三带电粒子在矩形边界磁场中的运动
2020年高考物理备考微专题精准突破专题4.8 带电粒子在直线边界磁场中的运动问题(解析版)
2020年高考物理备考微专题精准突破 专题4.8 带电粒子在直线边界磁场中的运动问题【专题诠释】1.直线边界,粒子进出磁场具有对称性(如图所示)图a 中粒子在磁场中运动的时间t =T 2=πmBq图b 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图c 中粒子在磁场中运动的时间t =θπT =2θmBq2.平行边界存在临界条件(如图所示)图a 中粒子在磁场中运动的时间t 1=θm Bq ,t 2=T 2=πmBq图b 中粒子在磁场中运动的时间t =θmBq图c 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图d 中粒子在磁场中运动的时间t =θπT =2θmBq【高考领航】【2019·全国卷Ⅱ】如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl ,54kBlB.14kBl ,54kBlC.12kBl ,54kBlD.12kBl ,54kBl 【答案】 B【解析】 若电子从a 点射出,运动轨迹如图线①,有qv a B =m v 2aR a ,R a =l 4,解得v a =qBR a m =qBl 4m =kBl 4;若电子从d 点射出,运动轨迹如图线②,有qv d B =m v 2dR d ,R 2d =22⎪⎭⎫ ⎝⎛-l R d +l 2,解得R d =54l ,v d =qBR d m =5qBl 4m =5kBl4。
B 正确。
【2019·全国卷Ⅲ】如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场。
带电粒子在匀强磁场中的运动知识小结
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在磁场中运动的临界问题
带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
1.3.2 专题 带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)
③半径关系:r=R/tanθ=Rtanα
④运动时间:t= 2θT/2 π= θT/ π
(2)不沿径向射入时,速度
o’
方向与对应点半径的夹角
相等(等角进出)
o
•
(3)非径向入射的距离和时间推论:
①若r 轨迹<R边界,当轨迹直径恰好是边界圆的一
条弦,此时出射点离入射点最远,且Xmax=2r,
角(弦切角)相等。若出射点到入射点之间距离为d,则
d=2R
1
t T
2
d=2Rsinθ
t
T
d=2Rsinθ
t T
【例1】水平直线MN上方有垂直纸面向里范围足够大的有界匀强磁场,磁感应强度为B,正、负电子同时从MN边界O点以与MN成45°角的相
同速率v射入该磁场区域(电子的质量为m,电荷量为e),正、负电子间的
射入筒内,射入时的运动方向与MN成30°角。当筒转过90°时,该粒
子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,
则带电粒子的比荷为(
)
【变式训练】在真空中半径 r =3×10-2m的圆形区域内有一匀强磁场,磁场
的磁感应强度B=0.2 T,方向如图所示,一个带正电的粒子以v0=1×106 m/s
(3)到入射点最远距离:
①和边界相交时,离出射点最远距离是以出射点为端点的直径或半径。
②和边界相切时,离出射点最远的距离是以出射点和切点为端点的弦长。
【例1】(多选)如图所示,圆形区域内有垂直纸面向里的匀强磁场,三个
质量和电荷量相同的带电粒子a、b、c,以不同的速率对准圆心O沿着
带电粒子在磁场中偏转历年高考题详解
7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。
整个空间存在匀强磁场,磁感应强度方向竖直向下。
一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。
球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。
