(答案不唯一)【分析】由题可知A ,B 在两个象限,根据12y y >得到图象位于二、四象限,即0k <给出符合题意的k 值即可.【详解】由题可知A ,B 在两个象限,∵12y y >,∴反比例函数()0k y k x=≠的图象位于二、四象限,∴0k <,即2k =-,故答案为:2-.【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的性质是解题关键.13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于.【答案】23【分析】此题考查了圆的垂径定理,勾股定理,圆周角定理;根据垂径定理得到CE DE =, BDBC =,90DEO AEC ∠=∠=︒,利用圆周角定理求出求出260DOE A ∠=∠=︒,得出30ODE ∠=︒,进而根据含30度角的直角三角形的性质,求得1OE =,勾股定理即可得DE ,垂径定理即可求得DC 的长.【详解】解:如图所示,设,AB CD 交于点E ,AB 是直径,CD 丄AB ,CE DE ∴=, BDBC =,90DEO AEC ∠=∠=︒,ACD ∠ =60︒,30A ∴∠=︒,260DOE A ∴∠=∠=︒,30ODE ∴∠=︒,∴112OE OD ==,DE ∴=3,2CD DE ∴==23,故答案为:23.14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x 株,根据题意可列分式方程为.【答案】()621031x x-=【分析】根据实际问题列分式方程即可,关键是对“那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱”的理解.【详解】解:由题意可列方程:62103(1)-=x x;故答案为:62103(1)-=x x .【点睛】本题考查根据题意列分式方程,解题关键是熟练运用单价计算公式:单价=总价÷数量,结合题意即可得出分式方程.15.如图,在矩形ABCD 中,4AB =,5BC =,E 点为BC 边延长线一点,且3CE =.连接AE 交边CD 于点F ,过点D 作DH AE ⊥于点H ,则DH =.【答案】5【分析】利用相似三角形的判定与性质求得线段FC 的长,进而求得DF 的长,利再用勾股定理求出AF 的长,最后根据三角形的面积公式,即可求出DH 的长.【详解】解: 四边形ABCD 为矩形,CD AB ∴∥,4DC AB ==,5AD BC ==,90ADC ∠=︒,EFC EAB ∴∠=∠,E E ∠=∠ ,EFC EAB ∴∽V V ,CE FC EB AB ∴=,3354FC ∴=+,32FC ∴=,52DF DC FC ∴=-=,在Rt ADF V 中,2222555522AF AD DF ⎛⎫=+=+= ⎪⎝⎭,DH AE ⊥ ,1122ADF S AD DF AF DH ∴=⋅=⋅V ,1515552222DH ∴⨯⨯=⨯⨯,5DH ∴=,故答案为:5.【点睛】本题矩形的性质,相似三角形的判定和性质,勾股定理,三角形面积公式,熟练掌握相似三角形的判定和性质是解题关键.16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e 的卡片写有数字.【答案】B ;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B 与第二行中c 肯定有一张为白1,若第二行中c 为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B 的位置,∴黑卡片数字1摆在了标注字母A 的位置,;第一行中C 与第二行中c 肯定有一张为白2,若第二行中c 为白2,则a ,b 只能是黑1,黑2,而A 为黑1,矛盾,∴第一行中C 为白2;第一行中F 与第二行中c 肯定有一张为白3,若第一行中F 为白3,则D ,E 只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()2021112π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭【答案】4【分析】先计算特殊角三角函数值,再计算零指数幂,负整数指数幂和化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:原式31231442=-++-⨯+1231234=-++-+4=.【点睛】本题主要考查了求特殊角三角函数值,零指数幂,负整数指数幂,化简二次根式等等,熟知相关计算法则是解题的关键.18.(本题5分)解不等式组:352x x +<-⎧⎪⎨-<⎪.【答案】35x <<【分析】先求出每个不等式的解集,再根据夹逼原则求出不等式组的解集即可.【详解】解:221352x x x x +<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x >,解不等式②得:5x <,∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中31x =-.【答案】2x x --,33-+.【分析】根据分式的混合运算法则进行化简,再代值计算即可.【详解】解:原式22121211(1)x x x x x x ⎛⎫---=+÷ ⎪+++⎝⎭()()22112x x x x x-+=⋅+-()1x x =-+2x x =--,当31x =-时,原式()()3131133=---+=-+.【点睛】本题考查分式的化简求值,二次根式的运算.熟练掌握相关运算法则,正确的进行计算,是解题的关键.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若26EF =CD 的长.【答案】(1)菱形,见解析;(2)42【分析】本题考查菱形的性质和判定,关键是利用菱形的判定解答.(1)根据角平分线的性质得出DF DE =,进而利用直角三角形的性质得出FH DH EH ==,进而利用菱形的判定解答即可;(2)根据菱形的性质和含30︒角的直角三角形的性质得出DH ,进而解答即可.【详解】(1)解:四边形DFHE 是菱形,理由如下:CD 平分ACB ∠,过点D 作DE BC ⊥于点E ,DF AC ⊥于点F ,60ACB ∠=︒,DF DE ∴=,30FCD DCE ∠=∠=︒,点H 是CD 的中点,FH CH DH ∴==,EH CH DH ==,FH HE ∴=,30DCE ∠=︒ ,DE CB ⊥,60HDE ∴∠=︒,DHE ∴ 是等边三角形,DE HE DH ∴==,DF DE HE FH ∴===,∴四边形DFHE 是菱形;(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,162OF OE EF ===,EF DH ⊥,60HDE ∠=︒ ,6233OE OD ∴===,2442CD DH OD ∴===.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域A B 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.【答案】(1)112y x =-+,(2,0)A ;(2)4m >-【分析】本题考查了待定系数法求一次函数解析式:掌握待定系数法求一次函数解析式一般步骤是解决问题的关键.也考查了一次函数的性质.