《动能定理,机械能守恒》专题复习
专题09动能定理、机械能守恒定律和功能关系(原卷版)
2023年高三物理二轮高频考点冲刺突破专题09 动能定理、机械能守恒定律和功能关系【典例专练】一、高考真题1.如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态,A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零,A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则()A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下B.A上滑时、弹簧的弹力方向不发生变化C.下滑时,B对A的压力先减小后增大D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量2.固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积3.风力发电已成为我国实现“双碳”目标的重要途径之一。
如图所示,风力发电机是一种将风能转化为电能的装置。
某风力发电机在风速为9m /s 时,输出电功率为405kW ,风速在5~10m /s 范围内,转化效率可视为不变。
该风机叶片旋转一周扫过的面积为A ,空气密度为ρ,风场风速为v ,并保持风正面吹向叶片。
下列说法正确的是( )A .该风力发电机的输出电功率与风速成正比B .单位时间流过面积A 的流动空气动能为212A ρv C .若每天平均有81.010kW ⨯的风能资源,则每天发电量为92.410kW h ⨯⋅D .若风场每年有5000h 风速在6~10m /s 范围内,则该发电机年发电量至少为56.010kW h ⨯⋅4.某节水喷灌系统如图所示,水以015m/s v =的速度水平喷出,每秒喷出水的质量为2.0kg 。
喷出的水是从井下抽取的,喷口离水面的高度保持H=3.75m不变。
水泵由电动机带动,电动机正常工作时,输入电压为220V,输入电流为2.0A。
第七章机械能_守恒_动能定理_知识点_例题详解
机械能知识点总结一、功1、概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2、条件:. 力和力的方向上位移的乘积3、公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N )S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4、功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负; 5、功是一个过程所对应的量,因此功是过程量。
6、功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7、几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1、概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2、公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3、单位:瓦特W4、分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5、应用:(1)、机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力fF =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)、机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
机械能守恒与动能定理初中物理知识点总结
机械能守恒与动能定理初中物理知识点总结机械能守恒是物理学中一个重要的基本定律,它与动能定理密切相关。
本文将对初中物理中关于机械能守恒和动能定理的知识点进行总结。
一、机械能守恒机械能是指物体由于位置和运动而具有的能量。
在不考虑外力做功的情况下,一个封闭的系统中的机械能守恒,即机械能的总量保持不变。
机械能包括两个部分:势能和动能。
势能是指物体由于位置而具有的能量,主要有重力势能和弹性势能。
动能是指物体由于运动而具有的能量。
1. 重力势能:重力势能是指物体由于重力作用而具有的能量。
在地球上,重力势能的计算公式为:Ep = mgh,其中Ep表示重力势能,m表示物体质量,g表示重力加速度,h表示物体的高度。
2. 弹性势能:弹性势能是指物体由于受力而发生形变,并具有能量的能力。
例如,当弹簧被压缩或拉伸时,就会积累弹性势能。