为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。
重力加速度为g 。
解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。
P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。
洛仑兹力f 的方向指向O ’。
根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ 方法一:设弧长为st =s vs=2(θ+α)×R ′ t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
物理专题三带电粒子在复合场(电场磁场)中的运动解读
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
带电粒子在磁场中运动的边界问题三角形边界
带电粒子在磁场中运动的边界问题三角形边界大家好,今天我要给大家讲解一个关于带电粒子在磁场中运动的边界问题——三角形边界。
我们要明白什么是三角形边界,它是指带电粒子在磁场中运动时,其运动轨迹形成的边界是一个三角形。
接下来,我将从三个方面来详细讲解这个问题。
一、1.1 带电粒子的基本概念带电粒子是指带有电荷的粒子,它们可以是电子、质子等。
电荷是带电粒子的一种属性,它决定了粒子的运动特性。
在磁场中,带电粒子会受到洛伦兹力的作用,从而改变它们的运动轨迹。
洛伦兹力是根据爱因斯坦的洛伦兹理论计算出来的,它与带电粒子的速度和磁场的强度有关。
二、2.1 磁场的基本概念磁场是由电荷产生的,它是一种物理场。
在磁场中,带电粒子会受到一个垂直于速度方向和磁场方向的力,这个力就是洛伦兹力。
磁场的方向可以用磁感应强度来表示,磁感应强度的大小与磁场的强度成正比,与距离磁场的距离成反比。
三、3.1 三角形边界的形成原理当我们把带电粒子放在一个磁场中时,它们会在磁场中受到洛伦兹力的作用,从而改变它们的运动轨迹。
这些运动轨迹在空间中形成了一个封闭的曲线,这个曲线就是带电粒子的运动轨迹。
由于带电粒子在磁场中的运动是三维的,所以这个曲线是一个三维的空间曲面。
我们关心的是带电粒子在磁场中的边界问题。
这里的边界指的是带电粒子在磁场中运动时形成的最外层边界。
对于这个问题,我们可以通过分析带电粒子的运动轨迹来找到解决办法。
当带电粒子在磁场中沿着一个圆周运动时,它们的运动轨迹是一个圆形。
但是,当它们沿着一个螺旋线运动时,它们的运动轨迹就不再是一个圆形了。
这时,我们需要考虑一种特殊的边界情况——三角形边界。
四、4.1 三角形边界的形成过程当带电粒子沿着一个螺旋线运动时,它们的运动轨迹形成一个封闭的曲线。
这个曲线在空间中看起来像一个三角形。
这是因为螺旋线的形状使得带电粒子的运动轨迹在一个方向上保持不变,而在另一个方向上发生周期性的变化。
这种变化使得带电粒子的运动轨迹在一个方向上呈现出直线的特点,而在另一个方向上呈现出螺旋线的特点。
带电粒子在磁场中的运动
θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
B v
d o
圆心在磁场原边界上 B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
Bx
z
Vz
由于磁场的不均匀, 洛仑兹力的大小要变 化,所以不是匀速圆 周运动。且半径逐渐 变小。
极光
带电粒子(如宇宙射线的 带电粒子)被地磁场捕获, 绕地磁感应线作螺旋线运 动,当太阳黑子活动引起空间 磁场的变化,使粒子在两 极处的磁力线引导下,在 两极附近进入大气层,能 引起美妙的极光。
地轴
带电粒子在匀强磁场中的匀速圆周运动解决思路
带电粒子在磁场中的螺旋线运动
2m 螺距 h V//T V sin qB V和 V//分别是速度在平行于磁场方向
的分量和垂直于磁场的分量。 匀速圆周运动的半径仅与速度的垂直分量有关。
* 磁聚焦magnetic focusing
一束发散角不大的带电粒子 束,若这些粒子沿磁场方向 的分速度大小又一样,它们 有相同的螺距,经过一个周 期它们将重新会聚在另一点 这种发散粒子束会聚到一点 的现象叫磁聚焦。
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
量变积累到一定程度发生质变,出现临界状态.