(1)先利用待定系数法求出函数解析式为112y x =-+,然后计算自变量为0时对应的函数值得到A 点坐标;(2)当函数y x n =+与y 轴的交点在点A (含A 点)上方时,当0x >时,对于x 的每一个值,函数2y x m =+的值大于函数(0)y kx b k =+≠的值.【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,该一次函数的表达式为112y x =-+,令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,4m ∴>-.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖第一次竞赛人数101010平均数828795第二次竞赛人数21216平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90909191919192939394949495959698d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标为89,纵坐标为91,即可获得答案;(2)根据平均数和中位数的定义求解即可;(3)根据平均数、众数和中位数的意义解答即可.【详解】(1)解:如图所示;(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.【点睛】本题主要考查了众数、平均数、中位数等知识,理解题意,熟练掌握相关知识是解题关键.24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.【答案】(1)见解析,90BAD ∠=︒;(2)4【分析】(1)根据已知得出 AB BC =,则ADB CDB ∠=∠,即可证明DB 平分ADC ∠,进而根据BD 平分ABC ∠,得出 AD CD=,推出 BAD BCD =,得出BD 是直径,进而可得90BAD ∠=︒;(2)根据(1)的结论结合已知条件得出,90F ∠=︒,ADC △是等边三角形,进而得出1302CDB ADC ∠=∠=︒,由BD 是直径,根据含30度角的直角三角形的性质可得12BC BD =,在Rt BFC △中,根据含30度角的直角三角形的性质求得BC 的长,进而即可求解.【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ AD CD=,∴ AB AD BCCD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD=,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含30度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx01245/my18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;(3)利用待定系数法求得抛物线的解析式,令 1.5x=,求得函数值,即可解答.【详解】(1)解:描点,连线,函数的图象如图所示,;(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .【点睛】本题考查二次函数的实际应用,根据点的坐标画出函数图象是解题关键.26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.【答案】(1)直线x a =;(2)45x -≤<;(3)3a >或1a <-【分析】(1)根据对称轴为直线2b x a=-代入求解即可;(2)根据23x -<<,2x =-比3x =距离对称轴远,分别求得1,2x =-时的函数值即可求解;(3)分两种情况讨论132>y y y >和132y y y <<时.【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,∴对称轴为直线2222b a x a a a---===;(2)解:当1a =时,抛物线解析式为2=23y x x --,∴对称轴2122b x a -=-=-=,抛物线开口向上,∴当1x =时,取得最小值,即最小值为212134y =-⨯-=-,∵2x =-离对称轴更远,∴2x =-时取得最大值,即最大值为()()222235y =--⨯--=,∴当23x -<<时,y 的取值范围是45x -≤<;(3)解:∵()()13320y y y y -->,∴13>0y y -,32>0y y -,即132>y y y >;或130y y -<,320y y -<,即132y y y <<,∵抛物线对称轴2222b a x a a a ---===,∴()2,B a y 是抛物线顶点坐标,若132>y y y >,则抛物线开口向上,0a >,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >;当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-,不符合题意;∴a 的取值范围是3a >;若132y y y <<,则抛物线开口向下,a<0,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF=【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()30y x b b =+>交x 轴于点C ,在ABC 中,3AC =,2AB .若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.【答案】(1)①22A B ;②3或2;(2)b 的最大值为43,17BC =;最小值为23,5BC =【分析】(1)①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,运用数形结合思想,即可求解;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,而线段11A B ⊥直线y x m =-+,线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;线段335A B =,O 的最长的弦为2,得线段33A B 的对称线段不可能是O 的弦,而线段22A B ∥直线y x m =-+,线段222A B =,所以线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,画出对应图形即可求解;(2)先表示出33OC b =,b 最大时就是CO 最大,b 最小时就是CO 长最小,根据线段AB 关于直线()30y x b b =-+>对称线段A B ''在O 上,得3A C AC ''==,再由三角形三边关系得A C OA OC A C OA ''''-≤≤+,得当A '为()10,时,如图3,OC 最小,此时C 点坐标为()20,;当A '为()10,时,如图3,OC 最大,此时C 点坐标为()40,,分两种情形分别求解.