弹性势能的计算公式为:Ep = (1/2)kx^2,其中Ep表示弹性势能,k表示弹簧的弹性系数,x表示形变的位移。
3. 动能:动能是指物体由于运动而具有的能量。
动能的计算公式为:Ek =(1/2)mv^2,其中Ek表示动能,m表示物体质量,v表示物体的速度。
根据机械能守恒定律,一个封闭系统中的机械能总量保持不变。
当一个物体在重力场中自由下落时,它失去的重力势能转化为同等大小的动能。
同样,当一个物体被弹簧弹射出来时,它失去的弹性势能也转化为同等大小的动能。
二、动能定理动能定理描述了物体的动能变化与力做功的关系。
它表明,物体动能的变化等于外力所做的功。
动能定理的数学表达式为:ΔEk = W,其中ΔEk表示动能的变化量,W表示外力所做的功。
动能定理可以用来解释物体在运动过程中的动能变化情况。
当外力做功使物体的动能增加时,动能定理表明外力所做的功大于零;相反,当外力做功使物体的动能减少时,动能定理表明外力所做的功小于零。
三、机械能守恒和动能定理的应用机械能守恒和动能定理在物理学中有广泛的应用。
以下是一些常见的应用场景:1. 自由落体运动:当一个物体在只受重力作用下自由下落时,机械能守恒定律表明它的重力势能转化为动能。
公开课:动能定理 机械能守恒定律 功能关系
习题课:动能定理 机械能守恒定律 功能关系一、知识点复习 (一)动能定理(1)内容:合力对物体做的功(即总功)等于物体动能的变化。
(2)表达式:W 总=E k2 - E k1=21222121mv mv -或W 总=ΔE k 。
(3)研究对象:主要是单个物体。
(4)适用条件:直线运动、曲线运动、恒力作用、变力作用等。
(二)机械能守恒定律(1)内容:在只有系统内的重力和弹簧弹力做功的情况下(或有其他力做功但代数和为零),系统只发生动能和势能间的相互转化,机械能的总量保持不变。
(2)表达式:E 1 =E 2即E K1+E pl =E k2+E P2或ΔE P = -ΔE K 。
★弄清一个问题:重力是内力还是外力?(3)研究对象:①物体-地球系统;②物体-弹簧系统;③物体-地球-弹簧系统。
(4)适用条件:①对于物体-地球系统,条件为:只有系统内的重力做功(或有其他力做功但代数和为零); ②对于物体-弹簧系统,条件为:只有系统内的弹簧弹力做功(或有其他力做功但代数和为零); ③对于物体-地球-弹簧系统,条件为:只有系统内的重力和弹簧弹力做功(或有其他力做功但代数和为零)。
(5)※若一个系统的机械能不守恒,则系统的机械能的变化等于除了系统内的重力和弹簧弹力之外的其他力做的总功,表达式为W 其它力=ΔE = E 2 –E 1。
这就是机械能定理。
二、巩固练习1、如图所示,某人以v 0=4m/s 的速度斜向上(与水平方向成25°角)抛出一个小球,小球落地时速度为v =8m/s ,不计空气阻力,求小球抛出时的高度h 。
甲、乙两位同学看了本题的参考解法“2022121mv mv mgh -=”后争论了起来。
甲说此解法依据的是动能定理,乙说此解法依据的是机械能守恒定律,你对甲乙两位同学的争论持什么观点,请简单分析,并求出抛出时的高度h 。
(g 取10m/s 2)2、如图所示,一质量m =2kg 的物体,从光滑斜面的顶端A 点以V 0=5m/s 的初速度滑下,在D 点与弹簧接触并将弹簧压缩到B 点时的速度为零,已知从A 到B 的竖直高度h =5m ,求弹簧的弹力对物体所做的功。
机械能_守恒_动能定理主要
机械能知识网络:§1 功和功率知识目标一、功的概念1、定义:力和力的作用点通过位移的乘积.2.做功的两个必要因素:力和物体在力的方向上的位移3、公式:W=FScosα(α为F与s的夹角).说明:恒力做功大小只与F、s、α这三个量有关.与物体是否还受其他力、物体运动的速度、加速度等其他因素无关,也与物体运动的路径无关.4.单位:焦耳(J) 1 J=1N·m.5.物理意义:表示力在空间上的积累效应,是能的转化的量度6.功是标量,没有方向,但是有正负.正功表示动力做功,负功表示阻力做功,功的正负表示能的转移方向.①当0≤a<900时W>0,力对物体做正功;②当α=900时W=0,力对物体不做功;③当900<α≤1800时W<0,力对物体做负功或说成物脚体克服这个力做功,这两种说法是从二个角度来描述同一个问题.二、注意的几个问题①F:当F是恒力时,我们可用公式W=Fscosθ运算;当F大小不变而方向变化时,分段求力做的功;当F的方向不变而大小变化时,不能用W=Fscosθ公式运算(因数学知识的原因),我们只能用动能定理求力做的功.②S:是力的作用点通过的位移,用物体通过的位移来表述时,在许多问题上学生往往会产生一些错觉,在后面的练习中会认识到这一点,另外位移S应当弄清是相对哪一个参照物的位移③功是过程量:即做功必定对应一个过程(位移),应明确是哪个力在哪一过程中的功.④什么力做功:在研究问题时,必须弄明白是什么力做的功.如图所示,在力F作用下物体匀速通过位移S则力做功FScosθ,重力做功为零,支持力做功为零,摩擦力做功-Fscos θ,合外力做功为零.