(1)偏向角(回旋角)θ
v
B
d sin r
(2)侧移距离y
r
带电粒子在磁场中的运动轨迹
确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
下面举几种确定带电粒子运动轨迹的方法。
一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件
电荷处在电场中
大小
F=qvB(v⊥B)
F=qE
方向
F⊥B且F⊥v
正电荷受力与电场方向相同,负电 荷受力与电场方向相反
可能做正功,可能做负功,也可能 做功情况 任何情况下都不做功
不做功
(二) 半径公式和周期公式的应用(固基点)
[题点全练通]
1.[半径公式、周期公式的理解]
(选自鲁科版新教材)(多选)在同一匀强磁场中,两带电量相等的粒子,仅受磁
[答案] D
类型(二) 平行直线边界的磁场 1.粒子进出平行直线边界的磁场时,常见情形如图所示:
2.粒子在平行直线边界的磁场中运动时存在临界条件,如图a、c、d所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间
[答案] BD
[例 3] 如图所示,平行边界区域内存在匀强磁场,比荷相同 的带电粒子 a 和 b 依次从 O 点垂直于磁场的左边界射入,经磁场 偏转后从右边界射出,带电粒子 a 和 b 射出磁场时与磁场右边界 的夹角分别为 30°和 60°,不计粒子的重力,下列判断正确的是( )
A.粒子 a 带负电,粒子 b 带正电 B.粒子 a 和 b 在磁场中运动的半径之比为 1∶ 3 C.粒子 a 和 b 在磁场中运动的速率之比为 3∶1 D.粒子 a 和 b 在磁场中运动的时间之比为 1∶2
(三) 带电粒子在有界匀强磁场中的圆周运动(精研点) 类型(一) 直线边界的磁场
1.粒子进出直线边界的磁场时,常见情形如图所示:
2.带电粒子(不计重力)在直线边界匀强磁场中的运动时具有两个特性: (1)对称性:进入磁场和离开磁场时速度方向与边界的夹角相等。 (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运
(完整版)带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
有界磁场(六类)
y
解:如图所示作辅助线,
由几何知识可得:
o
x
sin L
2R
故运动半径为 R L 2 sin
运动时间为 t 2 2 m
qB
练习2如图,在一水平放置的平板MN上方 有匀强磁场,磁感应强度的大小为B,方向
动圆问题
垂直于纸面向里。许多质量为m,带电量
为+q的粒子,以相同的速率v沿位于纸面
B
内的各个方向,由小孔O射入磁场区域,不
y
O
x
解:如图所示作辅助线
By
设两圆切点为A,电子第二次
从B点通过y轴,
A
因为电子的入射方向与x轴
夹角为60°
O
x
则由几何知识可得OA和AB分别对应小圆和大圆的半径。
又因为电子在右边磁场中运动的半径为 r mv
2qB
在左边磁场中运动的半径为 R mv
qB
故电子第二次通过y轴时前进的距离为:
y R r 3mv 2qB
2R
2R O R N
练习3如图,在x轴的下方存在着磁感应强度为B=0.20T、 垂直纸面向里的匀强磁场。y=5cm的上方存在着同样的 匀强磁场。质量m=1.67x10-27kg、电量q=1.6x10-19C的质 子,从原点O以v0=5.0x105m/s的速度沿与x轴30°角斜 向上垂直磁场射入,经过上方和下方磁场的偏转作用 后,正好以相同的速度经过x轴上的某点A。求: (1)粒子在磁场中运动的轨道半径 (2)A点的坐标。
4πm (2)3qB
在中空四边有界磁场区的运动
练习1如图,在无限宽的匀强磁场B中有边长为L的正方形 无磁场区域。在正方形的四条边上分布着八个小孔,每个 小孔到各自最近顶点的距离都为L/3。一质量为m、电量为 +q的粒子,垂直匀强磁场从孔A射入磁场,求粒子再次回 到A点的时间。
带电粒子在磁场中运动的极值问题
解析 (1)由粒子的运行轨迹,利用左手定则可
知,该粒子带负电荷.
粒子由A点射入,由C点飞出,其速度方向改变了90°,
则粒子轨迹半径R =r
又qvB=m v 2
R 则粒子的比荷
q
v
m Br
(2)粒子从D点飞出磁场速度
方向改变了60°角,故AD弧所
对圆心角为60°,如右图所示.