【详解】(1)解:①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,如图,发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线2y x =+对称的“关联线段”是11A B ,故答案为:11A B ;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,∴线段11A B ⊥直线y x m =-+,∴线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;∵线段2233215A B =+=,O 的最长的弦为2,∴线段33A B 的对称线段不可能是O 的弦,线段22A B 是⊙O 的关于直线y x m =-+对称的“关联线段”,而线段22A B ∥直线y x m =-+,线段222A B =,∴线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,第一种情况22A B ''、的坐标分别为()()0110,,,,此时3m =;第二种情况22A B ''、的坐标分别为()()1001--,、,此时2m =,故答案为:3或2;(2)已知()30y x b b =-+>交x 轴于点C ,在ABC 中,3AC =,2AB =.若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点C ,当0y =时,()030x b b =-+>,解得:33x b =∴33OC b =即b 最大时就是OC 最大,b 最小时就是OC 最小,∵线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,∴线段AB 关于直线()30y x b b =-+>对称线段A B ''在⊙O 上,∴3A C AC ''==在A CO ' 中,A C OA OC A C OA ''''-≤≤+∴当A '为()10-,时,如图,OC 最小,此时C 点坐标为()20,,将点C 代入直线3y x b =-+中,得032b=-⨯+解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时C 点坐标为()40,,将点C 代入直线3y x b =-+中,得034b=-⨯+解得:43b =,∵点B B ',关于323y x =-+对称∴221417BC B C '==+=,综上b 的最大值为43,17BC =;最小值为23,5BC =.【点睛】本题考查了以圆为背景的阅读理解题,对称轴的性质、一次函数与坐标轴的交点问题,勾股定理,三角形三边关系,解决问题的关键是找出不同情境下的“关联线段”和阅读理解能力.。
2024年安徽省合肥市蜀山区中考数学二模试卷及答案解析
2024年安徽省合肥市蜀山区中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列四个实数中,绝对值最小的数是()A.﹣2B.0C.0.6D.2.(4分)下列计算结果等于a8的是()A.a2+a4B.(﹣a)2•a4C.a16÷a2(a≠0)D.(﹣a4)23.(4分)文房四宝是中国古代传统文化中的文书工具,即笔、墨、纸、砚,也是安徽的特产,被联合国中如教科文组织列为世界级“非物质文化遗产”,如图是一个砚台,则其俯视图是()A.B.C.D.4.(4分)计算的结果为()A.B.C.D.5.(4分)苯(分子式为C6H6)的环状结构是由德国化学家凯库勒提出的.随着研究的不断深入,发现阳苯分子中的6个碳原子组成了一个完美的正六边形(如图1),图2是其平面示意图,点O为正六边形ABCDEF的中心,则∠CBF﹣∠COD的度数为()A.30°B.45°C.60°D.90°6.(4分)若将直线y=﹣x向下平移3个单位,则关于平移后的直线,下列描述正确的是()A.与y轴交于点(0,3)B.不经过第一象限C.y随x的增大而增大D.与x轴交于点(6,0)7.(4分)《易•系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白点(1,3,5,7,9)为阳数,黑点(2,4,6,8,10)为阴数.现从阳数和阴数中各取1个数,则取出的2个数之和是5的倍数的概率是()A.B.C.D.8.(4分)如图,四边形ABCD中,AD∥BC,∠A=90°,AB=BC=2AD=8,边CD的垂直平分线分别交AB、CD于点E、F,则AE的长为()A.6B.C.7D.9.(4分)如图,正方形ABCD边长为6,点E、F分别在BC、AB上,且AE⊥DF,点G、H分别为线段AE、DF的中点,连接GH,若GH=2,则BE的长为()A.2B.C.D.10.(4分)在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于点A、B(点A在点B左边),与y轴交于点C,下列命题中不成立的是()A.A、B两点之间的距离为4个单位长度B.若线段PQ的端点为P(4,5),Q(8,5),当抛物线与线段PQ有交点时,则C.若(m﹣4,y1)、(m,y2)在该抛物线上,当y1<y2时,则m≥3D.若a=1,当t≤x≤4时,y的最大值与最小值的差为4,则t=1+二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:=.12.(5分)大鹏一日同风起,扶摇直上九万里.国产大飞机C919自2023年5月28日开启首次商业航线以来,截至2024年1月10日,东航C919机队累计执飞商业航班共计713班,累计商业运行2079.67小时,运输旅客约89000人次,其中数据89000用科学记数法表示为.13.(5分)如图,反比例函数的图象与正比例函数y=x的图象交于A,B两点,点C在反比例函数第一象限的图象上且坐标为(m,4m),若△BOC的面积为12,则k的值为.14.(5分)如图,若点O是矩形ABCD对角线BD的中点,按如图所示的方式折叠,使边AB落在BD上,边CD也落在BD上,A、C两点恰好重合于点O,连接EC交BD于点G,交DF于点H.(1)∠AEB的度数为度;(2)的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:﹣1>1.16.(8分)某景区2022年共接待游客约580万人次,2023年比2022年游客总数增加了10%,其中省内游客增加了9%,省外游客增加了13%,求该景区2022年省内,外游客分别为多少万人次?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)以点O为旋转中心,将△ABC旋转180°,得到△A1B1C1,请画出△A1B1C1;(2)将线段AB向右平移7个单位长度,再向上平移1个单位长度,得到线段DE,画出线段DE;(点D与点A对应,点B与点E对应)(3)画出格点F,使得∠DEF=45°.(只需画出一个点F,作图过程用虚线表示)18.(8分)【观察思考】观察个位上的数字是5的自然数的平方(任意一个个位数字为5的自然数可用代数式10n+5来表示,其中n为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律,并归纳猜想出一般结论.【规律发现】第1个等式:152=(1×2)×100+25;第2个等式:252=(2×3)×100+25;第3个等式:352=(3×4)×100+25;…【规律应用】(1)写出第4个等式:;写出你猜想的第n个等式:(用含n的等式表示);(2)根据以上的规律直接写出结果:2024×2025×100+25=2;(3)若与100n的差为4925,求n的值.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,某处有一座塔AB,塔的正前方有一平台DE,平台的高DG=5米,斜坡CD的坡度i =5:12,点A,C,G,F在同一条水平直线上.某数学兴趣小组为测量该塔的高度,在斜坡C处测得塔顶部B的仰角为54.5°,在斜坡D处测得塔顶部B的仰角为26.7°,求塔高AB.