【例1】如图所示,在恒力F的作用下,物体通过的位移为S,则力F做的功为解析:力F做功W=2Fs.此情况物体虽然通过位移为S.但力的作用点通过的位移为2S,所以力做功为2FS.答案:2Fs【例2】如图所示,质量为m的物体,静止在倾角为α的粗糙的斜面体上,当两者一起向右匀速直线运动,位移为S时,斜面对物体m的弹力做的功是多少?物体m所受重力做的功是多少?摩擦力做功多少?斜面对物体m做功多少?解析:物体m受力如图所示,m有沿斜面下滑的趋势,f为静摩擦力,位移S的方向同速度v的方向.弹力N对m做的功W1=N·scos(900+α)=- mgscosαs i nα,重力G对m做的功W2=G·s cos900=0.摩擦力f对m做的功W3=fscosα=mgscosαsinα.斜面对m的作用力即N和f的合力,方向竖直向上,大小等于mg(m处于平衡状态),则: w=F合scos900=mgscos900=o答案:- mgscosαs i nα,0, mgscosαs i nα,0点评:求功,必须清楚地知道是哪个力的功,应正确地画出力、位移,再求力的功.【例3】如图所示,把A、B两球由图示位置同时由静止释放(绳开始时拉直),则在两球向左下摆动时.下列说法正确的是A、绳子OA对A球做正功B、绳子AB对B球不做功C、绳子AB对A球做负功D、绳子AB对B球做正功解析:由于O点不动,A球绕O点做圆周运动,OA对球A不做功。
动能定理和机械能守恒定律的综合应用
(1)小球在A点时的速度大小; 答案 2gh
小球在 A 点时,根据牛顿第二定律得 mg=mv2Ah2 解得 vA= 2gh
12345
(2)小球从C点抛出时的速度大小; 答案 3 2gh
12345
小球恰好水平进入圆轨道内侧运动,小球经过B点时 对轨道的压力9mg,由牛顿第三定律可得,小球经 过B点时圆轨道对小球的支持力为9mg, 根据牛顿第二定律可得 9mg-mg=mv2Bh2 解得 vB=4 gh,从 C 点到 B 点根据机械能守恒定律得12mvC2=12mvB2 +mgh,解得 vC=3 2gh;
12345
(3)要使赛车能通过圆轨道最高点D后沿轨道回到水平赛道EG,轨道半径 R需要满足什么条件? 答案 0<R≤2456 m
12345
当赛车恰好通过最高点 D 时,设轨道半径为 R0,有:mg=mvRD02 从 C 到 D,由动能定理可知:-mgR0(1+cos 37°)=12mvD2-12mvC2,解 得 R0=2456 m 所以轨道半径 0<R≤4265 m.
二、动能定理和机械能守恒定律的综合应用
动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重不同, 动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守 恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.
例1 如图,足够长的光滑斜面倾角为30°,质量相等的甲、乙两物块通过 轻绳连接放置在光滑轻质定滑轮两侧,并用手托住甲物块.使两物块都静 止,移开手后,甲物块竖直下落,当甲物块下降0.8 m时,求乙物块的速 度大小(此时甲未落地,g=10 m/s2).请用机械能守恒定律和动能定理分 别求解,并比较解题的难易程度. 答案:2 m/s
(3)小球通过BC后压缩弹簧,压缩弹簧过程中弹簧弹
高中物理必修2动能定理和机械能守恒定律复习
高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
动能定理与机械能守恒知识点总结
动能定理与机械能守恒知识点总结动能定理和机械能守恒是经典力学中重要的概念和定律。
它们有着广泛的应用,并且对我们理解物体运动和相互作用提供了重要的理论支持。
本文将对动能定理和机械能守恒的知识点进行总结,并探讨它们的应用。
一、动能定理动能定理是描述物体运动的定理,它表明一个物体的动能变化等于物体所受合力所做的功。
动能定理可以用数学公式表示为:FΔx = Δ(1/2 mv²)其中,F表示合力,Δx表示物体在合力方向上的位移,v表示物体的速度,m表示物体的质量。
根据动能定理,当一个物体受到合力的作用时,物体的动能会发生变化。
动能定理对于分析物体运动状态和相互作用非常重要。
它可以用来计算物体在外力作用下的速度变化,或者根据速度变化来确定物体所受的合力大小。
同时,动能定理也可以用来解释机械能转化的过程。
二、机械能守恒机械能守恒是指在无摩擦和无内能损失的情况下,一个物体的机械能保持不变。
机械能包括物体的动能和势能两个方面。
动能是物体由于速度而具有的能量,而势能是物体由于位置而具有的能量。
机械能守恒可以用数学公式表示为:E = K + U = 常数其中,E表示物体的机械能,K表示物体的动能,U表示物体的势能。