粒子做圆周运动的半径
R′=rcot 30°= r 3 又R′= mv
(3)带电粒子在磁场中的运动周期
T= 2 π m
qB
粒子在两个磁场中偏转的角度均为
π 4
,在磁场中的运动
总时间
t= 1 T π m 4 2qB
=
3.14 6.641027 2 3.21019 5102
s
=6.5×10-7 s
反思总结
返回
小 结 1.带电粒子进入有界磁场,运动 轨迹为一段弧线. 2.当同源粒子垂直进入磁场的运动轨迹
又由几何关系知磁场区域的半 径为 R 3 L 3
y
30°
P
LO’ A
x O vQ
12月23日作业
1.如图14所示,边长为L的等边三角形ABC为两个
有界匀强磁场的理想边界,三角形内的磁场方向
垂直纸面向外,磁感应强度大小为B,三角形外
的磁场(足够大)方向垂直纸面向里,磁感应强度
大小也为B.把粒子源放在顶点A处,它将沿∠A
(1)荧光屏上光斑的长度.
(2)所加磁场范围的最小面积.
解析 (1)如右图所示,
求光斑的长度,关键是找
到两个边界点沿弧OB运
动到P,初速度方向沿y轴
正方向的电子,初速度方向沿x轴正方向的电子,沿
带电粒子在磁场中的运动解析
半径不等
例2、质子和α粒子以相同的动能垂直进入同 一磁场,它们能分开吗?
轨道是相同的,即分不开
3.带电粒子在匀强磁场中的运动周期 由圆周运动的周期与周长和速率的关系可得
2r T= v
mv 因r= Bq
可推出带电粒子在磁场中的周期
T=
2m Bq
讨论:
1)带电粒子在磁场中做圆周运动的周期大小 与哪些因素有关?关系如何?
P
第二部分:一些仪器的应用
速度选择器、质谱仪、磁流体发电机 电磁流量计、回旋加速器、霍尔效应
一、速度选择器
分析:电荷进入电场,受垂直向下的电场力作用而偏转 若使它不发生偏转,电荷受所加磁场的洛仑兹力方向一 定与电场力方向相反,根据左手定则和洛仑兹力方向确 定磁场方向:垂直纸面、背向读者,如图3所示。 因为 f洛=F安
∴ v0 < q B l / 4 m 或 v0 > 5 q B l / 4 m
R- l/2 a
R
b v l
c
l
返回
d
练习1.一质子及一α粒子,同时垂直射入同一匀强磁场 中.
(1)若两者由静止经同一电势差加速的,则旋转半径之 比为 1 : 2 ;(2)若两者以相同的动量进入磁场 中,则旋转半径之比为 2:1 ;(3)若两者以相同 的动能进入磁场中,则旋转半径之比为 1:1 ;(4) 若两者以相同速度进入磁场,则旋转半径之比 为 1: 2 。
φ1
θ
φ2
返回
4. 如图所示,M、 N为一块薄金属板,截面厚度为 d , 水平放置在磁感应强度为B的匀强磁场中,一个α粒子( 电量为q,质量为m),由A点垂直于板面飞入磁场中其 运动轨迹如图所示,R 和r 分别表示两圆的半径, (1) 匀强磁场的方向如何? (2)α粒子每次穿过金属板所受的平均阻力为多少? (3)若图中 r=0.9R ,则α粒子可穿过板几次? (4)设α粒子从A点运动开始计时,至少要多少时间才能停 下?(穿透时间不计.)