(精确到0.1米)(参考数据:tan54.5°≈1.40,sin54.5°≈0.81,cos54.5°≈0.58,tan26.7°≈0.50,sin26.7°≈0.45,cos26.7°≈0.89)20.(10分)如图,四边形ABCD内接于⊙O,,对角线AC为⊙O的直径,延长BC交过点D的切线于点E.(1)求证:DE⊥BE;(2)若⊙O的半径为5,tan∠DAC=,求DE的长.六、(本题满分12分)21.(12分)为了了解和加强青少年心理健康教育,某校组织了全校学生进行了心理健康常识测试,并随机抽取了这次测试中部分同学的成绩,将测试成绩按下表进行整理.(成绩用x分表示)测试成绩60≤x<7070≤x<8080≤x<9090≤x<100级别及格中等良好优秀并绘制了如下不完整的统计图:请根据所给的信息解答下列问题:(1)请直接写出参加此次调查的学生的人数为人,并补全频数分布直方图;(2)根据上面的频数分布直方图,我们可以用各组的组中值(数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数.例如:60≤x<70的组中值为=65)代表该组数据的平均值,据此估算所抽取的学生的平均成绩;(3)若该校有3400名学生,请估计测试成绩在良好以上(x≥80)的学生约有多少名?七、(本题满分12分)22.(12分)如图1,△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=45°,连接BD,CE,且∠ADB=∠AEC=90°,过点C作CG∥BD交线段ED的延长线于点G,EG与BC相交于点F,连接DC,BG.(1)求证:∠BDG=∠DEC;(2)试判断四边形BDCG的形状,并说明理由;(3)如图2,连接AF,过点B作BH⊥AC于H,交AF于M,若BM=,求AB的长.八、(本题满分14分)23.(14分)如图1,悬索桥两端主塔塔顶之间的主索,其形状可近似地看作抛物线,水平桥面与主索之间用垂直吊索连接.已知两端主塔之间水平距离为800m,两主塔塔顶距桥面的高度为42m,主索最低点P离桥面的高度为2m,若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立如图2所示的平面直角坐标系.(1)求这条抛物线对应的函数表达式;(2)若在抛物线最低点P左下方桥梁上的点M(﹣30,﹣1)处放置一个射灯,该射灯光线恰好经过点P和右侧主索最高点D.(ⅰ)求主索到射灯光线的最大竖直距离;(ⅱ)现将这个射灯沿水平方向向右平移,并保持光线与原光线平行,若要保证该射灯所射出的光线能照到右侧主索.则最多向右平移米.2024年安徽省合肥市蜀山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.【分析】首先求出所给的四个实数的绝对值,然后根据实数大小比较的方法,判断出四个实数中,绝对值最小的数是哪个即可.【解答】解:|﹣2|=2,|0|=0,|0.6|=0.6,|﹣|=,∵0<0.6<<2,∴四个实数中,绝对值最小的数是0.故选:B.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据同底数幂的乘法和除法运算法则判断即可.【解答】解:∵(﹣a4)2=a8,∴计算结果等于a8的是(﹣a4)2,故选:D.【点评】本题考查了同底数幂的乘法和除法,熟练掌握运算法则是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,是两个同心圆.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】根据分式的乘除法运算法则进行计算即可.【解答】解:原式=×=.故选:D.【点评】本题主要考查分式的分式的乘除法,熟练掌握乘除法运算法则是解题的关键.5.【分析】根据正六边形的性质,等腰三角形的性质以及三角形内角和定理进行计算即可.【解答】解:如图2,六边形ABCDEF是正六边形,∠A=∠ABC==120°,∵AB=AF=EF,∠ABF==30°,∴∠CBF=∠ABC﹣∠ABF=120°﹣30°=90°,∵∠COD=×360°=60°,∴∠CBF﹣∠COD=90°﹣60°=30°.故选:A.【点评】本题考查正多边形和圆,等腰三角形以及三角形内角和定理,解题关键是掌握正六边形的性质,等腰三角形的性质以及三角形内角和定理是正确解答的前提.6.【分析】求出将直线y=﹣x向下平移3个单位,所得直线解析式y=﹣x﹣3,再根据一次函数性质逐项判断即可.【解答】解:将直线y=﹣x向下平移3个单位,所得直线解析式为y=﹣x﹣3;在y=﹣x﹣3中,令x=0得y=﹣3,∴平移后的直线与y轴交于点(0,﹣3),故A错误,不符合题意;直线y=﹣x﹣3经过第二,三,四象限,不经过第一象限,故B正确,符合题意;∵﹣<0,∴函数y=﹣x﹣3中,y随x的增大而减小,故C错误,不符合题意;在y=﹣x﹣3中,令y=0得x=﹣6,∴直线y=﹣x﹣3与x轴交于点(﹣6,0),故D错误,不符合题意;故选:B.【点评】本题考查一次函数与几何变换,解题的关键是掌握一次函数的图象及性质.7.【分析】列表可得出所有等可能的结果数以及取出的2个数之和是5的倍数的结果数,再利用概率公式可得出答案.【解答】解:列表如下:2468101(1,2)(1,4)(1,6)(1,8)(1,10)3(3,2)(3,4)(3,6)(3,8)(3,10)5(5,2)(5,4)(5,6)(5,8)(5,10)7(7,2)(7,4)(7,6)(7,8)(7,10)9(9,2)(9,4)(9,6)(9,8)(9,10)共有25种等可能的结果,其中取出的2个数之和是5的倍数的结果有:(1,4),(3,2),(5,10),(7,8),(9,6),共5种,∴取出的2个数之和是5的倍数的概率是.故选:A.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.【分析】连接ED、EC,根据线段垂直平分线的性质得到ED=EC,根据勾股定理列出关于AE的方程,解方程得到答案.【解答】解:如图,连接ED、EC,∵EF是线段CD的垂直平分线,∴ED=EC,在Rt△ADE中,DE2=AD2+AE2,在Rt△BEC中,EC2=BC2+BE2,则AD2+AE2=BC2+BE2,即42+AE2=82+(8﹣AE)2,解得:AE=7,故选:C.【点评】本题考查的是线段的垂直平分线的性质、勾股定理,熟记线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.【分析】连接AH并延长,交CD于点M,连接EM,根据正方形的性质推出AB∥CD,AB=BC=CD=DA,∠C=∠DAF=∠ABE=90°,根据AE⊥DF得到∠DAE+∠ADF=90°,从而推出∠BAE=∠ADF,判定△ABE≌△DAF后根据全等三角形的性质得到AF=BE,根据AB∥CD推出∠AFH=∠MDH,∠FAH =∠DMH,根据H是DF的中点得到DH=FH,从而判定△AFH≌△MDH,根据全等三角形的性质得到AF=DM,根据等量代换得到BE=DM,CE=CM,判定△CEM为等腰直角三角形,根据三角形中位线的定义判定GH是△AEM的中位线后求出EM的长,根据等腰直角三角形的性质求出CE和CM的长,最后用BC减去CE即可求出BE的长.