根据机械能守恒原理,当一个物体在没有外力或有限作用力的情况下运动时,它的机械能将保持不变。
机械能守恒原理对于分析各种物理问题非常有用。
它可以用来计算物体在相互作用过程中的速度和位置变化,以及物体所具有的势能。
通过应用机械能守恒,我们可以更好地理解物体运动过程中能量的转化与变化。
三、应用与实例动能定理和机械能守恒在物理学中有着广泛的应用。
以下是一些常见的应用和实例:1. 车辆碰撞:当两辆车发生碰撞时,根据动能定理可以计算出车辆碰撞前后的速度变化。
同时,通过机械能守恒可以分析车辆碰撞过程中能量的转化和损失。
2. 自由落体运动:对于自由落体运动,可以利用动能定理计算物体下落的速度变化,以及机械能守恒来分析物体从起点到终点的能量转化情况。
动能定理、机械能守恒专题复习
动能定理一、 表达式:W 总=E k2-E k1=12mv 22-12mv 21 (1) E k2=12m v 22——末动能;E k1=12m v 21——初动能; (2)W 总可以是各个力在同一过程同时做功的代数和,也可以是多个过程各阶段力做功的代数和、(3)若有摩擦力做功,单个摩擦力做功,fs W f -=,与路径有关,大小等于摩擦力乘以路程;一对摩擦力对系统做功,相对fs W f -= ,一对摩擦力做的总功总为负,大小等于摩擦力乘以相对路程,一般情况是相对位移。
二、应用 :(1)选取研究对象(一个物体还是系统),分析运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的始末状态的动能E k1和E k2;(4)列出动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解。
三、例题:例:例2:一个质量为4kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0 2。
从t=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F随时间t的变化规律如图所示。
g取10m/s2。
求(1)在2s~4s时间内,物体从减速运动到停止不动所经历的时间;(2)6s内物体的位移大小和力F对物体所做的功。
例3:一轻质细绳一端系一质量为m=0.05kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s=2m,动摩擦因数为μ=0.25。
现有一滑块B,质量也为m,从斜面上滑下,与小球发生弹性正碰,与挡板碰撞时不损失机械能。
若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2,试问:(1)若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h;(2)若滑块B从h/=5m处滑下,求滑块B与小球第一次碰后瞬间绳子对小球的拉力;例4:如图所示,在光滑水平地面上放置质量M=2kg的长木板,木板上表面与固定的竖直弧形轨道相切。
高中物理必修二机械能守恒定律知识点复习
分析:当汽车起动后做匀加速直线运动时,发动机牵引力F为恒力, 随着运动速度v的增大,汽车发动机的即时功率P=F·v正比增大,直
到增大到额定功率 P额为止.此后,汽车速度 继续增大,发动机牵引 力F
就要减小(以保持汽车在额定功率下运行),因此汽车将做加速度 越来越小的加速运动,直到发动机牵引力F减小到与汽车运动阻力 f 相等时, 汽车加速度降到零,运 动速度达到最大值 v max.此后,汽车就在额定 功
(四)动能定理
1、内容 外力对物体所做功的代数和等于物体动能的增量, 也可表述为:合外力对物体所做的功等于物体动能的增 量. 2、表达式
Σ W = △E k = E k2 - E k1 1 1 2 = mv 2 mv 1 2 2 2
(五)势能:由相互作用的物体的相对位置或由物体内部各部 分之间的相对位置所决定的能,叫做势能. 1、重力势能 地球上的物体均受到重力的作用,物体具有的与它 的高度有关的能,叫重力势能.重力势能是物体与地球 所共有的. E p = mgh (1)定义式; 式中h物体离零势面的高度,零势面以上h为正,以 下为负.可见,物体所具有的重力势能与零势面的选选 择有关,在计算重力势能时须首先确定零势能面.一般 取地面或初末位置为零势能参考面.物体在零势面之上 重力势能为正;物体在零势面之下重力势能为负. (2)重力势能的变化
3、正功和负功 功是标量,但也有正,负之分.功的正负仅表 示力在物体运动过程中,是起动力还是起阻力的作 用.功的正,负取决于力 F 与位移 x 的夹角α.从功的 公式可知: 当 0≤α< 90°时, W 为正,表示力 F 对物体做 正功,这时的力是动力. 当 a=90°时, W=0 ,表示力对物体不做功,这 时的力既不是动力,也不是阻力. 当 90°<α≤180°时, W 为负,表示力 F 对物 体做负功,这时的力是阻力.