专题8 带电粒子在边界为规则图形的匀强磁场中的运动(解析版)
专题八 带电粒子在边界为规则图形的匀强磁场中的运动基本知识点1.在圆形匀强磁场区域内,沿径向对准磁场圆心射入的粒子一定沿径向射出。
如图所示,磁场圆半径为R ,粒子轨迹圆半径为r ,带电粒子从P 点对准磁场圆心O 射入,由几何知识容易证明粒子从Q 点飞出的速度方向的反向延长线必过磁场圆心O 点。
2.带电粒子入射方向偏离圆形匀强磁场圆心射入的问题处理这类问题时一定要分清磁场圆和轨迹圆,并要注意区分轨迹圆的圆心和圆形边界匀强磁场的圆心。
甲 乙(1)当粒子沿图甲所示轨迹运动时,粒子在磁场中运动时间最长、速度偏转角最大。
(2)由图甲看出,在轨迹圆半径和速度偏转角一定的情况下,可实现此偏转的最小磁场圆是以PQ 为直径的圆。
(3)如图乙所示,由几何知识很容易证明:当r =m v qB=R 时,相同带电粒子从P 点沿纸面内不同方向射入磁场,它们离开磁场时的方向却是平行的。
例题分析一、带电粒子在磁场中运动时间的确定方法例1 如图所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0(对应训练)如图所示,在圆形区域内,存在垂直纸面向外的匀强磁场,ab 是圆的一条直径。
一带正电的粒子从a 点射入磁场,速度大小为2v ,方向与ab 成30°角时恰好从b 点飞出磁场,粒子在磁场中运动的时间为t 。
若仅将速度大小改为v ,则粒子在磁场中运动的时间为(不计带电粒子所受重力)( )A .3tB .32tC .12t D .2t 二、带电粒子在圆形边界匀强磁场中的运动例2 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一、带电粒子在不同边界磁场中的运动
一、带电粒子在不同边界磁场中的运动①直线边界(进出磁场具有对称性,如图)②平行边界存在临界条件,如图③圆形边界(沿径向射入必沿径向射出,如图)二、带电粒子在复合场中的运动复合场这儿指的是电场、磁场和重力场并存,或其中某两场并存,或分区域存在(组合场),带电粒子(带电体)连续运动时,一般需同时考虑静电力、洛伦兹力和重力的作用.对于有轨道约束的运动,还要考虑弹力、摩擦力对运动的影响.常见的类型有以下三种:1.受直棒约束的带电物体在复合场中的运动【例1】如图所示,套在很长的绝缘直棒上的带正电的橡胶环,其质量为m,带电荷量为q,橡胶环可在棒上滑动,现将此棒竖直放在互相垂直.且均沿水平方向的匀强电场和匀强磁场中,电场强度为E,磁感应强度是B,橡胶环与棒的动摩擦因数为 ,求橡胶环由静止沿棒下滑的最大加速度和最大速度(设橡胶环电荷量不变).解析:橡胶环下滑的开始阶段受力情况如图所示.根据牛顿第二定律有 N g -F =m m a μ ① N F +F -qE= 0洛 ②F = qvB 洛 ③当 qvB-qE=0时,N 1F = 0,v =E B,此时a 最大.即max =a g , 当1v > v 时,橡胶环的受力情况如图3—2(乙)所示由牛顿第二定律有:N g-F = m ma μ ④N F -qE-F = 0洛 ⑤F = qvB 洛 ⑥当v 增大到使摩擦力,N F = g m μ时,a=0.此时v 达到最大值,即:g=(qvB-qE)m μ.所以max +=mg qE v qBμμ 总结1 (1)本题目涉及带电粒子在电场、磁场、重力场中的运动,分析时应特别注意弹力、摩擦力、洛伦兹力的变化情况.(2)该题目是一个动态问题=0N f v F F F a a ↑→↑→↓↑→↓↑→↑↓→洛先后先后先后稳定.橡胶环的运动可划分为几个子过程,“max =0v a a v ↑→→→不变.要对各过程进行认真的受力分析,明确各量的动态变化才能找到极值条件,顺利求解.2.