【解答】解:如图,连接AH并延长,交CD于点M,连接EM,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD=DA=6,∠C=∠DAF=∠ABE=90°,∴∠BAE+∠DAE=90°,∵AE⊥DF,∴∠DAE+∠ADF=90°,∴∠BAE=∠ADF,又∵DA=AB,∠DAF=∠ABE=90°,∴△ABE≌△DAF(ASA),∴AF=BE,∵AB∥CD,∴∠AFH=∠MDH,∠FAH=∠DMH,∵H是DF的中点,∴DH=FH,∴△AFH≌△MDH(ASA),∴AF=DM,AH=MH,又∵AF=BE,∴BE=DM,∴CE=CM,又∵∠C=90°,∴△CEM为等腰直角三角形,∵G是AE中点,AH=MH,∴GH是三角形AEM的中位线,∴EM=2GH=,∴CE=CM=4,∴BE=BC﹣CE=6﹣4=2.故选:A.【点评】本题主要考查正方形的性质,全等三角形的判定与性质以及三角形中位线定理,熟练掌握正方形的性质和全等三角形的判定方法是解决问题的关键.10.【分析】利用二次函数的图象及性质,逐条计算并判断即可.【解答】解:A、令y=0,即ax2﹣2ax﹣3a=0,解得,x1=﹣1,x2=3,3﹣(﹣1)=4,∴A、B两点之间的距离为4个单位长度,故A成立,不符合题意;B、将P(4,5),Q(8,5),分别代入y=ax2﹣2ax﹣3a,求出a的值为1和,当抛物线与线段PQ有交点时,则,故B成立,不符合题意;C、由A得抛物线与横轴的交点为(﹣1,0)和(3,0),距离为4,∴当m=3时,y1=y2,∴当m≥3时,y1≤y2,故C不成立,符合题意;D、若a=1,当x=4时,y=5,若y的最大值与最小值的差为4,则最小值是y=1,令y=1,解得,x=1±,当x=1﹣,最小值位于顶点,故舍去,∴t=1+,故D成立,不符合题意;故选:C.【点评】本题考查了二次函数的图形与性质,熟练掌握二次函数的性质并能结合图象灵活应用是本题的解题关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.【分析】先化简各式,然后再进行计算即可解答.【解答】解:=4+1=5,故答案为:5.【点评】本题考查了实数的运算,零指数幂,准确熟练地进行计算是解题的关键.12.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:89000=8.9×104.故答案为:8.9×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.【分析】连接AC,作AE⊥x轴于E,CD⊥x轴于F,则S△COS=S△AOE=|k|,根据题意求得A(2m,2m),由S△AOC=S△COS+S梯形AEDC﹣S△AOE=S梯形AEDC,即可得出(4m+2m)(2m﹣m)=12,解方程求得m的值,从而求得k=16.=S△AOE=|k|,【解答】解:连接AC,作AE⊥x轴于E,CD⊥x轴于F,则S△COS=S△COS+S梯形AEDC﹣S△AOE=S梯形AEDC,∴S△AOC∵反比例函数的图象与正比例函数y=x的图象交于A,B两点,∴A、B关于原点对称,∴OA=OB,=S△BOC=12,∴S△AOC设A(a,a),∴k=4m•m=a•a,∴a=2m,∴A(2m,2m),=(CD+AE)•DE=12,即(4m+2m)(2m﹣m)=12,∴S梯形AEDC解得m=2,∴k=4m•m=16.故答案为:16.【点评】本题是反比例函数与一次函数的交点问题,考查了反比例函数系数k的几何意义,反比例函数与正比例函数的中心对称性,正确表示出A的坐标是解题的关键.14.【分析】(1)根据矩形性质及折叠性质得点E,O,F在同一条直线上,证四边形BEDF为菱形得∠OBF =∠OBE,则∠ABE=∠OBE=∠OBF,由此得∠ABE=∠OBE=∠OBF=30°,进而可得∠AEB的度数(2)设OE=a,则OF=OE=CF=AE=a,则BE=DE=DF=BF=2a,AD=BC=3a,设GH=y,CH =x,证△EHD∽△CHF,△EGD∽△CGB得EH:x=2:1,EG:CG=2:3,则EH=2x,3EG=2CG,将EG=EH﹣GH=2x﹣y,CG=GH+CH=x+y代入3EG=2CG,得3(2x﹣y)=2(x+y),则y:x=4:5,由此可得的值.【解答】解:(1)∵四边形ABCD为矩形,点O是对角线BD的中点,∴AD∥BC,OB=OD,∠A=∠BCD=∠ABC=90°,∴∠OBF=∠ODE,由折叠的性质得:∠BOE=∠A=90°,∠DOF=∠BCD=90°,∠ABE=∠OBE,CF=OF,OE=AE,∴点E,O,F在同一条直线上,∴EF⊥BD,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴OF=OE,又∵EF⊥BD,OB=OD,∴四边形BEDF为菱形,∴∠OBF=∠OBE,∴∠ABE=∠OBE=∠OBF,∵∠ABC=ABE+∠OBE+∠OBF=90°,∴∠ABE=∠OBE=∠OBF=30°,∴∠AEB=90°﹣∠ABE=60°.故答案为:60.(2)由(1)可知:四边形BEDF为菱形,∠OBE=30°,设OE=a,则OF=OE=CF=AE=a,∴在Rt△OBE中,BE=2OE=2a,∴BE=DE=DF=BF=2a,∴AD=BC=3a,设GH=y,CH=x,∵AD∥BC,∴△EHD∽△CHF,△EGD∽△CGB,∴EH:CH=ED:CF,EG:CG=ED:BC,即EH:x=2a:a=2:1,EG:CG=2a:3a=2:3,∴EH=2x,3EG=2CG,∵EG=EH﹣GH=2x﹣y,CG=GH+CH=x+y,∴3(2x﹣y)=2(x+y),整理得:5y=4x,∴y:x=4:5,∴==.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,菱形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,理解矩形的性质,图形的折叠变换及性质,熟练掌握菱形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质是解决问题的关键.三、(本大题共2小题,每小题8分,满分16分)15.【分析】根据解一元一次不等式基本步骤:去分母移项、合并同类项可得不等式的解集.【解答】解:∵﹣1>1,∴x﹣3﹣2>2,∴x>2+2+3,∴x>7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】设该景区2022年接待省内游客x万人次,则接待省外游客(580﹣x)万人次,该景区2023年接待省内游客(1+9%)x万人次,省外游客(1+13%)(580﹣x)万人次,根据2023年比2022年游客总数增加了10%,可列出关于x的一元一次方程,解之可得出该景区2022年接待省内游客人次数,再将其代入(580﹣x)中,即可求出该景区2022年接待省外游客人次数.【解答】解:设该景区2022年接待省内游客x万人次,则接待省外游客(580﹣x)万人次,该景区2023年接待省内游客(1+9%)x万人次,省外游客(1+13%)(580﹣x)万人次,根据题意得:(1+9%)x+(1+13%)(580﹣x)=580×(1+10%),解得:x=435,∴580﹣x=580﹣435=145(万人次).答:该景区2022年接待省内游客435万人次,省外游客145万人次.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.【分析】(1)根据旋转的性质作图即可.(2)根据平移的性质作图即可.(3)以点D为直角顶点作等腰直角三角形DEF,即可得格点F.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,线段DE即为所求.(3)如图,以点D为直角顶点作等腰直角三角形DEF,可得∠DEF=45°,则点F即为所求(答案不唯一).