高中二轮复习专题05 动能定理、机械能守恒定律、功能关系的应用
专题05 动能定理、机械能守恒定律、功能关系的应用核心要点1、功恒力做功:W=Flcosa合力做功:W合=F合lcosa变力做功:图像法、转换法等2、功率瞬时功率:P=Fvcosa平均功率:P=wt机车启动:P=Fv3、动能定律表达式:W=12mv22−12mv12备考策略1、动能定理(1)应用思路:确定两状态(动能变化),一过程(各个力做的功)(2)适用条件:直线运动曲线运动均可;恒力变力做功均可;单个过程多个过程均可(3)应用技巧:不涉及加速度、时间和方向问题是使用2、机械能守恒定律(1)守恒条件:在只有重力或弹力做功的物体系统内守恒角度E1=E2(2)表达形式:转化角度△E k=△E p转移角度△E A=-△E p3、功能关系:(1)合力的功等于动能的增量(2)重力的功等于重力势能增量的负值(3)弹力的功等于弹性势能增量的负值(4)电场力的功等于电势能增量的负值(5)除了重力和系统内弹力之外的其他力的功等于机械能的增量考向一动能定理的综合应用1.应用动能定理解题的步骤图解2.应用动能定理的四点提醒(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2020·江苏卷·4)如图1所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()图1解析:由题意可知设斜面倾角为θ,动摩擦因数为μ1,则物块在斜面上下滑水平距离x时根据=E k,整理可得(mgtanθ-μ1mg)x=E k,即在斜面上运动能定理有mgxtan θ-μ1mgcos θxcosθ动时动能与x成线性关系;当小物块在水平面运动时,设水平面的动摩擦因数为μ2,由动能定理有一μ2mg(x一x0)=E k一E k0,其中E0为物块滑到斜面底端时的动能, x0为在斜面底端对应的水平位移,解得E k=E k0一μ2mg(x-x0),即在水平面运动时动能与x也成线性关系;综上分析可知A 项正确。
动能定理-机械能守恒定律专题
动能定理-机械能守恒定律专题【动能定理内容】总功等于动能的变化量【表达式】【机械能守恒定律内容】在只有重力做功(弹力做功)的系统内,物体的动能与势能之间可以相互转化,而总的机械能保持不变。
【表达式】【列机械能守恒定律方程的两个依据】1. 在研究的过程中,初位置的机械能等于末位置的机械能2. 在研究的过程中,减少的动能(势能)等于增加的势能(动能)【判断机械能是否守恒的方法】1. 从做功的角度:只有重力或弹力做功,或者只有这两种力同时做功,除了这两种力,还有其他的力,但其他力不做功。
2. 从能量转换的角度:只有动能和势能之间的转化,而总的机械能保持不变【解题的一般方法】动能定理的用法:1. 选过程选定研究过程,明确此过程的初、末速度,初、末动能,写出动能的变化量(末动能—初动能);2. 求总功受力分析,画出示意图,明确哪些力做正功、负功,哪些力不做功;求出各个力做功的代数和;3. 列方程根据动能定理表达式列出方程什么情况下考虑使用动能定理?1. 求变力做功;2. 曲线运动;3. 非匀变速直线运动;4. 匀变速直线运动也可以使用对于匀变速直线运动,既可以使用“牛顿定律结合运动学公式”,也可以使用动能定理的话,优先使用动能定理机械能守恒定律的用法:1. 做判断判断机械能是否守恒,如果守恒,进入第2步;否则,考虑使用动能定理;2. 选过程选定研究过程,明确初位置的动能和势能,末位置的动能和势能,判断动能和势能如何变化;3. 列方程根据机械能守恒定律列出方程【例题分析】例1. 一架喷气式飞机,质量m=5x103kg,起飞过程中从静止开始滑跑。
当位移达到L=5.3x102m时,速度达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍。
求飞机受到的牵引力。
例2. 一辆质量为m,速度为v的汽车,关闭发动机后在水平地面上滑行了距离L后停下来,求汽车受到的阻力。
(用两种方法解答)例3. 如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因素都相同,物体滑到斜面底部C点时的动能分别为E K1 和E K2,下滑过程中克服摩擦力所做的功分别为W1和W2,则:()A. E K1 > E K2W1< W2 B. E K1 > E K2W1=W2C. E K1 = E K2W1 > W2D. E K1 < E K2W1 >W2A B例4. 如图所示,将半径为R 的14光滑圆弧轨道AB 固定在竖直平面内,轨道末端与水平地面相切。
专题复习:动能定理、机械能守恒、能量守恒