受斜面约束的带电物体在复合场中的运动【例2】在相互垂直的匀强电场和匀强磁场中,有一倾角为θ、足够长的光滑绝缘斜面,磁感应强度为B ,方向垂直纸面向外,电场方向竖直向上,有一质量为m 、带电荷量为+q 的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图3—4所示,若迅速把电场方向反转为竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?解析:重力和静电力是恒力,洛伦兹力是变力,随速度的增大而增大,电场反转前:g= m qE ①电场反转后,小球先沿斜面向下做匀加速直线运动,到对斜面压力减为零时开始离开斜面.此时有: q v B =(g +q E )c om θ ② 小球在斜面上滑行距离为:21s =2at ③ =2sin =a g v at θ, ④联立①②③④得 2222cos s =sin m g q B θθ,所用时间为 c o t t =m qB θ总结2 (1)电荷只要处在电场中就一定受到静电力作用,即静电力与电荷的运动状态无关.(2)只有运动的电荷才受洛伦兹力.由F=qvB .当洛伦兹力是变力时,产生的效果比较复杂.解决此类问题要从受力分析入手,查找临界状态,从而得出正确结果.(3)应用洛伦兹力分析问题时,一定不要忘记速度v 的变化,会影响到洛伦兹力F 的大小和方向的变化.3.无约束的带电物体在复合场中的运动【例3】质量为m 、电荷量为+q 的微粒以速度v 与水平方向成45︒角进入匀强电场和匀强磁场中,如图所示,磁场的方向乖直于纸面向里,如微粒在电场、磁场及重力的作用下做匀速直线运动,则电场强度的大小E=_______,磁感应强度的大小为B=__________.思路点拨:带电微粒在复合场中做匀速直线运动,合力为零,只要抓住重力、静电力和洛伦兹力的特点列出平衡方程,即可求解.解析:对带电微粒进行受力分析如图所示,带电微粒受到竖直向下的重力、水平向右的静电力和垂直于速度方向斜向上的洛伦兹力.依据物体平衡条件可得:竖直方向上:,g= cos 45m qvB ︒水平方向上:= sin 45Eq qvB ︒,解得:= /;/E mg q B qv笞案:= /;/E mg q B qv总结3 无约束的带电粒子在复合场中运动的问题通过受力分析确定粒子运动的性质,是直线运动、圆周运动,还是一般的曲线运动,前两者均可运用运动学公式或牛顿第二定律解决,而后者只能运用动能定理或功能关系解决,切记洛伦兹力不做功,一般只考虑静电力和重力的功即可列方程求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d5
v v v v
�呢上边dc到射�件条么什足 满应度速的子电�上边da到射从子电使想要�考思
c
B
b � v ·a 1:2=dr:cr为比之径半的动运中器容在子电的出射孔两从.D 1:2 =da:ca 为比之小大度速加的时动运中器容在子电的出射孔两从.C 2:1=dt:ct为比之间时的用所动运中器容在子电的出射孔两从.B 1:2=dv:cv为比之率速子电的出射孔两从.A DBA �则�出射孔c从分部一中其�中器容入射场磁 于直垂孔a从子电束一�中场磁强匀在处器容形方正�图如�3
Bq �2 m � t m�2 � T v� � a �� T � B vq d r m m � Bvq r� �v v r Bq 2 2 � d � : c � 1 : 2 � a : a2 � dr : cr
2 :1 � � :
c
M
e
d f
。m / q 荷 b a 比的子粒电带出求件条述上据根你请。力用作互相的 间之子粒和力重的子粒计不�L=dc=df知已若。出射 孔e从好恰后转偏场磁经子粒。内盒入射边da于直垂孔 f从�后速加场电的U为压电过经子粒。略忽可度速初 的子粒�子粒电带的同相射发地断不源子粒。B为小大 度强应感磁�场磁强匀的面平dcba于直垂向方一有内 子盒。置位点落子粒的出射孔e从示显能�置放dc着贴 M屏光荧�点中的上边dc是e�e和f孔小有开各上边dc 和边da在�子盒形方长个一是dcba。示所图如置装验 实�验实的荷比子粒电带定测个一了计设学同某 .4