【点评】本题考查作图﹣旋转变换、平移变换、等腰直角三角形,熟练掌握旋转的性质、平移的性质、等腰直角三角形的性质是解答本题的关键.18.【分析】(1)根据所给等式,发现规律即可解决问题.(2)根据(1)中发现的规律即可解决问题.(3)根据题意,建立关于n的方程即可解决问题.【解答】解:(1)由题知,第4个等式为:452=(4×5)×100+25;依次类推,第n个等式为:(10n+5)2=100n(n+1)+25;故答案为:452=(4×5)×100+25,(10n+5)2=100n(n+1)+25.(2)当n=2024时,(10×2024+5)2=100×2024×2025+25,即202452=2024×2025×100+25.故答案为:20245.(3)由与100n的差为4925得,100n(n+1)+25﹣100n=4925,解得n=7(舍负),故n的值为7.【点评】本题考查数字变化的规律,能根据所给等式发现规律并用含n的等式表示出第n个式子是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.【分析】过点D作DH⊥AB,垂足为H,根据题意可得:DG=AH=5米,DH=AG,DG⊥AF,再根据已知易得:CG=12米,然后设AC=x米,则AG=DH=(x+12)米,分别在Rt△ABC和Rt△BDH 中,利用锐角三角函数的定义求出AB和BH的长,从而列出关于x的方程,进行计算即可解答.【解答】解:过点D作DH⊥AB,垂足为H,由题意得:DG=AH=5米,DH=AG,DG⊥AF,∵斜坡CD的坡度i=5:12,DG=5米,∴=,∴CG=12米,设AC=x米,∴AG=DH=CG+AC=(x+12)米,在Rt△ABC中,∠BCA=54.5°,∴AB=AC•tan54.5°≈1.4x(米),在Rt△BDH中,∠BDH=26.7°,∴BH=DH•tan26.7°≈0.5(x+12)米,∵BH+AH=AB,∴0.5(x+12)+5=1.4x,解得:x=,∴AB=1.4x≈17.1(米),∴塔高AB约为17.1米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合适当的辅助线是解题的关键.20.【分析】(1)连接DO并延长交AB于F,根据垂径定理得到DF⊥AB,根据切线的性质得到DF⊥DE,根据平行线的性质即可得到结论;(2)根据圆周角定理得到∠ADC=90°,设CD=3k,AD=4k,根据勾股定理得到AC==5k=10,求得AD=8,CD=6,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接DO并延长交AB于F,∵,∴DF⊥AB,∵DE是⊙O的切线,∴DF⊥DE,∴DE⊥AB,∵AC为⊙O的直径,∴BE⊥AB,∴DE⊥BE;(2)解:∵AC为⊙O的直径,∴∠ADC=90°,∵tan∠DAC==,∴设CD=3k,AD=4k,∴AC==5k=10,∴k=2,∴AD=8,CD=6,∵∠ODE=90°,∴∠CDE+∠ODC=∠ADO+∠ODC=90°,∴∠CDE=∠ADO,∵AO=OD,∴∠DAC=∠ADO,∴∠DAC=∠CDE,∵∠ADC=∠E=90°,∴△ADC∽△DEC,∴,∴,∴DE=.【点评】本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确地找出辅助线是解题的关键.六、(本题满分12分)21.【分析】(1)根据优秀的人数和所占的百分比即可求出此次调查的学生的人数,用总人数减去其它组的人数求出良好的人数,即可补全频数分布直方图;(2)根据加权平均数公式计算即可;(3)用总人数乘以测试成绩在良好以上(x≥80)的学生人数所占的百分比即可.【解答】解:(1)参加此次调查的学生的人数为32÷40%=80(人),良好的人数为80﹣8﹣12﹣32=28(人),补全频数分布直方图如下:(2)=85.5(分),答:估计所抽取的学生的平均成绩为85.5分;(3)3400×=2550(名),答:估计测试成绩在良好以上(x≥80)的学生约有2550名.【点评】本题主要考查了频数分布直方图和扇形统计图的综合运用,样本估计总体和加权平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.七、(本题满分12分)22.【分析】(1)利用等腰三角形的性质,三角形的内角和定理求得∠BDG=∠DEC=22.5°即可;(2)利用平行线的性质和(1)的结论得到EC=CG,利用其实当时就行的判定与性质得到EC=BD,再利用一组对边平行且相等的四边形是平行四边形的性质解答即可;(3)过点M作MN⊥AB于点N,利用平行四边形的性质,等腰三角形的性质和角平分线的性质得到MN=MH;利用等腰直角三角形的性质求得MH,再利用AB=解答即可.【解答】(1)证明:∵AD=AE,∠DAE=45°,∴∠AED=∠ADE==67.5°,∵∠ADB=∠AEC=90°,∴∠BDG=180°﹣∠ADE﹣∠ADB=180°﹣67.5°﹣90°=22.5°,∠DEC=∠AEC﹣∠AED=90°﹣67.5°=22.5°,∴∠BDG=∠DEC;(2)解:四边形BDCG的形状是平行四边形,理由:∵CG∥BD,∴∠BDG=∠CGE,∵∠BDG=∠DEC,∴∠DEC=∠CGE,∴EC=CG,∵∠BAC=∠DAE=45°,∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴EC=BD,∴BD=GC,∵CG∥BD,∴四边形BDCG是平行四边形;(3)解:过点M作MN⊥AB于点N,如图,∵四边形BDCG是平行四边形,∴BF=FC,∵AB=AC,∴AF⊥BC,∠BAF=∠CAF,∵MH⊥AC,MN⊥AB,∴MH=MN.∵BH⊥AC,∠BAC=45°,∴△ABH为等腰直角三角形,∠ABH=45°,∴AB=,△MNB为等腰直角三角形,∴BN=MN=BM,∵BM=,∴BN=MN=1,∴MH=MN=1.∴BH=BM+MH=+1,∴AB=BH=2+.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的判定与性质,平行四边形的判定与性质,角平分线的性质,熟练掌握平行四边形的判定与性质和等腰三角形的性质是解题的关键.八、(本题满分14分)23.【分析】(1)利用待定系数法代入数据求解即可;(2)作垂直与x轴的直线与MD,抛物线分别交于N,L.利用解析书求取线段DL的表达式,分情况讨论比较即可得到结论;(3)根据题意分别求出原直线与平移后直线与x轴的交点,相减即可得到结论.【解答】解:(1)由题意可知,抛物线的顶点为(0,2),设抛物线的解析式为:y=ax2+2,由∵D(400,42),∴42=a×4002+2.解得:a=,∴解析式为:y=+2;(2)(ⅰ)设直线MD为y=kx+b,将M(﹣30,﹣1)P(0,2)代入可得,解得:,解析式为y=x+2;如图,作垂直为x轴的直线交MD于N,交抛物线于点L,设点N的坐标为(n ,n+2),则L为(n,x2+2),当n>0时,NL =n+2﹣x2﹣2=﹣x2+n =﹣(n﹣200)2+10,故n=200时有最大值10,;当n<0时,NL =x2+2﹣n﹣2=x2﹣n=(n﹣200)2﹣10,∵n<200时,NL随n的增大而减小,﹣30≤n≤400,∴当n=﹣30时,NL 有最大值为:<10,综上所述,最大距离为10;(ⅱ)设平移后的直线为:y=x+m,联立,∴x2+2﹣x﹣m=0,当Δ=0时=0,解得:m=﹣8,∴y =x﹣8,y=0时,x=80,y=x+2,y=0时,x=﹣20,∴向右最多平移80﹣(﹣20)=100(米).