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有, 说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P15410、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R的光滑圆柱,与圆柱轴心一样高的A球的质量为2m正好着地的B球质量是m,释放A球后,B球上升,则A球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A、B,且m=2m=2m由图示位置从静止开始释放A物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B所做的功。
专题复习:动能定理、机械能守恒、能量守恒
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有,说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P154 10、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R 的光滑圆柱,与圆柱轴心一样高的A 球的质量为2m ,正好着地的B 球质量是m ,释放A 球后,B 球上升,则A 球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R 的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A 、B ,且m A =2m B =2m ,由图示位置从静止开始释放A 物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B 所做的功。
专题12动能定理和机械能守恒定律(原卷版)-三年(2022-2024)高考物理真题分类汇编(通用)
专题12动能定理和机械能守恒定律考点01动能和动能定理1..(2024年高考福建卷)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是()A.4B.第一次过P 点比第二次机械能少1.3JC.落地瞬间,第一次,第二次动能之比为72:85D.第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大2.(2022年1月浙江选考)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上。
已知可视为质点的滑块质量m =0.1kg ,轨道BCD 和DEF 的半径R =0.15m ,轨道AB 长度AB 3m l =,滑块与轨道FG 间的动摩擦因数78μ=,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。
滑块开始时均从轨道AB 上某点静止释放,(1)若释放点距B 点的长度l =0.7m ,求滑块到最低点C 时轨道对其支持力F N 的大小;(2)设释放点距B 点的长度为x l ,滑块第一次经F 点时的速度v 与x l 之间的关系式;(3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度x l 的值。
考点02机械能和机械能守恒定律1.(2022年全国理综甲卷第14题)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。
运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《动能定理,机械能守恒》专题 一、动能定理:1.内容:合力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化. 2.公式:W 合=△E k3.应用动能定理解决问题的方法步骤: (1)确定研究对象和要研究的物理过程.(2)结合过程对研究对象进行受力分析,求出各力对物体做的总功. (3)明确初末状态物体的动能. (4)由动能定理列方程求解,并讨论. 4.动能定理解决问题的优越性及注意问题:(1)所解决的动力学问题不涉及加速度和时间时,用动能定理解题方便. (2)一些短暂的变力作用的或曲线运动的过程优先考虑应用动能定理解决问题. (3)动能定理涉及物理过程,灵活地选取物理过程,可以有效地简化解题.例1.一架喷气式飞机,质量m=5.0×103kg ,起飞过程中从静止开始滑跑.当位移达到x=5.3×102m 时,速度达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重量的0.02倍.求飞机受到的牵引力.例2.一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下, 从平衡位置P 点很缓慢地移动到Q 点,如图所示,则拉力F 所做的功为( A. mglcos θ B. mgl(1-cos θ) C. Flcos θ D. Flsin θ例3.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S ,如图,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.