Bq3 Bq 6 063 � � T0 �t m�5 m�2 5 003
0
0V
θ
d
O
m m3 c �v� L Bq L Bq m m � � 2v L Bq 2r Bq m3 m � � 1v L Bq 1 r Bq
L � 2r
b
006
003
a
3 2 � 1r ) 03 ni s � 1( 1r � 0 L L
�切相界边与迹轨�态状界临现出�变质生发度程定一到累积变量 。出飞界边面对 从动运周圆分部作子粒时 大较度速③�出飞界边面 侧从时内围范一某在度速 ②�出飞界边原从后动运 圆半作子粒时小较度速① 。出飞界 边面侧一另从动运周圆分部作子粒 时大较度速③�飞界边面侧从内围 范一某在度速②�出飞界边原从后 动运周圆分部作子粒时小较度速①
v
R m � Bvq 又 v 2 8 2 L � R� R � ) ( � )R � L ( 2 2 L 2 5
有� 中edo形角三在� R为径半周圆设 。图如迹轨�动运周圆速匀做后场磁入进子粒
L B52 m 2 2 � U821 q
得�解求立联
e
R
d O f R
v
m Uq2
� v�
2
2 vm � Uq 1
速加场电经子粒电带�解
c
b
0V
d
O
a
。间时长最的动运中场磁在子粒求 �制限的围范小大0v述上受不子粒电带果如.⑵。围范 小大0v的场磁出射上边ba从能子粒.⑴�求。计不力 重的子粒�L为长边da�长够足边ba�q为量电、m 为量质子粒知已�子粒电带的0v为小大、 003=θ角 夹边da跟向方度速一入射场磁直垂向方O点中边da 在�场磁强匀的B为度强应感磁、的里向面纸直垂 向方满充内dcba域区形矩的长够足一�示所图如.3
0V
θ
θ2
θ2
2
有�点1O在心 L 圆�时出穿边左从板上着擦子粒
4
� 1r
�出穿间板从不都就荷电 正些这则�出穿间板从不子粒电带的区场入进板下从果 如�动运周圆速匀的同相径半做向方针时逆沿子粒电带
N B
� � � �
m m2 �v� d Be3 d Be
d
M
?件条么 什足满需度速的子粒电带些这�出穿间板从不都荷电 正些这使了为�间板入射端左的板属金从v度速以置位 个各从向方的板于行平沿子粒电带种这群大一�展拓
b
B
v θ
a
上界 边 原 场 磁 在 心 圆
o
上 线直 的直 垂向 方度 c 速跟 跟点 射入 过在 心圆
d
B
v
动运的中场磁界边形矩在子粒电带�三
B m v 点某间之m、a在�D 点a�C b a 点某间之a、n在�B n C 点某间之n、b在�A 是置位的场磁出 射核氢个这则�变不件条他其.倍2的来原为变度强应 感磁的场磁将若。场磁出射n点中边ba从好正�场磁 入射度速定一以�向方的场磁于直垂又边da于直垂既 着沿m点中的边da从核氢个一。里向面纸直垂向方场 磁�场磁强匀满充中dcba域区形方正�示所图如�1
c
d
v
2r 。m4/LqB5<v<m4/LqB度速子粒使�D v �m/LqB>v度速的子粒使�C 2r �m4/LqB5>v度速的子粒使�B 2O �m4/LqB<v度速的子粒使�A B A �是法办的用采可�上板极在打不子粒使 欲�场磁入射平水v度速以线感磁直垂处点中间板极边 左从�)力重计不(子粒电正带的q为量电�m为量质有现 �电带不板�L为也离距间板�B为度强感磁�场磁强匀 的内向面纸直垂有�间板极平水的L为长�示所图如�2
1O
q+
�题问析分面全须必�出穿端右从能可也�出穿端左从能可上板极在打不子粒
m4 v� L Bq5
m4 m � � 2v L Bq5 2r Bq
2
有�点2O在心圆�时出穿边右从板上着擦子粒
4 � 2r L5
2 ) � r( � 2L � 22r L
v v
2r
2r
2O
1O
ቤተ መጻሕፍቲ ባይዱ
q+
m4 m m4 � � 1v � v� 1 L B q r B q L Bq r m � Bvq v