故答案为:100.【点评】本题考查一次函数的应用,二次函数的性质,正确记忆相关知识点是解题关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.4 B.﹣4 C.D.﹣2.下列计算正确的是()A. =﹣3 B.a2+a4=a6C.(﹣)﹣1=D.(﹣π)0=13.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④4.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数5.二元一次方程组的解为()A.B.C.D.6.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°7.方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣28.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.10.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A.B. C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.分解因式:a3b﹣4ab= .12.若+|b+3|=0,则(a+b)2017的值是.13.不等式组的整数解的和是.14.如图,A,B,C是⊙O上的三点,若∠BAO=65°,则∠ACB的度数是.15.如图,抛物线的对称轴是x=1,与x轴有两个交点,与y轴的交点坐标是(0,3),把它向下平移2个单位长度后,得到新的抛物线的解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正确的是(填序号).三、解答题(本大题共9小题,共75分)16.计算:3cos60°﹣2﹣1+(π﹣3)0﹣.17.先化简,再求值:(a+1﹣)÷(﹣),其中a=2+.18.如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.求证:四边形ADCE是菱形.19.2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.20.在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)22.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.24.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.4 B.﹣4 C.D.﹣【考点】14:相反数.【分析】本题需根据相反数的有关概念求出﹣的相反数,即可得出答案.【解答】解:﹣的相反数是.故选C.2.下列计算正确的是()A. =﹣3 B.a2+a4=a6C.(﹣)﹣1=D.(﹣π)0=1【考点】22:算术平方根;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】利用算术平方根的性质、负整数指数幂和零指数幂对ACD运算,B不能运算,可得结果.【解答】解:A. = =3,所以A错误;B.a2与a4不是同类项,所以B错误;C. =﹣3,所以C错误;D.(﹣π)0=1,所以D正确,故选D.3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.4.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】W4:中位数.【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.5.二元一次方程组的解为()A.B.C.D.【考点】97:二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.6.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°【考点】JA:平行线的性质;K7:三角形内角和定理.【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【解答】解:在△DEF中,∠1=∠F=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选B.7.方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1﹣2=2x﹣4,解得:x=1,经检验x=1是分式方程的解,故选A8.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】L3:多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选B.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.【考点】KF:角平分线的性质;T5:特殊角的三角函数值.【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A,再由特殊角的三角函数的定义求得结论.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°=,故选A.10.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A.B. C.D.【考点】E7:动点问题的函数图象.【分析】判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.【解答】解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=AB=2,∵BE=DE,PD=x,∴PE=DE﹣PD=2﹣x,∵PQ∥BD,BE=DE,∴QE=PE=2﹣x,又∵△ABE是等腰直角三角形(已证),∴点Q到AD的距离=(2﹣x)=2﹣x,∴△PQD的面积y=x(2﹣x)=﹣(x2﹣2x+2)=﹣(x﹣)2+,即y=﹣(x﹣)2+,纵观各选项,只有C选项符合.故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.分解因式:a3b﹣4ab= ab(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=ab(a2﹣4)=ab(a+2)(a﹣2),故答案为:ab(a+2)(a﹣2)12.若+|b+3|=0,则(a+b)2017的值是﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用绝对值以及二次根式的性质得出a,b的值,进而得出答案.【解答】解:∵+|b+3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故(a+b)2017=﹣1.故答案为:﹣1.13.不等式组的整数解的和是 3 .【考点】CC:一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的公共部分就是不等式组的解集,确定解集中的整数解,然后求和即可.【解答】解:,解①得x≤2,解②得x>﹣1,则不等式组的解集是﹣1<x≤2.则整数解是0,1,2.整数解的和是3.