例4.质量为500t 的机车以恒定的功率由静止出发,经5min 行驶2.25km ,速度达到最大值54km/h ,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h 时机车的加速度a=?例5.人在高h 米的地方,斜向上抛出一质量为m 的物体,物体最高点的速度为1v ,落地速度为2v ,人对这个物体做的功为(不计空气阻力)( ) A.21222121mv mv - B. 2221mv C. mgh mv -2221 D. mgh mv -2121例6.如图所示,质量为m 的物体A ,从弧形面的底端以初速0v 往上滑行,达到某一高度后,又循原路返回,且继续沿水平面滑行至P 点而停止,则整个过 程摩擦力对物体所做的功 。
例7.物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端停下,斜面倾角为30°,求拉力F 多大?(2/10s m g =)例8.一个物体以初速度v 竖直向上抛出,它落回原处时的速度为2v,设运动过程中阻力大小保持不变,则重力与阻力之比为( )A. 3:5B. 3:4C. 1:2D. 1:1例9.一个物体从高为h 的斜面顶端以初速度0v 下滑到斜面底端时的速度恰好为0,则使该物体由这个斜面底端至少以初速=v 上滑,才能到达斜面顶端。
例10.如图所示,质量为m 的物块与转台之间的动摩擦因数为μ,物体与转轴相距R ,物块随转台由静止开始运动,当转速增加到某值时,物块即将在转台上滑动,此时,转台已开始做匀速运动,在这一过程中,摩擦力对物体做的功为( ) A. 0 B. mgR πμ2 C. mgR μ2 D. 2/mgR μ例11. 如图所示,半径为R 的半圆槽木块固定在水平地面上,质量为m 的小球以某速度从A 点无摩擦地滚上半圆槽,小球通过最高点B 后落到水平地面上的C 点,已知AC=AB=2R 。
求:①小球在A 点时的速度大小为多少? ②小球在B 点时的速度?二.机械能守恒定律:1.内容:2.条件:只有重力和系统内相互作用弹力做功。
(1)只受重力和弹力作用; (2)物体受几个力的作用,但只有重力和弹力做功; (3)其它的力也做功,但其它力的总功为零; (4)没有任何力做功,物体的能量不会发生变化。
3.公式:21E E =或P k E E ∆-=∆ 4.常见两种表达式: (1)2211p k p k E E E E +=+(意义:前后状态机械能不变)(2)1221k k p p E E E E -=-(意义:势能的减少量等于动能的增加量)1、对机械能守恒定律条件的理解例1.下列说法正确的是( )A 、物体机械能守恒时,一定只受重力和弹力的作用。
B 、物体处于平衡状态时机械能一定守恒。
C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
例2. 如图所示,在水平台面上的A 点,一个质量为m 的物体以初速度v 0被抛出, 不计空气阻力,求它到达B 点时速度的大小.例3. 如图所示,斜面的倾角θ=30°,另一边与地面垂直,高为H ,斜面顶点上有一定滑轮,物块A 和B 的质量分别为m 1和m 2,通过轻而柔软的细绳连结并跨过定滑轮.开始时两物块都位于与地面垂直距离为12H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面的竖直边下落.若物块A 恰好能达到斜面的顶点,试求m 1和m 2的比值.滑轮的质量、半径和摩擦均可忽略不计.例4.质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h 高度,下列说法中正确的是( )A .物体的重力势能减少2mghB .物体的机械能保持不变C .物体的动能增加2mghD .物体的机械能增加mgh例5.用弹簧枪将一质量为m 的小钢球以初速度v 0竖直向上弹出,不计空气阻力,当小钢球的速度减为v 04时,钢球的重力势能为(取弹出钢球点所在水平面为参考面)( )A.1532mv 20 B.1732mv 20 C.132mv 20 D.49mv 20 巩固练习:1. 在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A. 202mv 21mv 21mgh -- B.mgh mv 21mv 21202-- C. 220mv 21mv 21mgh -+D. 202mv 21mv 21mgh -+2. 如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB=2BC 。
小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为1μ、2μ。