故答案是:3.14.如图,A,B,C是⊙O上的三点,若∠BAO=65°,则∠ACB的度数是25°.【考点】M5:圆周角定理.【分析】连接OB,求出∠AOB的度数,再根据圆周角定理求出∠ACB的度数.【解答】解:连接OB,∵OA=OB,∠BAO=65°,∴∠OAB=∠OBA=65°,∴∠AOB=50°,∴∠ACB=25°,故答案为25°.15.如图,抛物线的对称轴是x=1,与x轴有两个交点,与y轴的交点坐标是(0,3),把它向下平移2个单位长度后,得到新的抛物线的解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正确的是②③④(填序号).【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系;H6:二次函数图象与几何变换.【分析】根据平移后的图象即可判定①,根据平移后的对称轴和与y轴的交点坐标,即可判定a和b的关系以及c的值,即可判定②,根据与y轴的交点求得对称点,即可判定③,根据图象即可判定④.【解答】解:根据题意平移后的抛物线的对称轴x=﹣=1,c=3﹣2=1,由图象可知,平移后的抛物线与x轴有两个交点,∴b2﹣4ac>0,故①错误;∵抛物线开口向上,∴a>0,b=﹣2a<0,∴abc<0,故②正确;∵平移后抛物线与y轴的交点为(0,1)对称轴x=1,∴点(2,1)点(0,1)的对称点,∴当x=2时,y=1,∴4a+2b+c=1,故③正确;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故答案为:②③④.三、解答题(本大题共9小题,共75分)16.计算:3cos60°﹣2﹣1+(π﹣3)0﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质、特殊角的三角函数值分别化简求出答案.【解答】解:原式=3×﹣+1﹣2=0.17.先化简,再求值:(a+1﹣)÷(﹣),其中a=2+.【考点】6D:分式的化简求值.【分析】首先对括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入求解即可.【解答】解:原式=÷=•=a(a﹣2).当a=2+时,原式=2+2.18.如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.求证:四边形ADCE是菱形.【考点】L9:菱形的判定;KP:直角三角形斜边上的中线.【分析】欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.【解答】证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形.19.2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有40 人,并把条形统计图补充完整;(2)扇形统计图中,m= 10 ,n= 40 ;C等级对应扇形有圆心角为144 度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由D等级人数及百分比可得总人数,根据各等级人数之和等于总数可得答案;(2)根据A、C等级人数及总人数可得百分比,用360度乘以C等级百分比可得圆心角度数;(3)画树状图列出所有结果,利用概率公式可得答案.【解答】解:(1)参加比赛学生共有:12÷30%=40(人);B等级学生数是40﹣4﹣16﹣12=8(人),(2)m=×100=10,n=×100=40,C等级对应扇形有圆心角为360°×40%=144°,故答案为:10,40,144;(3)设获A等级的小明用A表示,其他的三位同学用a,b,c,表示:共12种情况,其中小明参加的情况有6种,则P(小明参加市比赛)==.20.在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设该商家第一次购进机器人x个,根据“第一次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元”列出方程并解答;(2)设每个机器人的标价是a元.根据“全部销售完毕的利润率不低于20%”列出不等式并解答.【解答】解(1)设该商家第一次购进机器人x个,依题意得: +10=,解得x=100.经检验x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a元.则依题意得:a﹣11000﹣24000≥×20%,解得a≥140.答:每个机器人的标价至少是140元.21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.22.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题;PA:轴对称﹣最短路线问题.【分析】(1)将点A(1,4)代入反比例函数解析式可得其解析式;(2)先根据反比例函数解析式求得点B坐标,再由A、B坐标可得直线解析式;(3)作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点即可.【解答】解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;(2)把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(3)作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=mx+n,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.【考点】MR:圆的综合题.【分析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在R t△DAH中,AD===.【解答】(1)证明:如图1,连接OC,AC,CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴EH=,∴DH=2,在R t△DAH中,AD===.24.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先求出B、C坐标,代入抛物线解析式解方程组即可解决问题.(2)分三种情形讨论即可①CM=CP,②PM=PC,③MP=MC,画出图形即可解决问题.(3)分两种情形讨论即可①=时,△ABC∽△PBQ1,列出方程即可解决.②当=时,△ABC∽△Q2BP,列出方程即可解决.【解答】解:(1)∵直线y=﹣x+3经过B、C两点,∴B(3,0),C(0,3),∵二次函数y=x2+bx+c图象交x轴于A、B两点,交y轴于点C,∴解得,∴二次函数解析式为y=x2﹣4x+3.(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴该抛物线的对称轴为直线x=2,顶点坐标为P(2,﹣1),∴如图1所示,满足条件的点M分别为M1(2,7),M2(2,2﹣1),M3(2,),M4(2,﹣2﹣1).(3)由(1)(2)得A(1,0),BP=,BC=3,AB=2,如图2所示,连接BP,∠CBA=∠ABP=45°,①=时,△ABC∽△PBQ1,此时, =,∴BQ1=3,∴Q1(0,0).②当=时,△ABC∽△Q2BP,此时, =,∴BQ2=,∴Q2(,0),综上所述,存在点Q使得以点P、B、Q为顶点的三角形与△ABC相似.点Q坐标(0,0)或(,0).。