已知P 由静止开始从A 点释放,恰好能滑到C 点而停下,那么θ、1μ、2μ间应满足的关系是( )A. 32tan 21μ+μ=θ B. 32tan 21μ+μ=θ C. 212tan μ-μ=θD. 122tan μ+μ=θ3. 被竖直上抛的物体的初速度与回到抛出点时速度大小之比为k ,而空气阻力在运动过程中大小不变,则重力与空气阻力的大小之比为( )A. )1/()1(22-+k k B. )1/()1(-+k k C. 1/kD. k /14. 如图所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自由摆下,不计空气阻力, 在重物由A 点摆向最低点的过程中( ) A. 重物的重力势能减少 B. 重物的重力势能增大 C. 重物的机械能不变D. 重物的机械能减少5. 如图所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点的速度为v ,与A 点的竖直高度差为h ,则( )A. 由A 至B 重力做功为mghB. 由A 至B 重力势能减少12mv 2C. 由A 至B 小球克服弹力做功为mghD. 小球到达位置B 时弹簧的弹性势能为mgh -12mv 26. 小明和小强在操场上一起踢足球,足球质量为m.如图所示,小明将足球以速度v 从地面 上的A 点踢起,当足球到达离地面高度为h 的B 点位置时,取B 处为零势能参考面,不计空气阻力.则下列说法中正确的是( )A. 小明对足球做的功等于12mv 2+mgh B. 小明对足球做的功等于mghC. 足球在A 点处的机械能为12mv 2D. 足球在B 点处的动能为12mv 2-mgh7. 如图所示,质量m=2kg 的物体,从光滑斜面的顶端A 点以v 0=5m/s 的初速度滑下,在D 点与弹簧接触并将弹簧压缩到B 点时的速度为零,已知从A 到B 的竖直高度h=5m ,求弹簧的弹力对物体所做的功。
8. 如图一根铁链长为L ,放在光滑的水平桌面上,一端下垂,长度为a ,若将链条由静止释放,则链条刚好离开桌子边缘时的速度是多少?9. 如图所示,物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设经过B 点前后速度大小不变),最后停在C 点。
每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据。
(重力加速度g=10 m /s 2)(1)斜面的倾角α;(2)物体与水平面之间的动摩擦因数μ;(3)t=0.6s时的瞬时速度v的大小。
10. 某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切.弹射装置将一个小物体(可视为质点)以v a=5 m/s的水平初速度由a点弹出,从b点进入轨道,依次经过“8002”后从p点水平抛出。
小物体与地面ab段间的动摩擦因数μ=0.3,不计其他机械能损失.已知ab段长L=1.5 m,数字“0”的半径R=0.2 m,物体质量m=0.01 kg,g=10 m/s2。
求:(1)小物体从p点抛出后的水平射程。
(2)小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。
一.动能定理:例1.根据动能定理,有(F 牵-kmg)x=21mv 2-0,把数值代入后得F 牵=1.8×104N 例2. B 例3. 对物体在全过程中应用动能定理:mgl ·sin α-μmgl ·cos α-μmgS2=0,得,h -μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故例4. (1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据有当机车达到最大速度时,F=f .所以当机车速度v=36km/h 时机车的牵引力根据ΣF=ma 可得机车v=36km/h 时的加速度例5.C 例6. 答案:-mv 02例7. F*s/2-umgscos30°-mgsin30°s=0,117.3N . 例8.A 例9.例10. D. 例11. ①小球在A 点时的速度gR 5 ②小球在B 点时的速度gR二.机械能守恒定律:例1. CD . 例2. 物体抛出后的运动过程中只受重力作用,机械能守恒,若选地面为参考面,则mgH +12mv 20=mg(H -h)+12mv 2B ,解得v B =v 20+2gh若选桌面为参考面,则12mv 20=-mgh +12mv 2B ,解得它到达B 点时速度的大小为 ,v B =v 20+2gh 例3.B 下落过程中,对系统由机械能守恒定律有:m 2g =m 1g sin θ+(m 1+m 2)v 2以后对A 上升至顶点过程由动能定理有:m 1v 2=m 1g(-Hsin θ)= 例4. 答案 CD 例5. 答案 A巩固练习:1. C 解析:克服阻力做功等于物块机械能的减少,抛出时的机械能为201mv 21mgh E +=,落地时的机械能为22mv 21E =,机械能减少22021mv 21mv 21mgh E E -+=-。